Search results for: efficiency analysis and selection bias
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 34321

Search results for: efficiency analysis and selection bias

30691 Development of Portable Hybrid Renewable Energy System for Sustainable Electricity Supply to Rural Communities in Nigeria

Authors: Abdulkarim Nasir, Alhassan T. Yahaya, Hauwa T. Abdulkarim, Abdussalam El-Suleiman, Yakubu K. Abubakar

Abstract:

The need for sustainable and reliable electricity supply in rural communities of Nigeria remains a pressing issue, given the country's vast energy deficit and the significant number of inhabitants lacking access to electricity. This research focuses on the development of a portable hybrid renewable energy system designed to provide a sustainable and efficient electricity supply to these underserved regions. The proposed system integrates multiple renewable energy sources, specifically solar and wind, to harness the abundant natural resources available in Nigeria. The design and development process involves the selection and optimization of components such as photovoltaic panels, wind turbines, energy storage units (batteries), and power management systems. These components are chosen based on their suitability for rural environments, cost-effectiveness, and ease of maintenance. The hybrid system is designed to be portable, allowing for easy transportation and deployment in remote locations with limited infrastructure. Key to the system's effectiveness is its hybrid nature, which ensures continuous power supply by compensating for the intermittent nature of individual renewable sources. Solar energy is harnessed during the day, while wind energy is captured whenever wind conditions are favourable, thus ensuring a more stable and reliable energy output. Energy storage units are critical in this setup, storing excess energy generated during peak production times and supplying power during periods of low renewable generation. These studies include assessing the solar irradiance, wind speed patterns, and energy consumption needs of rural communities. The simulation results inform the optimization of the system's design to maximize energy efficiency and reliability. This paper presents the development and evaluation of a 4 kW standalone hybrid system combining wind and solar power. The portable device measures approximately 8 feet 5 inches in width, 8 inches 4 inches in depth, and around 38 feet in height. It includes four solar panels with a capacity of 120 watts each, a 1.5 kW wind turbine, a solar charge controller, remote power storage, batteries, and battery control mechanisms. Designed to operate independently of the grid, this hybrid device offers versatility for use in highways and various other applications. It also presents a summary and characterization of the device, along with photovoltaic data collected in Nigeria during the month of April. The construction plan for the hybrid energy tower is outlined, which involves combining a vertical-axis wind turbine with solar panels to harness both wind and solar energy. Positioned between the roadway divider and automobiles, the tower takes advantage of the air velocity generated by passing vehicles. The solar panels are strategically mounted to deflect air toward the turbine while generating energy. Generators and gear systems attached to the turbine shaft enable power generation, offering a portable solution to energy challenges in Nigerian communities. The study also addresses the economic feasibility of the system, considering the initial investment costs, maintenance, and potential savings from reduced fossil fuel use. A comparative analysis with traditional energy supply methods highlights the long-term benefits and sustainability of the hybrid system.

Keywords: renewable energy, solar panel, wind turbine, hybrid system, generator

Procedia PDF Downloads 48
30690 Using Structural Equation Modeling to Measure the Impact of Young Adult-Dog Personality Characteristics on Dog Walking Behaviours during the COVID-19 Pandemic

Authors: Renata Roma, Christine Tardif-Williams

Abstract:

Engaging in daily walks with a dog (f.e. Canis lupus familiaris) during the COVID-19 pandemic may be linked to feelings of greater social-connectedness and global self-worth, and lower stress after controlling for mental health issues, lack of physical contact with others, and other stressors associated with the current pandemic. Therefore, maintaining a routine of dog walking might mitigate the effects of stressors experienced during the pandemic and promote well-being. However, many dog owners do not walk their dogs for many reasons, which are related to the owner’s and the dog’s personalities. Note that the consistency of certain personality characteristics among dogs demonstrates that it is possible to accurately measure different dimensions of personality in both dogs and their human counterparts. In addition, behavioural ratings (e.g., the dog personality questionnaire - DPQ) are reliable tools to assess the dog’s personality. Clarifying the relevance of personality factors in the context of young adult-dog relationships can shed light on interactional aspects that can potentially foster protective behaviours and promote well-being among young adults during the pandemic. This study examines if and how nine combinations of dog- and young adult-related personality characteristics (e.g., neuroticism-fearfulness) can amplify the influence of personality factors in the context of dog walking during the COVID-19 pandemic. Responses to an online large-scale survey among 440 (389 females; 47 males; 4 nonbinaries, Mage=20.7, SD= 2.13 range=17-25) young adults living with a dog in Canada were analyzed using structural equation modeling (SEM). As extraversion, conscientiousness, and neuroticism, measured through the five-factor model (FFM) inventory, are related to maintaining a routine of physical activities, these dimensions were selected for this analysis. Following an approach successfully adopted in the field of dog-human interactions, the FFM was used as the organizing framework to measure and compare the human’s and the dog’s personality in the context of dog walking. The dog-related personality dimensions activity/excitability, responsiveness to training, and fearful were correlated dimensions captured through DPQ and were added to the analysis. Two questions were used to assess dog walking. The actor-partner interdependence model (APIM) was used to check if the young adult’s responses about the dog were biased; no significant bias was observed. Activity/excitability and responsiveness to training in dogs were greatly associated with dog walking. For young adults, high scores in conscientiousness and extraversion predicted more walks with the dog. Conversely, higher scores in neuroticism predicted less engagement in dog walking. For participants high in conscientiousness, the dog’s responsiveness to training (standardized=0.14, p=0.02) and the dog’s activity/excitability (standardized=0.15, p=0.00) levels moderated dog walking behaviours by promoting more daily walks. These results suggest that some combinations in young adult and dog personality characteristics are associated with greater synergy in the young adult-dog dyad that might amplify the impact of personality factors on young adults’ dog-walking routines. These results can inform programs designed to promote the mental and physical health of young adults during the Covid-19 pandemic by highlighting the impact of synergy and reciprocity in personality characteristics between young adults and dogs.

