Search results for: semisolid metals processing
1209 Vehicle Gearbox Fault Diagnosis Based on Cepstrum Analysis
Authors: Mohamed El Morsy, Gabriela Achtenová
Abstract:
Research on damage of gears and gear pairs using vibration signals remains very attractive, because vibration signals from a gear pair are complex in nature and not easy to interpret. Predicting gear pair defects by analyzing changes in vibration signal of gears pairs in operation is a very reliable method. Therefore, a suitable vibration signal processing technique is necessary to extract defect information generally obscured by the noise from dynamic factors of other gear pairs. This article presents the value of cepstrum analysis in vehicle gearbox fault diagnosis. Cepstrum represents the overall power content of a whole family of harmonics and sidebands when more than one family of sidebands is present at the same time. The concept for the measurement and analysis involved in using the technique are briefly outlined. Cepstrum analysis is used for detection of an artificial pitting defect in a vehicle gearbox loaded with different speeds and torques. The test stand is equipped with three dynamometers; the input dynamometer serves as the internal combustion engine, the output dynamometers introduce the load on the flanges of the output joint shafts. The pitting defect is manufactured on the tooth side of a gear of the fifth speed on the secondary shaft. Also, a method for fault diagnosis of gear faults is presented based on order cepstrum. The procedure is illustrated with the experimental vibration data of the vehicle gearbox. The results show the effectiveness of cepstrum analysis in detection and diagnosis of the gear condition.Keywords: cepstrum analysis, fault diagnosis, gearbox, vibration signals
Procedia PDF Downloads 3771208 Engineering Strategies Towards Improvement in Energy Storage Performance of Ceramic Capacitors for Pulsed Power Applications
Authors: Abdul Manan
Abstract:
The necessity for efficient and cost-effective energy storage devices to intelligently store the inconsistent energy output from modern renewable energy sources is peaked today. The scientific community is struggling to identify the appropriate material system for energy storage applications. Countless contributions by researchers worldwide have now helped us identify the possible snags and limitations associated with each material/method. Energy storage has attracted great attention for its use in portable electronic devices military field. Different devices, such as dielectric capacitors, supercapacitors, and batteries, are used for energy storage. Of these, dielectric capacitors have high energy output, a long life cycle, fast charging and discharging capabilities, work at high temperatures, and excellent fatigue resistance. The energy storage characteristics have been studied to be highly affected by various factors, such as grain size, optimized compositions, grain orientation, energy band gap, processing techniques, defect engineering, core-shell formation, interface engineering, electronegativity difference, the addition of additives, density, secondary phases, the difference of Pmax-Pr, sample thickness, area of the electrode, testing frequency, and AC/DC conditions. The data regarding these parameters/factors are scattered in the literature, and the aim of this study is to gather the data into a single paper that will be beneficial for new researchers in the field of interest. Furthermore, control over and optimizing these parameters will lead to enhancing the energy storage properties.Keywords: strategies, ceramics, energy storage, capacitors
Procedia PDF Downloads 751207 Effect of Manganese Doping on Ferrroelectric Properties of (K0.485Na0.5Li0.015)(Nb0.98V0.02)O3 Lead-Free Piezoceramic
Authors: Chongtham Jiten, Radhapiyari Laishram, K. Chandramani Singh
Abstract:
Alkaline niobate (Na0.5K0.5)NbO3 ceramic system has attracted major attention in view of its potential for replacing the highly toxic but superior lead zirconate titanate (PZT) system for piezoelectric applications. Recently, a more detailed study of this system reveals that the ferroelectric and piezoelectric properties are optimized in the Li- and V-modified system having the composition (K0.485Na0.5Li0.015)(Nb0.98V0.02)O3. In the present work, we further study the pyroelectric behaviour of this composition along with another doped with Mn4+. So, (K0.485Na0.5Li0.015)(Nb0.98V0.02)O3 + x MnO2 (x = 0, and 0.01 wt. %) ceramic compositions were synthesized by conventional ceramic processing route. X-ray diffraction study reveals that both the undoped and Mn4+-doped ceramic samples prepared crystallize into a perovskite structure having orthorhombic symmetry. Dielectric study indicates that Mn4+ doping has little effect on both the Curie temperature (Tc) and tetragonal-orthorhombic phase transition temperature (Tot). The bulk density, room-temperature dielectric constant (εRT), and room-c The room-temperature coercive field (Ec) is observed to be lower in Mn4+ doped sample. The detailed analysis of the P-E hysteresis loops over the range of temperature from about room temperature to Tot points out that enhanced ferroelectric properties exist in this temperature range with better thermal stability for the Mn4+ doped ceramic. The study reveals that small traces of Mn4+ can modify (K0.485Na0.5Li0.015)(Nb0.98V0.02)O3 system so as to improve its ferroelectric properties with good thermal stability over a wide range of temperature.Keywords: ceramics, dielectric properties, ferroelectric properties, lead-free, sintering, thermal stability
Procedia PDF Downloads 2371206 Encapsulation and Protection of Bioactive Nutrients Based on Ligand-Binding Property of Milk Proteins
Authors: Hao Cheng, Yingzhou Ni, Amr M. Bakry, Li Liang
Abstract:
Functional foods containing bioactive nutrients offer benefits beyond basic nutrition and hence the possibility of delaying and preventing chronic diseases. However, many bioactive nutrients degrade rapidly under food processing and storage conditions. Encapsulation can be used to overcome these limitations. Food proteins have been widely used as carrier materials for the preparation of nano/micro-particles because of their ability to form gels and emulsions and to interact with polysaccharides. The mechanisms of interaction between bioactive nutrients and proteins must be understood in order to develop protein-based lipid-free delivery systems. Beta-lactoglobulin, a small globular protein in milk whey, exhibits an affinity to a wide range of compounds. Alfa-tocopherol, resveratrol and folic acid were respectively bound to the central cavity, the outer surface near Trp19–Arg124 and the hydrophobic pocket in the groove between the alfa-helix and the beta-barrel of the protein. Beta-lactoglobulin could thus bind the three bioactive nutrients simultaneously to form protein-multi-ligand complexes. Beta-casein, an intrinsically unstructured but major milk protein, could also interact with resveratrol and folic acid to form complexes. These results suggest the potential to develop milk-protein-based complex carrier systems for encapsulation of multiple bioactive nutrients for functional food application and also pharmaceutical and medical uses.Keywords: milk protein, bioactive nutrient, interaction, protection
Procedia PDF Downloads 4101205 Rational Memory Therapy: The Counselling Technique to Control Psychological and Psychosomatic Illnesses
Authors: Sachin Deshmukh
Abstract:
Mind and body synchronization occurs through memory and sensation production. Sensations are the guiding language of subconscious mind for conscious mind to take a proper action. Mind-mechanism is based upon memories collected so far since intrauterine life. There are three universal triggers for memory creation; they are persons, situations and objects. Memory is created as sensations experienced by special senses. Based upon experiencing comfort or discomfort, the triggers are categorized as safe or unsafe triggers. A memory comprises of ‘safe or unsafe feeling for triggers, and actions taken for that feeling’. Memories for triggers are created slowly, thoughtfully and consciously by the conscious mind, and archived in the subconscious mind for future references. Later on, similar triggers can come in contact with the individual. Subconscious mind uses these stored feelings to decide whether these triggers are safe or unsafe. It produces comfort or discomfort sensations as emotions accordingly and reacts in the same way as has been recorded in memory. Speed of sensing and processing the triggers, and reacting by subconscious mind is that of the speed of bioelectricity. Hence, formula for human emotions has been designed in this paper as follows: Emotion (Stress or Peace) = Trigger (Person or Situation or object) x Mass of feelings (stressful or peaceful) associated with the Trigger x Speed of Light². We also establish modern medical scientific facts about relationship between reflex activity and memory. This research further develops the ‘Rational Memory Therapy’ focusing on therapeutic feelings conversion techniques, for stress prevention and management.Keywords: memory, sensations, feelings, emotions, rational memory therapy
Procedia PDF Downloads 2541204 Multimodal Optimization of Density-Based Clustering Using Collective Animal Behavior Algorithm
Authors: Kristian Bautista, Ruben A. Idoy
Abstract:
A bio-inspired metaheuristic algorithm inspired by the theory of collective animal behavior (CAB) was integrated to density-based clustering modeled as multimodal optimization problem. The algorithm was tested on synthetic, Iris, Glass, Pima and Thyroid data sets in order to measure its effectiveness relative to CDE-based Clustering algorithm. Upon preliminary testing, it was found out that one of the parameter settings used was ineffective in performing clustering when applied to the algorithm prompting the researcher to do an investigation. It was revealed that fine tuning distance δ3 that determines the extent to which a given data point will be clustered helped improve the quality of cluster output. Even though the modification of distance δ3 significantly improved the solution quality and cluster output of the algorithm, results suggest that there is no difference between the population mean of the solutions obtained using the original and modified parameter setting for all data sets. This implies that using either the original or modified parameter setting will not have any effect towards obtaining the best global and local animal positions. Results also suggest that CDE-based clustering algorithm is better than CAB-density clustering algorithm for all data sets. Nevertheless, CAB-density clustering algorithm is still a good clustering algorithm because it has correctly identified the number of classes of some data sets more frequently in a thirty trial run with a much smaller standard deviation, a potential in clustering high dimensional data sets. Thus, the researcher recommends further investigation in the post-processing stage of the algorithm.Keywords: clustering, metaheuristics, collective animal behavior algorithm, density-based clustering, multimodal optimization
Procedia PDF Downloads 2301203 Enhancer: An Effective Transformer Architecture for Single Image Super Resolution
Authors: Pitigalage Chamath Chandira Peiris
Abstract:
A widely researched domain in the field of image processing in recent times has been single image super-resolution, which tries to restore a high-resolution image from a single low-resolution image. Many more single image super-resolution efforts have been completed utilizing equally traditional and deep learning methodologies, as well as a variety of other methodologies. Deep learning-based super-resolution methods, in particular, have received significant interest. As of now, the most advanced image restoration approaches are based on convolutional neural networks; nevertheless, only a few efforts have been performed using Transformers, which have demonstrated excellent performance on high-level vision tasks. The effectiveness of CNN-based algorithms in image super-resolution has been impressive. However, these methods cannot completely capture the non-local features of the data. Enhancer is a simple yet powerful Transformer-based approach for enhancing the resolution of images. A method for single image super-resolution was developed in this study, which utilized an efficient and effective transformer design. This proposed architecture makes use of a locally enhanced window transformer block to alleviate the enormous computational load associated with non-overlapping window-based self-attention. Additionally, it incorporates depth-wise convolution in the feed-forward network to enhance its ability to capture local context. This study is assessed by comparing the results obtained for popular datasets to those obtained by other techniques in the domain.Keywords: single image super resolution, computer vision, vision transformers, image restoration
Procedia PDF Downloads 1031202 A Picture is worth a Billion Bits: Real-Time Image Reconstruction from Dense Binary Pixels
Authors: Tal Remez, Or Litany, Alex Bronstein
Abstract:
The pursuit of smaller pixel sizes at ever increasing resolution in digital image sensors is mainly driven by the stringent price and form-factor requirements of sensors and optics in the cellular phone market. Recently, Eric Fossum proposed a novel concept of an image sensor with dense sub-diffraction limit one-bit pixels (jots), which can be considered a digital emulation of silver halide photographic film. This idea has been recently embodied as the EPFL Gigavision camera. A major bottleneck in the design of such sensors is the image reconstruction process, producing a continuous high dynamic range image from oversampled binary measurements. The extreme quantization of the Poisson statistics is incompatible with the assumptions of most standard image processing and enhancement frameworks. The recently proposed maximum-likelihood (ML) approach addresses this difficulty, but suffers from image artifacts and has impractically high computational complexity. In this work, we study a variant of a sensor with binary threshold pixels and propose a reconstruction algorithm combining an ML data fitting term with a sparse synthesis prior. We also show an efficient hardware-friendly real-time approximation of this inverse operator. Promising results are shown on synthetic data as well as on HDR data emulated using multiple exposures of a regular CMOS sensor.Keywords: binary pixels, maximum likelihood, neural networks, sparse coding