Keywords: Covid-19 pandemic, dog walking, personality, structural equation modeling, well-being

Procedia PDF Downloads 120
30689 Social Influences on Americans' Mask-Wearing Behavior during COVID-19

Authors: Ruoya Huang, Ruoxian Huang, Edgar Huang

Abstract:

Based on a convenience sample of 2,092 participants from across all 50 states of the United States, a survey was conducted to explore Americans’ mask-wearing behaviors during COVID-19 according to their political convictions, religious beliefs, and ethnic cultures from late July to early September, 2020. The purpose of the study is to provide evidential support for government policymaking so as to drive up more effective public policies by taking into consideration the variance in these social factors. It was found that the respondents’ party affiliation or preference, religious belief, and ethnicity, in addition to their health condition, gender, level of concern of contracting COVID-19, all affected their mask-wearing habits both in March, the initial coronavirus outbreak stage, and in August, when mask-wearing had been made mandatory by state governments. The study concludes that pandemic awareness campaigns must be run among all citizens, especially among African Americans, Muslims, and Republicans, who have the lowest rates of wearing masks, in order to protect themselves and others. It is recommended that complementary cognitive bias awareness programs should be implemented in non-Black and non-Muslim communities to eliminate social concerns that deter them from wearing masks.

Keywords: COVID-19 pandemic, ethnicity, mask-wearing, policymaking implications, political affiliations, religious beliefs, United States

Procedia PDF Downloads 238
30688 Generating 3D Battery Cathode Microstructures using Gaussian Mixture Models and Pix2Pix

Authors: Wesley Teskey, Vedran Glavas, Julian Wegener

Abstract:

Generating battery cathode microstructures is an important area of research, given the proliferation of the use of automotive batteries. Currently, finite element analysis (FEA) is often used for simulations of battery cathode microstructures before physical batteries can be manufactured and tested to verify the simulation results. Unfortunately, a key drawback of using FEA is that this method of simulation is very slow in terms of computational runtime. Generative AI offers the key advantage of speed when compared to FEA, and because of this, generative AI is capable of evaluating very large numbers of candidate microstructures. Given AI generated candidate microstructures, a subset of the promising microstructures can be selected for further validation using FEA. Leveraging the speed advantage of AI allows for a better final microstructural selection because high speed allows for the evaluation of many more candidate microstructures. For the approach presented, battery cathode 3D candidate microstructures are generated using Gaussian Mixture Models (GMMs) and pix2pix. This approach first uses GMMs to generate a population of spheres (representing the “active material” of the cathode). Once spheres have been sampled from the GMM, they are placed within a microstructure. Subsequently, the pix2pix sweeps over the 3D microstructure (iteratively) slice by slice and adds details to the microstructure to determine what portions of the microstructure will become electrolyte and what part of the microstructure will become binder. In this manner, each subsequent slice of the microstructure is evaluated using pix2pix, where the inputs into pix2pix are the previously processed layers of the microstructure. By feeding into pix2pix previously fully processed layers of the microstructure, pix2pix can be used to ensure candidate microstructures represent a realistic physical reality. More specifically, in order for the microstructure to represent a realistic physical reality, the locations of electrolyte and binder in each layer of the microstructure must reasonably match the locations of electrolyte and binder in previous layers to ensure geometric continuity. Using the above outlined approach, a 10x to 100x speed increase was possible when generating candidate microstructures using AI when compared to using a FEA only approach for this task. A key metric for evaluating microstructures was the battery specific power value that the microstructures would be able to produce. The best generative AI result obtained was a 12% increase in specific power for a candidate microstructure when compared to what a FEA only approach was capable of producing. This 12% increase in specific power was verified by FEA simulation.