Procedia PDF Downloads 2001201 Hybrid Advanced Oxidative Pretreatment of Complex Industrial Effluent for Biodegradability Enhancement
Authors: K. Paradkar, S. N. Mudliar, A. Sharma, A. B. Pandit, R. A. Pandey
Abstract:
The study explores the hybrid combination of Hydrodynamic Cavitation (HC) and Subcritical Wet Air Oxidation-based pretreatment of complex industrial effluent to enhance the biodegradability selectively (without major COD destruction) to facilitate subsequent enhanced downstream processing via anaerobic or aerobic biological treatment. Advanced oxidation based techniques can be less efficient as standalone options and a hybrid approach by combining Hydrodynamic Cavitation (HC), and Wet Air Oxidation (WAO) can lead to a synergistic effect since both the options are based on common free radical mechanism. The HC can be used for initial turbulence and generation of hotspots which can begin the free radical attack and this agitating mixture then can be subjected to less intense WAO since initial heat (to raise the activation energy) can be taken care by HC alone. Lab-scale venturi-based hydrodynamic cavitation and wet air oxidation reactor with biomethanated distillery wastewater (BMDWW) as a model effluent was examined for establishing the proof-of-concept. The results indicated that for a desirable biodegradability index (BOD: COD - BI) enhancement (up to 0.4), the Cavitation (standalone) pretreatment condition was: 5 bar and 88 min reaction time with a COD reduction of 36 % and BI enhancement of up to 0.27 (initial BI - 0.17). The optimum WAO condition (standalone) was: 150oC, 6 bar and 30 minutes with 31% COD reduction and 0.33 BI. The hybrid pretreatment (combined Cavitation + WAO) worked out to be 23.18 min HC (at 5 bar) followed by 30 min WAO at 150oC, 6 bar, at which around 50% COD was retained yielding a BI of 0.55. FTIR & NMR analysis of pretreated effluent indicated dissociation and/or reorientation of complex organic compounds in untreated effluent to simpler organic compounds post-pretreatment.Keywords: hybrid, hydrodynamic cavitation, wet air oxidation, biodegradability index
Procedia PDF Downloads 6171200 The Application of AI in Developing Assistive Technologies for Non-Verbal Individuals with Autism
Authors: Ferah Tesfaye Admasu
Abstract:
Autism Spectrum Disorder (ASD) often presents significant communication challenges, particularly for non-verbal individuals who struggle to express their needs and emotions effectively. Assistive technologies (AT) have emerged as vital tools in enhancing communication abilities for this population. Recent advancements in artificial intelligence (AI) hold the potential to revolutionize the design and functionality of these technologies. This study explores the application of AI in developing intelligent, adaptive, and user-centered assistive technologies for non-verbal individuals with autism. Through a review of current AI-driven tools, including speech-generating devices, predictive text systems, and emotion-recognition software, this research investigates how AI can bridge communication gaps, improve engagement, and support independence. Machine learning algorithms, natural language processing (NLP), and facial recognition technologies are examined as core components in creating more personalized and responsive communication aids. The study also discusses the challenges and ethical considerations involved in deploying AI-based AT, such as data privacy and the risk of over-reliance on technology. Findings suggest that integrating AI into assistive technologies can significantly enhance the quality of life for non-verbal individuals with autism, providing them with greater opportunities for social interaction and participation in daily activities. However, continued research and development are needed to ensure these technologies are accessible, affordable, and culturally sensitive.Keywords: artificial intelligence, autism spectrum disorder, non-verbal communication, assistive technology, machine learning
Procedia PDF Downloads 181199 Ambivalence as Ethical Practice: Methodologies to Address Noise, Bias in Care, and Contact Evaluations
Authors: Anthony Townsend, Robyn Fasser
Abstract:
While complete objectivity is a desirable scientific position from which to conduct a care and contact evaluation (CCE), it is precisely the recognition that we are inherently incapable of operating objectively that is the foundation of ethical practice and skilled assessment. Drawing upon recent research from Daniel Kahneman (2021) on the differences between noise and bias, as well as different inherent biases collectively termed “The Elephant in the Brain” by Kevin Simler and Robin Hanson (2019) from Oxford University, this presentation addresses both the various ways in which our judgments, perceptions and even procedures can be distorted and contaminated while conducting a CCE, but also considers the value of second order cybernetics and the psychodynamic concept of ‘ambivalence’ as a conceptual basis to inform our assessment methodologies to limit such errors or at least better identify them. Both a conceptual framework for ambivalence, our higher-order capacity to allow for the convergence and consideration of multiple emotional experiences and cognitive perceptions to inform our reasoning, and a practical methodology for assessment relying on data triangulation, Bayesian inference and hypothesis testing is presented as a means of promoting ethical practice for health care professionals conducting CCEs. An emphasis on widening awareness and perspective, limiting ‘splitting’, is demonstrated both in how this form of emotional processing plays out in alienating dynamics in families as well as the assessment thereof. In addressing this concept, this presentation aims to illuminate the value of ambivalence as foundational to ethical practice for assessors.Keywords: ambivalence, forensic, psychology, noise, bias, ethics
Procedia PDF Downloads 851198 Computer Countenanced Diagnosis of Skin Nodule Detection and Histogram Augmentation: Extracting System for Skin Cancer
Authors: S. Zith Dey Babu, S. Kour, S. Verma, C. Verma, V. Pathania, A. Agrawal, V. Chaudhary, A. Manoj Puthur, R. Goyal, A. Pal, T. Danti Dey, A. Kumar, K. Wadhwa, O. Ved
Abstract:
Background: Skin cancer is now is the buzzing button in the field of medical science. The cyst's pandemic is drastically calibrating the body and well-being of the global village. Methods: The extracted image of the skin tumor cannot be used in one way for diagnosis. The stored image contains anarchies like the center. This approach will locate the forepart of an extracted appearance of skin. Partitioning image models has been presented to sort out the disturbance in the picture. Results: After completing partitioning, feature extraction has been formed by using genetic algorithm and finally, classification can be performed between the trained and test data to evaluate a large scale of an image that helps the doctors for the right prediction. To bring the improvisation of the existing system, we have set our objectives with an analysis. The efficiency of the natural selection process and the enriching histogram is essential in that respect. To reduce the false-positive rate or output, GA is performed with its accuracy. Conclusions: The objective of this task is to bring improvisation of effectiveness. GA is accomplishing its task with perfection to bring down the invalid-positive rate or outcome. The paper's mergeable portion conflicts with the composition of deep learning and medical image processing, which provides superior accuracy. Proportional types of handling create the reusability without any errors.Keywords: computer-aided system, detection, image segmentation, morphology
Procedia PDF Downloads 1481197 Velocity Profiles of Vowel Perception by Javanese and Sundanese English Language Learners
Authors: Arum Perwitasari
Abstract:
Learning L2 sounds is influenced by the first language (L1) sound system. This current study seeks to examine how the listeners with a different L1 vowel system perceive L2 sounds. The fact that English has a bigger number of vowel inventory than Javanese and Sundanese L1 might cause problems for Javanese and Sundanese English language learners perceiving English sounds. To reveal the L2 sound perception over time, we measured the mouse trajectories related to the hand movements made by Javanese and Sundanese language learners, two of Indonesian local languages. Do the Javanese and Sundanese listeners show higher velocity than the English listeners when they perceive English vowels which are similar and new to their L1 system? The study aims to map the patterns of real-time processing through compatible hand movements to reveal any uncertainties when making selections. The results showed that the Javanese listeners exhibited significantly slower velocity values than the English listeners for similar vowels /I, ɛ, ʊ/ in the 826-1200ms post stimulus. Unlike the Javanese, the Sundanese listeners showed slow velocity values except for similar vowel /ʊ/. For the perception of new vowels /i:, æ, ɜ:, ʌ, ɑː, u:, ɔ:/, the Javanese listeners showed slower velocity in making the lexical decision. In contrast, the Sundanese listeners showed slow velocity only for vowels /ɜ:, ɔ:, æ, I/ indicating that these vowels are hard to perceive. Our results fit well with the second language model representing how the L1 vowel system influences the L2 sound perception.Keywords: velocity profiles, EFL learners, speech perception, experimental linguistics
Procedia PDF Downloads 2171196 Optimum Design of Hybrid (Metal-Composite) Mechanical Power Transmission System under Uncertainty by Convex Modelling
Authors: Sfiso Radebe
Abstract:
The design models dealing with flawless composite structures are in abundance, where the mechanical properties of composite structures are assumed to be known a priori. However, if the worst case scenario is assumed, where material defects combined with processing anomalies in composite structures are expected, a different solution is attained. Furthermore, if the system being designed combines in series hybrid elements, individually affected by material constant variations, it implies that a different approach needs to be taken. In the body of literature, there is a compendium of research that investigates different modes of failure affecting hybrid metal-composite structures. It covers areas pertaining to the failure of the hybrid joints, structural deformation, transverse displacement, the suppression of vibration and noise. In the present study a system employing a combination of two or more hybrid power transmitting elements will be explored for the least favourable dynamic loads as well as weight minimization, subject to uncertain material properties. Elastic constants are assumed to be uncertain-but-bounded quantities varying slightly around their nominal values where the solution is determined using convex models of uncertainty. Convex analysis of the problem leads to the computation of the least favourable solution and ultimately to a robust design. This approach contrasts with a deterministic analysis where the average values of elastic constants are employed in the calculations, neglecting the variations in the material properties.Keywords: convex modelling, hybrid, metal-composite, robust design
Procedia PDF Downloads 2101195 A Neuropsychological Investigation of the Relationship between Anxiety Levels and Loss of Inhibitory Cognitive Control in Ageing and Dementia
Authors: Nasreen Basoudan, Andrea Tales, Frederic Boy
Abstract:
Non-clinical anxiety may be comprised of state anxiety - temporarily experienced anxiety related to a specific situation, and trait anxiety - a longer lasting response or a general disposition to anxiety. While temporary and occasional anxiety whether as a mood state or personality dimension is normal, nonclinical anxiety may influence many more components of information processing than previously recognized. In ageing and dementia-related research, disease characterization now involves attempts to understand a much wider range of brain function such as loss of inhibitory control, as against the more common focus on memory and cognition. However, in many studies, the tendency has been to include individuals with clinical anxiety disorders while excluding persons with lower levels of state or trait anxiety. Loss of inhibitory cognitive control can lead to behaviors such as aggression, reduced sensitivity to others, sociopathic thoughts and actions. Anxiety has also been linked to inhibitory control, with research suggesting that people with anxiety are less capable of inhibiting their emotions than the average person. This study investigates the relationship between anxiety and loss of inhibitory control in younger and older adults, using a variety of questionnaires and computers-based tests. Based on the premise that irrespective of classification, anxiety is associated with a wide range of physical, affective, and cognitive responses, this study explores evidence indicative of the potential influence anxiety per se on loss of inhibitory control, in order to contribute to discussion and appropriate consideration of anxiety-related factors in methodological practice.Keywords: anxiety, ageing, dementia, inhibitory control
Procedia PDF Downloads 2381194 A Grey-Box Text Attack Framework Using Explainable AI
Authors: Esther Chiramal, Kelvin Soh Boon Kai
Abstract:
Explainable AI is a strong strategy implemented to understand complex black-box model predictions in a human-interpretable language. It provides the evidence required to execute the use of trustworthy and reliable AI systems. On the other hand, however, it also opens the door to locating possible vulnerabilities in an AI model. Traditional adversarial text attack uses word substitution, data augmentation techniques, and gradient-based attacks on powerful pre-trained Bidirectional Encoder Representations from Transformers (BERT) variants to generate adversarial sentences. These attacks are generally white-box in nature and not practical as they can be easily detected by humans e.g., Changing the word from “Poor” to “Rich”. We proposed a simple yet effective Grey-box cum Black-box approach that does not require the knowledge of the model while using a set of surrogate Transformer/BERT models to perform the attack using Explainable AI techniques. As Transformers are the current state-of-the-art models for almost all Natural Language Processing (NLP) tasks, an attack generated from BERT1 is transferable to BERT2. This transferability is made possible due to the attention mechanism in the transformer that allows the model to capture long-range dependencies in a sequence. Using the power of BERT generalisation via attention, we attempt to exploit how transformers learn by attacking a few surrogate transformer variants which are all based on a different architecture. We demonstrate that this approach is highly effective to generate semantically good sentences by changing as little as one word that is not detectable by humans while still fooling other BERT models.Keywords: BERT, explainable AI, Grey-box text attack, transformer
Procedia PDF Downloads 1341193 Influence of Sr(BO2)2 Doping on Superconducting Properties of (Bi,Pb)-2223 Phase
Authors: N. G. Margiani, I. G. Kvartskhava, G. A. Mumladze, Z. A. Adamia
Abstract:
Chemical doping with different elements and compounds at various amounts represents the most suitable approach to improve the superconducting properties of bismuth-based superconductors for technological applications. In this paper, the influence of partial substitution of Sr(BO2)2 for SrO on the phase formation kinetics and transport properties of (Bi,Pb)-2223 HTS has been studied for the first time. Samples with nominal composition Bi1.7Pb0.3Sr2-xCa2Cu3Oy[Sr(BO2)2]x, x=0, 0.0375, 0.075, 0.15, 0.25, were prepared by the standard solid state processing. The appropriate mixtures were calcined at 845 oC for 40 h. The resulting materials were pressed into pellets and annealed at 837 oC for 30 h in air. Superconducting properties of undoped (reference) and Sr(BO2)2-doped (Bi,Pb)-2223 compounds were investigated through X-ray diffraction (XRD), resistivity (ρ) and transport critical current density (Jc) measurements. The surface morphology changes in the prepared samples were examined by scanning electron microscope (SEM). XRD and Jc studies have shown that the low level Sr(BO2)2 doping (x=0.0375-0.075) to the Sr-site promotes the formation of high-Tc phase and leads to the enhancement of current carrying capacity in (Bi,Pb)-2223 HTS. The doped sample with x=0.0375 has the best performance compared to other prepared samples. The estimated volume fraction of (Bi,Pb)-2223 phase increases from ~25 % for reference specimen to ~70 % for x=0.0375. Moreover, strong increase in the self-field Jc value was observed for this dopant amount (Jc=340 A/cm2), compared to an undoped sample (Jc=110 A/cm2). Pronounced enhancement of superconducting properties of (Bi,Pb)-2223 superconductor can be attributed to the acceleration of high-Tc phase formation as well as the improvement of inter-grain connectivity by small amounts of Sr(BO2)2 dopant.Keywords: bismuth-based superconductor, critical current density, phase formation, Sr(BO₂)₂ doping
Procedia PDF Downloads 2421192 Improving Trainings of Mineral Processing Operators Through Gamification and Modelling and Simulation
Authors: Pedro A. S. Bergamo, Emilia S. Streng, Jan Rosenkranz, Yousef Ghorbani
Abstract:
Within the often-hazardous mineral industry, simulation training has speedily gained appreciation as an important method of increasing site safety and productivity through enhanced operator skill and knowledge. Performance calculations related to froth flotation, one of the most important concentration methods, is probably the hardest topic taught during the training of plant operators. Currently, most training teach those skills by traditional methods like slide presentations and hand-written exercises with a heavy focus on memorization. To optimize certain aspects of these pieces of training, we developed “MinFloat”, which teaches the operation formulas of the froth flotation process with the help of gamification. The simulation core based on a first-principles flotation model was implemented in Unity3D and an instructor tutoring system was developed, which presents didactic content and reviews the selected answers. The game was tested by 25 professionals with extensive experience in the mining industry based on a questionnaire formulated for training evaluations. According to their feedback, the game scored well in terms of quality, didactic efficacy and inspiring character. The feedback of the testers on the main target audience and the outlook of the mentioned solution is presented. This paper aims to provide technical background on the construction of educational games for the mining industry besides showing how feedback from experts can more efficiently be gathered thanks to new technologies such as online forms.Keywords: training evaluation, simulation based training, modelling, and simulation, froth flotation
Procedia PDF Downloads 1121191 Hindi Speech Synthesis by Concatenation of Recognized Hand Written Devnagri Script Using Support Vector Machines Classifier
Authors: Saurabh Farkya, Govinda Surampudi
Abstract:
Optical Character Recognition is one of the current major research areas. This paper is focussed on recognition of Devanagari script and its sound generation. This Paper consists of two parts. First, Optical Character Recognition of Devnagari handwritten Script. Second, speech synthesis of the recognized text. This paper shows an implementation of support vector machines for the purpose of Devnagari Script recognition. The Support Vector Machines was trained with Multi Domain features; Transform Domain and Spatial Domain or Structural Domain feature. Transform Domain includes the wavelet feature of the character. Structural Domain consists of Distance Profile feature and Gradient feature. The Segmentation of the text document has been done in 3 levels-Line Segmentation, Word Segmentation, and Character Segmentation. The pre-processing of the characters has been done with the help of various Morphological operations-Otsu's Algorithm, Erosion, Dilation, Filtration and Thinning techniques. The Algorithm was tested on the self-prepared database, a collection of various handwriting. Further, Unicode was used to convert recognized Devnagari text into understandable computer document. The document so obtained is an array of codes which was used to generate digitized text and to synthesize Hindi speech. Phonemes from the self-prepared database were used to generate the speech of the scanned document using concatenation technique.Keywords: Character Recognition (OCR), Text to Speech (TTS), Support Vector Machines (SVM), Library of Support Vector Machines (LIBSVM)