Keywords: finite element analysis, gaussian mixture models, generative design, Pix2Pix, structural design

Procedia PDF Downloads 112
30687 Effects of Excess-Iron Stress on Symbiotic Nitrogen Fixation Efficiency of Yardlong-Bean Plants

Authors: Hong Li, Tingxian Li, Xudong Wang, Qinghuo Lin

Abstract:

Excess-iron (Fe) stresses involved in legume symbiotic nitrogen fixation are not understood. Our objectives were to investigate the tolerance of yardlong-bean plants to soil excess-Fe stress and antagonistic effects of organic amendments and rhizobial inoculants on plant root nodulation and stem ureide formation. The study was conducted in the tropical Hainan Island during 2012-2013. The soil was strongly acidic (pH 5.3±0.4) and highly variable in Fe concentrations(596±79 mg/kg). The treatments were arranged in a split-plot design with three blocks. The treatment effects were significant on root nodulation, stem ureide, amino acids, plant N/Fe accumulation and bean yields (P<0.05). The yardlong-bean stem allantoin, amino acids and nitrate concentrations and relative ureide % declined with high soil Fe concentrations (>300 mg/kg). It was concluded that the co-variance of excess Fe stress could inhibit legume symbiotic N fixation efficiency. Organic amendments and rhizobial inoculants could help improve crop tolerance to excess Fe stress.

Keywords: atmospheric N fixation, root nodulation, soil Fe co-variance, stem ureide, yardlong-bean plants

Procedia PDF Downloads 293
30686 A Modified QuEChERS Method Using Activated Carbon Fibers as r-DSPE Sorbent for Sample Cleanup: Application to Pesticides Residues Analysis in Food Commodities Using GC-MS/MS

Authors: Anshuman Srivastava, Shiv Singh, Sheelendra Pratap Singh

Abstract:

A simple, sensitive and effective gas chromatography tandem mass spectrometry (GC-MS/MS) method was developed for simultaneous analysis of multi pesticide residues (organophosphate, organochlorines, synthetic pyrethroids and herbicides) in food commodities using phenolic resin based activated carbon fibers (ACFs) as reversed-dispersive solid phase extraction (r-DSPE) sorbent in modified QuEChERS (Quick Easy Cheap Effective Rugged Safe) method. The acetonitrile-based QuEChERS technique was used for the extraction of the analytes from food matrices followed by sample cleanup with ACFs instead of traditionally used primary secondary amine (PSA). Different physico-chemical characterization techniques such as Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction and Brunauer-Emmet-Teller surface area analysis were employed to investigate the engineering and structural properties of ACFs. The recovery of pesticides and herbicides was tested at concentration levels of 0.02 and 0.2 mg/kg in different commodities such as cauliflower, cucumber, banana, apple, wheat and black gram. The recoveries of all twenty-six pesticides and herbicides were found in acceptable limit (70-120%) according to SANCO guideline with relative standard deviation value < 15%. The limit of detection and limit of quantification of the method was in the range of 0.38-3.69 ng/mL and 1.26 -12.19 ng/mL, respectively. In traditional QuEChERS method, PSA used as r-DSPE sorbent plays a vital role in sample clean-up process and demonstrates good recoveries for multiclass pesticides. This study reports that ACFs are better in terms of removal of co-extractives in comparison of PSA without compromising the recoveries of multi pesticides from food matrices. Further, ACF replaces the need of charcoal in addition to the PSA from traditional QuEChERS method which is used to remove pigments. The developed method will be cost effective because the ACFs are significantly cheaper than the PSA. So the proposed modified QuEChERS method is more robust, effective and has better sample cleanup efficiency for multiclass multi pesticide residues analysis in different food matrices such as vegetables, grains and fruits.

Keywords: QuEChERS, activated carbon fibers, primary secondary amine, pesticides, sample preparation, carbon nanomaterials

Procedia PDF Downloads 279
30685 Field-Programmable Gate Arrays Based High-Efficiency Oriented Fast and Rotated Binary Robust Independent Elementary Feature Extraction Method Using Feature Zone Strategy

Authors: Huang Bai-Cheng

Abstract:

When deploying the Oriented Fast and Rotated Binary Robust Independent Elementary Feature (BRIEF) (ORB) extraction algorithm on field-programmable gate arrays (FPGA), the access of global storage for 31×31 pixel patches of the features has become the bottleneck of the system efficiency. Therefore, a feature zone strategy has been proposed. Zones are searched as features are detected. Pixels around the feature zones are extracted from global memory and distributed into patches corresponding to feature coordinates. The proposed FPGA structure is targeted on a Xilinx FPGA development board of Zynq UltraScale+ series, and multiple datasets are tested. Compared with the streaming pixel patch extraction method, the proposed architecture obtains at least two times acceleration consuming extra 3.82% Flip-Flops (FFs) and 7.78% Look-Up Tables (LUTs). Compared with the non-streaming one, the proposed architecture saves 22.3% LUT and 1.82% FF, causing a latency of only 0.2ms and a drop in frame rate for 1. Compared with the related works, the proposed strategy and hardware architecture have the superiority of keeping a balance between FPGA resources and performance.