Procedia PDF Downloads 4961190 Improving Cheon-Kim-Kim-Song (CKKS) Performance with Vector Computation and GPU Acceleration
Authors: Smaran Manchala
Abstract:
Homomorphic Encryption (HE) enables computations on encrypted data without requiring decryption, mitigating data vulnerability during processing. Usable Fully Homomorphic Encryption (FHE) could revolutionize secure data operations across cloud computing, AI training, and healthcare, providing both privacy and functionality, however, the computational inefficiency of schemes like Cheon-Kim-Kim-Song (CKKS) hinders their widespread practical use. This study focuses on optimizing CKKS for faster matrix operations through the implementation of vector computation parallelization and GPU acceleration. The variable effects of vector parallelization on GPUs were explored, recognizing that while parallelization typically accelerates operations, it could introduce overhead that results in slower runtimes, especially in smaller, less computationally demanding operations. To assess performance, two neural network models, MLPN and CNN—were tested on the MNIST dataset using both ARM and x86-64 architectures, with CNN chosen for its higher computational demands. Each test was repeated 1,000 times, and outliers were removed via Z-score analysis to measure the effect of vector parallelization on CKKS performance. Model accuracy was also evaluated under CKKS encryption to ensure optimizations did not compromise results. According to the results of the trail runs, applying vector parallelization had a 2.63X efficiency increase overall with a 1.83X performance increase for x86-64 over ARM architecture. Overall, these results suggest that the application of vector parallelization in tandem with GPU acceleration significantly improves the efficiency of CKKS even while accounting for vector parallelization overhead, providing impact in future zero trust operations.Keywords: CKKS scheme, runtime efficiency, fully homomorphic encryption (FHE), GPU acceleration, vector parallelization
Procedia PDF Downloads 201189 Applications of Drones in Infrastructures: Challenges and Opportunities
Authors: Jin Fan, M. Ala Saadeghvaziri
Abstract:
Unmanned aerial vehicles (UAVs), also referred to as drones, equipped with various kinds of advanced detecting or surveying systems, are effective and low-cost in data acquisition, data delivery and sharing, which can benefit the building of infrastructures. This paper will give an overview of applications of drones in planning, designing, construction and maintenance of infrastructures. The drone platform, detecting and surveying systems, and post-data processing systems will be introduced, followed by cases with details of the applications. Challenges from different aspects will be addressed. Opportunities of drones in infrastructure include but not limited to the following. Firstly, UAVs equipped with high definition cameras or other detecting equipment are capable of inspecting the hard to reach infrastructure assets. Secondly, UAVs can be used as effective tools to survey and map the landscape to collect necessary information before infrastructure construction. Furthermore, an UAV or multi-UVAs are useful in construction management. UVAs can also be used in collecting roads and building information by taking high-resolution photos for future infrastructure planning. UAVs can be used to provide reliable and dynamic traffic information, which is potentially helpful in building smart cities. The main challenges are: limited flight time, the robustness of signal, post data analyze, multi-drone collaboration, weather condition, distractions to the traffic caused by drones. This paper aims to help owners, designers, engineers and architects to improve the building process of infrastructures for higher efficiency and better performance.Keywords: bridge, construction, drones, infrastructure, information
Procedia PDF Downloads 1221188 Aircraft Components, Manufacturing and Design: Opportunities, Bottlenecks, and Challenges
Authors: Ionel Botef
Abstract:
Aerospace products operate in very aggressive environments characterized by high temperature, high pressure, large stresses on individual components, the presence of oxidizing and corroding atmosphere, as well as internally created or externally ingested particulate materials that induce erosion and impact damage. Consequently, during operation, the materials of individual components degrade. In addition, the impact of maintenance costs for both civil and military aircraft was estimated at least two to three times greater than initial purchase values, and this trend is expected to increase. As a result, for viable product realisation and maintenance, a spectrum of issues regarding novel processing technologies, innovation of new materials, performance, costs, and environmental impact must constantly be addressed. One of these technologies, namely the cold-gas dynamic-spray process has enabled a broad range of coatings and applications, including many that have not been previously possible or commercially practical, hence its potential for new aerospace applications. Therefore, the purpose of this paper is to summarise the state of the art of this technology alongside its theoretical and experimental studies, and explore how the cold-gas dynamic-spray process could be integrated within a framework that finally could lead to more efficient aircraft maintenance. Based on the paper's qualitative findings supported by authorities, evidence, and logic essentially it is argued that the cold-gas dynamic-spray manufacturing process should not be viewed in isolation, but should be viewed as a component of a broad framework that finally leads to more efficient aerospace operations.Keywords: aerospace, aging aircraft, cold spray, materials
Procedia PDF Downloads 1171187 Importance of Developing a Decision Support System for Diagnosis of Glaucoma
Authors: Murat Durucu
Abstract:
Glaucoma is a condition of irreversible blindness, early diagnosis and appropriate interventions to make the patients able to see longer time. In this study, it addressed that the importance of developing a decision support system for glaucoma diagnosis. Glaucoma occurs when pressure happens around the eyes it causes some damage to the optic nerves and deterioration of vision. There are different levels ranging blindness of glaucoma disease. The diagnosis at an early stage allows a chance for therapies that slows the progression of the disease. In recent years, imaging technology from Heidelberg Retinal Tomography (HRT), Stereoscopic Disc Photo (SDP) and Optical Coherence Tomography (OCT) have been used for the diagnosis of glaucoma. This better accuracy and faster imaging techniques in response technique of OCT have become the most common method used by experts. Although OCT images or HRT precision and quickness, especially in the early stages, there are still difficulties and mistakes are occurred in diagnosis of glaucoma. It is difficult to obtain objective results on diagnosis and placement process of the doctor's. It seems very important to develop an objective decision support system for diagnosis and level the glaucoma disease for patients. By using OCT images and pattern recognition systems, it is possible to develop a support system for doctors to make their decisions on glaucoma. Thus, in this recent study, we develop an evaluation and support system to the usage of doctors. Pattern recognition system based computer software would help the doctors to make an objective evaluation for their patients. It is intended that after development and evaluation processes of the software, the system is planning to be serve for the usage of doctors in different hospitals.Keywords: decision support system, glaucoma, image processing, pattern recognition
Procedia PDF Downloads 3001186 The Effect of Deformation Activation Volume, Strain Rate Sensitivity and Processing Temperature of Grain Size Variants
Authors: P. B. Sob, A. A. Alugongo, T. B. Tengen
Abstract:
The activation volume of 6082T6 aluminum is investigated at different temperatures on grain size variants. The deformation activation volume was computed on the basis of the relationship between the Boltzmann’s constant k, the testing temperatures, the material strain rate sensitivity and the material yield stress of grain size variants. The material strain rate sensitivity is computed as a function of yield stress and strain rate of grain size variants. The effect of the material strain rate sensitivity and the deformation activation volume of 6082T6 aluminum at different temperatures of 3-D grain are discussed. It is shown that the strain rate sensitivities and activation volume are negative for the grain size variants during the deformation of nanostructured materials. It is also observed that the activation volume vary in different ways with the equivalent radius, semi minor axis radius, semi major axis radius and major axis radius. From the obtained results it is shown that the variation of activation volume increased and decreased with the testing temperature. It was revealed that, increased in strain rate sensitivity led to decrease in activation volume whereas increased in activation volume led to decrease in strain rate sensitivity.Keywords: nanostructured materials, grain size variants, temperature, yield stress, strain rate sensitivity, activation volume
Procedia PDF Downloads 2481185 Feature Analysis of Predictive Maintenance Models
Authors: Zhaoan Wang
Abstract:
Research in predictive maintenance modeling has improved in the recent years to predict failures and needed maintenance with high accuracy, saving cost and improving manufacturing efficiency. However, classic prediction models provide little valuable insight towards the most important features contributing to the failure. By analyzing and quantifying feature importance in predictive maintenance models, cost saving can be optimized based on business goals. First, multiple classifiers are evaluated with cross-validation to predict the multi-class of failures. Second, predictive performance with features provided by different feature selection algorithms are further analyzed. Third, features selected by different algorithms are ranked and combined based on their predictive power. Finally, linear explainer SHAP (SHapley Additive exPlanations) is applied to interpret classifier behavior and provide further insight towards the specific roles of features in both local predictions and global model behavior. The results of the experiments suggest that certain features play dominant roles in predictive models while others have significantly less impact on the overall performance. Moreover, for multi-class prediction of machine failures, the most important features vary with type of machine failures. The results may lead to improved productivity and cost saving by prioritizing sensor deployment, data collection, and data processing of more important features over less importance features.Keywords: automated supply chain, intelligent manufacturing, predictive maintenance machine learning, feature engineering, model interpretation
Procedia PDF Downloads 1311184 The Effect of a Saturated Kink on the Dynamics of Tungsten Impurities in the Plasma Core
Authors: H. E. Ferrari, R. Farengo, C. F. Clauser
Abstract:
Tungsten (W) will be used in ITER as one of the plasma facing components (PFCs). The W could migrate to the plasma center. This could have a potentially deleterious effect on plasma confinement. Electron cyclotron resonance heating (ECRH) can be used to prevent W accumulation. We simulated a series of H mode discharges in ASDEX U with PFC containing W, where central ECRH was used to prevent W accumulation in the plasma center. The experiments showed that the W density profiles were flat after a sawtooth crash, and become hollow in between sawtooth crashes when ECRH has been applied. It was also observed that a saturated kink mode was active in these conditions. We studied the effect of saturated kink like instabilities on the redistribution of W impurities. The kink was modeled as the sum of a simple analytical equilibrium (large aspect ratio, circular cross section) plus the perturbation produced by the kink. A numerical code that follows the exact trajectories of the impurity ions in the total fields and includes collisions was employed. The code is written in Cuda C and runs in Graphical Processing Units (GPUs), allowing simulations with a large number of particles with modest resources. Our simulations show that when the W ions have a thermal velocity distribution, the kink has no effect on the W density. When we consider the plasma rotation, the kink can affect the W density. When the average passing frequency of the W particles is similar to the frequency of the kink mode, the expulsion of W ions from the plasma core is maximum, and the W density shows a hollow structure. This could have implications for the mitigation of W accumulation.Keywords: impurity transport, kink instability, tungsten accumulation, tungsten dynamics
Procedia PDF Downloads 1691183 Dispersions of Carbon Black in Microemulsions
Authors: Mohamed Youssry, Dominique Guyomard, Bernard Lestriez
Abstract:
In order to enhance the energy and power densities of electrodes for energy storage systems, the formulation and processing of electrode slurries proved to be a critical issue in determining the electrode performance. In this study, we introduce novel approach to formulate carbon black slurries based on microemulsion and lyotropic liquid crystalline phases (namely, lamellar phase) composed of non-ionic surfactant (Triton X100), decanol and water. Simultaneous measurements of electrical properties of slurries under shear flow (rheology) have been conducted to elucidate the microstructure evolution with the surfactant concentration and decanol/water ratio at rest, as well as, the structural transition under steady-shear which has been confirmed by rheo-microscopy. Interestingly, the carbon black slurries at low decanol/water ratio are weak-gel (flowable) with higher electrical conductivity than those at higher ratio which behave strong-gel viscoelastic response. In addition, the slurries show recoverable electrical behaviour under shear flow in tandem with the viscosity trend. It is likely that oil-in-water microemulsion enhances slurries’ stability without affecting on the percolating network of carbon black. On the other hand, the oil-in-water analogous and bilayer structure of lamellar phase cause the slurries less conductive as a consequence of losing the network percolation. These findings are encouraging to formulate microemulsion-based electrodes for energy storage system (lithium-ion batteries).Keywords: electrode slurries, microemulsion, microstructure transition, rheo-electrical properties
Procedia PDF Downloads 2641182 Comparative Analysis of Yield before and after Access to Extension Services among Crop Farmers in Bauchi Local Government Area of Bauchi State, Nigeria
Authors: U. S. Babuga, A. H. Danwanka, A. Garba
Abstract:
The research was carried out to compare the yield of respondents before and after access to extension services on crop production technologies in the study area. Data were collected from the study area through questionnaires administered to seventy-five randomly selected respondents. Data were analyzed using descriptive statistics, t-test and regression models. The result disclosed that majority (97%) of the respondent attended one form of school or the other. The majority (78.67%) of the respondents had farm size ranging between 1-3 hectares. The majority of the respondent adopt improved variety of crops, plant spacing, herbicide, fertilizer application, land preparation, crop protection, crop processing and storage of farm produce. The result of the t-test between the yield of respondents before and after access to extension services shows that there was a significant (p<0.001) difference in yield before and after access to extension. It also indicated that farm size was significant (p<0.001) while household size, years of farming experience and extension contact were significant at (p<0.005). The major constraint to adoption of crop production technologies were shortage of extension agents, high cost of technology and lack of access to credit facility. The major pre-requisite for the improvement of extension service are employment of more extension agents or workers and adequate training. Adequate agricultural credit to farmers at low interest rates will enhance their adoption of crop production technologies.Keywords: comparative, analysis, yield, access, extension
Procedia PDF Downloads 3631181 Rheological and Computational Analysis of Crude Oil Transportation
Authors: Praveen Kumar, Satish Kumar, Jashanpreet Singh
Abstract:
Transportation of unrefined crude oil from the production unit to a refinery or large storage area by a pipeline is difficult due to the different properties of crude in various areas. Thus, the design of a crude oil pipeline is a very complex and time consuming process, when considering all the various parameters. There were three very important parameters that play a significant role in the transportation and processing pipeline design; these are: viscosity profile, temperature profile and the velocity profile of waxy crude oil through the crude oil pipeline. Knowledge of the Rheological computational technique is required for better understanding the flow behavior and predicting the flow profile in a crude oil pipeline. From these profile parameters, the material and the emulsion that is best suited for crude oil transportation can be predicted. Rheological computational fluid dynamic technique is a fast method used for designing flow profile in a crude oil pipeline with the help of computational fluid dynamics and rheological modeling. With this technique, the effect of fluid properties including shear rate range with temperature variation, degree of viscosity, elastic modulus and viscous modulus was evaluated under different conditions in a transport pipeline. In this paper, two crude oil samples was used, as well as a prepared emulsion with natural and synthetic additives, at different concentrations ranging from 1,000 ppm to 3,000 ppm. The rheological properties was then evaluated at a temperature range of 25 to 60 °C and which additive was best suited for transportation of crude oil is determined. Commercial computational fluid dynamics (CFD) has been used to generate the flow, velocity and viscosity profile of the emulsions for flow behavior analysis in crude oil transportation pipeline. This rheological CFD design can be further applied in developing designs of pipeline in the future.Keywords: surfactant, natural, crude oil, rheology, CFD, viscosity
Procedia PDF Downloads 4511180 The Design of Smart Tactile Textiles for Therapeutic Applications
Authors: Karen Hong
Abstract:
Smart tactile textiles are a series of textile-based products that incorporates smart embedded technology to be utilized as tactile therapeutic applications for 2 main groups of target users. The first group of users will be children with sensory processing disorder who are suffering from tactile sensory dysfunction. Children with tactile sensory issues may have difficulty tolerating the sensations generated from the touch of certain textures on the fabrics. A series of smart tactile textiles, collectively known as ‘Tactile Toys’ are developed as tactile therapy play objects, exposing children to different types of touch sensations within textiles, enabling them to enjoy tactile experiences together with interactive play which will help them to overcome fear of certain touch sensations. The second group of users will be the elderly or geriatric patients who are suffering from deteriorating sense of touch. One of the common consequences of aging is suffering from deteriorating sense of touch and a decline in motoric function. With the focus in stimulating the sense of touch for this particular group of end users, another series of smart tactile textiles, collectively known as ‘Tactile Aids’ are developed also as tactile therapy. This range of products can help to maintain touch sensitivity and at the same time allowing the elderly to enjoy interactive play to practice their hand-eye coordination and enhancing their motor skills. These smart tactile textile products are being designed and tested out by the end users and have proofed their efficacy as tactile therapy enabling the users to lead a better quality of life.Keywords: smart textiles, embedded technology, tactile therapy, tactile aids, tactile toys
Procedia PDF Downloads 175