Keywords: feature extraction, real-time, ORB, FPGA implementation

Procedia PDF Downloads 126
30684 Optimal Data Selection in Non-Ergodic Systems: A Tradeoff between Estimator Convergence and Representativeness Errors

Authors: Jakob Krause

Abstract:

Past Financial Crisis has shown that contemporary risk management models provide an unjustified sense of security and fail miserably in situations in which they are needed the most. In this paper, we start from the assumption that risk is a notion that changes over time and therefore past data points only have limited explanatory power for the current situation. Our objective is to derive the optimal amount of representative information by optimizing between the two adverse forces of estimator convergence, incentivizing us to use as much data as possible, and the aforementioned non-representativeness doing the opposite. In this endeavor, the cornerstone assumption of having access to identically distributed random variables is weakened and substituted by the assumption that the law of the data generating process changes over time. Hence, in this paper, we give a quantitative theory on how to perform statistical analysis in non-ergodic systems. As an application, we discuss the impact of a paragraph in the last iteration of proposals by the Basel Committee on Banking Regulation. We start from the premise that the severity of assumptions should correspond to the robustness of the system they describe. Hence, in the formal description of physical systems, the level of assumptions can be much higher. It follows that every concept that is carried over from the natural sciences to economics must be checked for its plausibility in the new surroundings. Most of the probability theory has been developed for the analysis of physical systems and is based on the independent and identically distributed (i.i.d.) assumption. In Economics both parts of the i.i.d. assumption are inappropriate. However, only dependence has, so far, been weakened to a sufficient degree. In this paper, an appropriate class of non-stationary processes is used, and their law is tied to a formal object measuring representativeness. Subsequently, that data set is identified that on average minimizes the estimation error stemming from both, insufficient and non-representative, data. Applications are far reaching in a variety of fields. In the paper itself, we apply the results in order to analyze a paragraph in the Basel 3 framework on banking regulation with severe implications on financial stability. Beyond the realm of finance, other potential applications include the reproducibility crisis in the social sciences (but not in the natural sciences) and modeling limited understanding and learning behavior in economics.

Keywords: banking regulation, non-ergodicity, risk management, semimartingale modeling

Procedia PDF Downloads 153
30683 Adjustment with Changed Lifestyle at Old Age Homes: A Perspective of Elderly in India

Authors: Priyanka V. Janbandhu, Santosh B. Phad, Dhananjay W. Bansod

Abstract:

The current changing scenario of the family is a compelling aged group not only to be alone in a nuclear family but also to join the old age institutions. The consequences of it are feeling of neglected or left alone by the children, adding a touch of helpless in the absence of lack of expected care and support. The accretion of all these feelings and unpleasant events ignite a question in their mind that – who is there for me? The efforts have taken to highlight the issues of the elderly after joining the old age home and their perception about the current life as an institutional inmate. This attempt to cover up the condition, adjustment, changed lifestyle and perspective in the association with several issues of the elderly, which have an essential effect on their well-being. The present research piece has collected the information about institutionalized elderly with the help of a semi-structured questionnaire. This study interviewed 500 respondents from 22 old age homes of Pune city of Maharashtra State, India. This data collection methodology consists of Multi-stage random sampling. In which the stratified random sampling adopted for the selection of old age homes and sample size determination, sample selection probability proportional to the size and simple random sampling techniques implemented. The study provides that around five percent of the elderly shifted to old age home along with their spouse, whereas ten percent of the elderly are staying away from their spouse. More than 71 percent of the elderly have children, and they are an involuntary inmate of the old age institution, even less than one-third of the elderly consulted to the institution before the joining it. More than sixty percent of the elderly have children, but they joined institution due to the unpleasant response of their children only. Around half of the elderly responded that there are issues while adjusting to this environment, many of them are still persistent. At least one elderly out of ten is there who is suffering from the feeling of loneliness and left out by children and other family members. In contrast, around 97 percent of the elderly are very happy or satisfied with the institutional facilities. It illustrates that the issues are associated with their children and other family members, even though they left their home before a year or more. When enquired about this loneliness feeling few of them are suffering from it before leaving their homes, it was due to lack of interaction with children, as they are too busy to have time for the aged parents. Additionally, the conflicts or fights within the family due to the presence of old persons in the family contributed to establishing another feeling of insignificance among the elderly parents. According to these elderly, have more than 70 percent of the share, the children are ready to spend money indirectly for us through these institutions, but not prepared to provide some time and very few amounts of all this expenditure directly for us.

Keywords: elderly, old age homes, life style changes and adjustment, India

Procedia PDF Downloads 136
30682 Sustainable Hydrogel Nanocomposites Based on Grafted Chitosan and Clay for Effective Adsorption of Cationic Dye

Authors: H. Ferfera-Harrar, T. Benhalima, D. Lerari

Abstract:

Contamination of water, due to the discharge of untreated industrial wastewaters into the ecosystem, has become a serious problem for many countries. In this study, bioadsorbents based on chitosan-g-poly(acrylamide) and montmorillonite (MMt) clay (CTS-g-PAAm/MMt) hydrogel nanocomposites were prepared via free‐radical grafting copolymerization and crosslinking of acrylamide monomer (AAm) onto natural polysaccharide chitosan (CTS) as backbone, in presence of various contents of MMt clay as nanofiller. Then, they were hydrolyzed to obtain highly functionalized pH‐sensitive nanomaterials with uppermost swelling properties. Their structure characterization was conducted by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) analyses. The adsorption performances of the developed nanohybrids were examined for removal of methylene blue (MB) cationic dye from aqueous solutions. The factors affecting the removal of MB, such as clay content, pH medium, adsorbent dose, initial dye concentration and temperature were explored. The adsorption process was found to be highly pH dependent. From adsorption kinetic results, the prepared adsorbents showed remarkable adsorption capacity and fast adsorption rate, mainly more than 88% of MB removal efficiency was reached after 50 min in 200 mg L-1 of dye solution. In addition, the incorporating of various content of clay has enhanced adsorption capacity of CTS-g-PAAm matrix from 1685 to a highest value of 1749 mg g-1 for the optimized nanocomposite containing 2 wt.% of MMt. The experimental kinetic data were well described by the pseudo-second-order model, while the equilibrium data were represented perfectly by Langmuir isotherm model. The maximum Langmuir equilibrium adsorption capacity (qm) was found to increase from 2173 mg g−1 until 2221 mg g−1 by adding 2 wt.% of clay nanofiller. Thermodynamic parameters revealed the spontaneous and endothermic nature of the process. In addition, the reusability study revealed that these bioadsorbents could be well regenerated with desorption efficiency overhead 87% and without any obvious decrease of removal efficiency as compared to starting ones even after four consecutive adsorption/desorption cycles, which exceeded 64%. These results suggest that the optimized nanocomposites are promising as low cost bioadsorbents.

Keywords: chitosan, clay, dye adsorption, hydrogels nanocomposites

Procedia PDF Downloads 125
30681 Development of Dye Sensitized Solar Window by Physical Parameters Optimization

Authors: Tahsin Shameem, Chowdhury Sadman Jahan, Mohammad Alam

Abstract:

Interest about Net Zero Energy Buildings have gained traction in recent years following the need to sustain energy consumption with generations on site and to reduce dependence on grid supplied energy from large plants using fossil fuel. With this end in view, building integrated photovoltaics are being studied attempting to utilize all exterior facades of a building to generate power. In this paper, we have looked at the physical parameters defining a dye sensitized solar cell (DSSC) and discussed their impact on energy harvest. Following our discussion and experimental data obtained from literature, we have attempted to optimize these physical parameters accordingly so as to allow maximum light absorption for a given active layer thickness. We then modified a planer DSSC design with our optimized properties to allow adequate light transmission which demonstrated a high fill factor and an External Quantum Efficiency (EQE) of greater than 9% by computer aided design and simulation. In conclusion, a DSSC based solar window with such high output values even after such high light transmission through it definitely flags a promising future for this technology and our work elicits the need for further study and practical experimentation.

Keywords: net zero energy building, integrated photovoltaics, dye sensitized solar cell, fill factor, External Quantum Efficiency

Procedia PDF Downloads 144
30680 Effect of Iron Ore Tailings on the Properties of Fly-ash Cement Concrete

Authors: Sikiru F. Oritola, Abd Latif Saleh, Abd Rahman Mohd Sam, Rozana Zakaria, Mushairry Mustaffar

Abstract:

The strength of concrete varies with the types of material used; the material used within concrete can also result in different strength due to improper selection of the component. Each material brings a different aspect to the concrete. This work studied the effect of using Iron ore Tailings (IOTs) as partial replacement for sand on some properties of concrete using Fly ash Cement as the binder. The sieve analysis and some other basic properties of the materials used in producing concrete samples were first determined. Two brands of Fly ash Cement were studied. For each brand of Fly ash Cement, five different types of concrete samples denoted as HCT0, HCT10, HCT20, HCT30 and HCT40, for the first brand and PCT0, PCT10, PCT20, PCT30 and PCT40, for the second brand were produced. The percentage of Tailings as partial replacement for sand in the sample was varied from 0% to 40% at 10% interval. For each concrete sample, the average of three cubes, three cylinders and three prism specimen results was used for the determination of the compressive strength, splitting tensile strength and the flexural strength respectively. Water/cement ratio of 0.54 with fly-ash cement content of 463 Kg/m3 was used in preparing the fresh concrete. The slump values for the HCT brand concrete ranges from 152mm – 75mm while that of PCT brand ranges from 149mm to 70mm. The concrete sample PCT30 recorded the highest 28 days compressive strength of 28.12 N/mm2, the highest splitting tensile strength of 2.99 N/mm2 as well as the highest flexural strength of 4.99 N/mm2. The texture of the iron-ore tailings is rough and angular and was therefore able to improve the strength of the fly ash cement concrete. Also, due to the fineness of the IOTs more void in the concrete can be filled, but this reaches the optimum at 30% replacement level, hence the drop in strength at 40% replacement

Keywords: concrete strength, fine aggregate, fly ash cement, iron ore tailings

Procedia PDF Downloads 673
30679 Managing Networks and Systems in the Modern Security Landscape: An Integrated Approach to Infrastructure Resilience

Authors: Oussama Yadine, Abdellah Jamali

Abstract:

The rapid evolution of today's technology ecosystem, marked by the fusion of cloud computing, IoT, and distributed systems, has introduced complex security challenges in network and systems administration. Our research develops a framework that seamlessly merges contemporary systems administration with advanced security engineering methodologies, particularly focusing on DevSecOps implementation and zero-trust architectural principles. Comprehensive testing and analysis across diverse organizational environments reveal that this unified approach achieves remarkable results: a 47% decrease in security-related incidents while consistently maintaining 99.9% system uptime. The framework delivers actionable guidelines for deploying secure infrastructure architectures, automating compliance oversight, and implementing dynamic security protocols. This integration effectively eliminates the historical divide between systems administration and security engineering, fostering an environment where operational efficiency and security resilience coexist harmoniously.

Keywords: network security, systems administration, security engineering, infrastructure resilience

Procedia PDF Downloads 7
30678 Modeling and Optimization of a Microfluidic Electrochemical Cell for the Electro-Reduction of CO₂ to CH₃OH

Authors: Barzin Rajabloo, Martin Desilets

Abstract:

First, an electrochemical model for the reduction of CO₂ into CH₃OH is developed in which mass and charge transfer, reactions at the surface of the electrodes and fluid flow of the electrolyte are considered. This mathematical model is developed in COMSOL Multiphysics® where both secondary and tertiary current distribution interfaces are coupled to consider concentrations and potentials inside different parts of the cell. Constant reaction rates are assumed as the fitted parameters to minimize the error between experimental data and modeling results. The model is validated through a comparison with experimental data in terms of faradaic efficiency for production of CH₃OH, the current density in different applied cathode potentials as well as current density in different electrolyte flow rates. The comparison between model outputs and experimental measurements shows a good agreement. The model indicates the higher hydrogen evolution in comparison with CH₃OH production as well as mass transfer limitation caused by CO₂ concentration, which are consistent with findings in the literature. After validating the model, in the second part of the study, some design parameters of the cell, such as cathode geometry and catholyte/anolyte channel widths, are modified to reach better performance and higher faradaic efficiency of methanol production.

Keywords: carbon dioxide, electrochemical reduction, methanol, modeling

Procedia PDF Downloads 111
30677 Evaluation of Free Technologies as Tools for Business Process Management

Authors: Julio Sotomayor, Daniel Yucra, Jorge Mayhuasca

Abstract:

The article presents an evaluation of free technologies for business process automation, with emphasis only on tools compatible with the general public license (GPL). The compendium of technologies was based on promoting a service-oriented enterprise architecture (SOA) and the establishment of a business process management system (BPMS). The methodology for the selection of tools was Agile UP. This proposal allows businesses to achieve technological sovereignty and independence, in addition to the promotion of service orientation and the development of free software based on components.

Keywords: BPM, BPMS suite, open-source software, SOA, enterprise architecture, business process management

Procedia PDF Downloads 294
30676 An Application of Meta-Modeling Methods for Surrogating Lateral Dynamics Simulation in Layout-Optimization for Electric Drivetrains

Authors: Christian Angerer, Markus Lienkamp

Abstract:

Electric vehicles offer a high variety of possible drivetrain topologies with up to 4 motors. Multi-motor-designs can have several advantages regarding traction, vehicle dynamics, safety and even efficiency. With a rising number of motors, the whole drivetrain becomes more complex. All permutations of gearings, drivetrain-layouts, motor-types and –sizes lead up in a very large solution space. Single elements of this solution space can be analyzed by simulation methods. In addition to longitudinal vehicle behavior, which most optimization-approaches are restricted to, also lateral dynamics are important for vehicle dynamics, stability and efficiency. In order to compete large solution spaces and to find an optimal result, genetic algorithm based optimization is state-of-the-art. As lateral dynamics simulation is way more CPU-intensive, optimization takes much more time than in case of longitudinal-only simulation. Therefore, this paper shows an approach how to create meta-models from a 14-degree of freedom vehicle model in order to enable a numerically efficient drivetrain-layout optimization process under consideration of lateral dynamics. Different meta-modelling approaches such as neural networks or DoE are implemented and comparatively discussed.

Keywords: driving dynamics, drivetrain layout, genetic optimization, meta-modeling, lateral dynamicx

Procedia PDF Downloads 423
30675 Role and Impact of Artificial Intelligence in Sales and Distribution Management

Authors: Kiran Nair, Jincy George, Suhaib Anagreh

Abstract:

Artificial intelligence (AI) in a marketing context is a form of a deterministic tool designed to optimize and enhance marketing tasks, research tools, and techniques. It is on the verge of transforming marketing roles and revolutionize the entire industry. This paper aims to explore the current dissemination of the application of artificial intelligence (AI) in the marketing mix, reviewing the scope and application of AI in various aspects of sales and distribution management. The paper also aims at identifying the areas of the strong impact of AI in factors of sales and distribution management such as distribution channel, purchase automation, customer service, merchandising automation, and shopping experiences. This is a qualitative research paper that aims to examine the impact of AI on sales and distribution management of 30 multinational brands in six different industries, namely: airline; automobile; banking and insurance; education; information technology; retail and telecom. Primary data is collected by means of interviews and questionnaires from a sample of 100 marketing managers that have been selected using convenient sampling method. The data is then analyzed using descriptive statistics, correlation analysis and multiple regression analysis. The study reveals that AI applications are extensively used in sales and distribution management, with a strong impact on various factors such as identifying new distribution channels, automation in merchandising, customer service, and purchase automation as well as sales processes. International brands have already integrated AI extensively in their day-to-day operations for better efficiency and improved market share while others are investing heavily in new AI applications for gaining competitive advantage.

Keywords: artificial intelligence, sales and distribution, marketing mix, distribution channel, customer service

Procedia PDF Downloads 163
30674 Artificial Intelligence in Penetration Testing of a Connected and Autonomous Vehicle Network

Authors: Phillip Garrad, Saritha Unnikrishnan

Abstract:

The recent popularity of connected and autonomous vehicles (CAV) corresponds with an increase in the risk of cyber-attacks. These cyber-attacks have been instigated by both researchers or white-coat hackers and cyber-criminals. As Connected Vehicles move towards full autonomy, the impact of these cyber-attacks also grows. The current research details challenges faced in cybersecurity testing of CAV, including access and cost of the representative test setup. Other challenges faced are lack of experts in the field. Possible solutions to how these challenges can be overcome are reviewed and discussed. From these findings, a software simulated CAV network is established as a cost-effective representative testbed. Penetration tests are then performed on this simulation, demonstrating a cyber-attack in CAV. Studies have shown Artificial Intelligence (AI) to improve runtime, increase efficiency and comprehensively cover all the typical test aspects in penetration testing in other industries. There is an attempt to introduce similar AI models to the software simulation. The expectation from this implementation is to see similar improvements in runtime and efficiency for the CAV model. If proven to be an effective means of penetration test for CAV, this methodology may be used on a full CAV test network.

Keywords: cybersecurity, connected vehicles, software simulation, artificial intelligence, penetration testing

Procedia PDF Downloads 113
30673 Microbiological and Physicochemical Evaluation of Traditional Greek Kopanisti Cheese Produced by Different Starter Cultures

Authors: M. Kazou, A. Gavriil, O. Kalagkatsi, T. Paschos, E. Tsakalidou

Abstract:

Kopanisti cheese is a Greek soft Protected Designation of Origin (PDO) cheese made of raw cow, sheep or goat milk, or mixtures of them, with similar organoleptic characteristics to that of Roquefort cheese. Traditional manufacturing of Kopanisti cheese is limited in small-scale dairies, without the addition of starter cultures. Instead, an amount of over-mature Kopanisti cheese, called Mana Kopanisti, is used to initiate ripening. Therefore, the selection of proper starter cultures and the understanding of the contribution of various microbial groups to its overall quality is crucial for the production of a high-quality final product with standardized organoleptic and physicochemical characteristics. Taking the above into account, the aim of the present study was the investigation of Kopanisti cheese microbiota and its role in cheese quality. For this purpose, four different types of Kopanisti were produced in triplicates, all with pasteurized cow milk, with the addition of (A) the typical mesophilic species Lactococcus lactis and Lactobacillus paracasei used as starters in the production of soft spread cheeses, (B) strains of Lactobacillus acidipiscis and Lactobacillus rennini previously isolated from Kopanisti and Mana Kopanisti, (C) all the species from (A) and (B) as inoculum, and finally (D) the species from (A) and Mana Kopanisti. Physicochemical and microbiological analysis was performed for milk and cheese samples during ripening. Enumeration was performed for major groups of lactic acid bacteria (LAB), total mesophilic bacteria, yeasts as well as hygiene indicator microorganisms. Bacterial isolates from all the different LAB groups, apart from enterococci, alongside yeasts isolates, were initially grouped using repetitive sequence-based polymerase chain reaction (rep-PCR) and then identified at the species level using 16S rRNA gene and internal transcribed spacer (ITS) DNA region sequencing, respectively. Sensory evaluation was also performed for final cheese samples at the end of the ripening period (35 days). Based on the results of the classical microbiological analysis, the average counts of the total mesophilic bacteria and LAB, apart from enterococci, ranged between 7 and 10 log colony forming unit (CFU) g⁻¹, phychrotrophic bacteria, and yeast extract glucose chloramphenicol (YGC) isolates between 4 and 8 log CFU g⁻¹, while coliforms and enterococci up to 2 log CFU g⁻¹ throughout ripening in cheese samples A, C and D. In contrast, in cheese sample B, the average counts of the total mesophilic bacteria and LAB, apart from enterococci, phychrotrophic bacteria, and YGC isolates ranged between 0 and 10 log CFU g⁻¹ and coliforms and enterococci up to 2 log CFU g⁻¹. Although the microbial counts were not that different among samples, identification of the bacterial and yeasts isolates revealed the complex microbial community structure present in each cheese sample. Differences in the physicochemical characteristics among the cheese samples were also observed, with pH ranging from 4.3 to 5.3 and moisture from 49.6 to 58.0 % in the final cheese products. Interestingly, the sensory evaluation also revealed differences among samples, with cheese sample B ranking first based on the total score. Overall, the combination of these analyses highlighted the impact of different starter cultures on the Kopanisti microbiota as well as on the physicochemical and sensory characteristics of the final product.

Keywords: Kopanisti cheese, microbiota, classical microbiological analysis, physicochemical analysis

Procedia PDF Downloads 137
30672 Physics of Decision for Polling Place Management: A Case Study from the 2020 USA Presidential Election

Authors: Nafe Moradkhani, Frederick Benaben, Benoit Montreuil, Ali Vatankhah Barenji, Dima Nazzal

Abstract:

In the context of the global pandemic, the practical management of the 2020 presidential election in the USA was a strong concern. To anticipate and prepare for this election accurately, one of the main challenges was to confront (i) forecasts of voter turnout, (ii) capacities of the facilities and, (iii) potential configuration options of resources. The approach chosen to conduct this anticipative study consists of collecting data about forecasts and using simulation models to work simultaneously on resource allocation and facility configuration of polling places in Fulton County, Georgia’s largest county. A polling place is a dedicated facility where voters cast their ballots in elections using different devices. This article presents the results of the simulations of such places facing pre-identified potential risks. These results are oriented towards the efficiency of these places according to different criteria (health, trust, comfort). Then a dynamic framework is introduced to describe risks as physical forces perturbing the efficiency of the observed system. Finally, the main benefits and contributions resulting from this simulation campaign are presented.

Keywords: performance, decision support, simulation, artificial intelligence, risk management, election, pandemics, information system

Procedia PDF Downloads 156
30671 Proposition of an Intelligent System Based on the Augmented Reality for Warehouse Logistics

Authors: Safa Gharbi, Hayfa Zgaya, Nesrine Zoghlami, Slim Hammadi, Cyril De Barbarin, Laurent Vinatier, Christiane Coupier

Abstract:

Increasing productivity and quality of service, improving the working comfort and ensuring the efficiency of all processes are important challenges for every warehouse. The order picking is recognized to be the most important and costly activity of all the process in warehouses. This paper presents a new approach using Augmented Reality (AR) in the field of logistics. It aims to create a Head-Up Display (HUD) interface with a Warehouse Management System (WMS), using AR glasses. Integrating AR technology allows the optimization of order picking by reducing time of picking process, increasing the efficiency and delivering quickly. The picker will be able to access immediately to all the information needed for his tasks. All the information is displayed when needed in the field of vision (FOV) of the operator, without any action requested from him. These research works are part of the industrial project RASL (Réalité Augmentée au Service de la Logistique) which gathers two major partners: the LAGIS (Laboratory of Automatics, Computer Engineering and Signal Processing in Lille-France) and Genrix Group, European leader in warehouses logistics, who provided his software for implementation, and his logistics expertise.

Keywords: Augmented Reality (AR), logistics and optimization, Warehouse Management System (WMS), Head-Up Display (HUD)

Procedia PDF Downloads 487
30670 Selection Effects on the Molecular and Abiotic Evolution of Antibiotic Resistance

Authors: Abishek Rajkumar

Abstract:

Antibiotic resistance can occur naturally given the selective pressure placed on antibiotics. Within a large population of bacteria, there is a significant chance that some of those bacteria can develop resistance via mutations or genetic recombination. However, a growing public health concern has arisen over the fact that antibiotic resistance has increased significantly over the past few decades. This is because humans have been over-consuming and producing antibiotics, which has ultimately accelerated the antibiotic resistance seen in these bacteria. The product of all of this is an ongoing race between scientists and the bacteria as bacteria continue to develop resistance, which creates even more demand for an antibiotic that can still terminate the newly resistant strain of bacteria. This paper will focus on a myriad of aspects of antibiotic resistance in bacteria starting with how it occurs on a molecular level and then focusing on the antibiotic concentrations and how they affect the resistance and fitness seen in bacteria.

Keywords: antibiotic, molecular, mutation, resistance

Procedia PDF Downloads 330
30669 Enhancing Seawater Desalination Efficiency with Combined Reverse Osmosis and Vibratory Shear-Enhanced Processing for Higher Conversion Rates and Reduced Energy Consumption

Authors: Reda Askouri, Mohamed Moussetad, Rhma Adhiri

Abstract:

Reverse osmosis (RO) is one of the most widely used techniques for seawater desalination. However, the conversion rate of this method is generally limited to 35-45% due to the high-pressure capacity of the membranes. Additionally, the specific energy consumption (SEC) for seawater desalination is high, necessitating energy recovery systems to minimise energy consumption. This study aims to enhance the performance of seawater desalination by combining RO with a vibratory shear-enhanced processing (VSEP) technique. The RO unit in this study comprises two stages, each powered by a hydraulic turbocharger that increases the pressure in both stages. The concentrate from the second stage is then directly processed by VSEP technology. The results demonstrate that the permeate water obtained exhibits high quality and that the conversion rate is significantly increased, reaching high percentages with low SEC. Furthermore, the high concentration of total solids in the concentrate allows for potential exploitation within the environmental protection framework. By valorising the concentrated waste, it’s possible to reduce the environmental impact while increasing the overall efficiency of the desalination process.

Keywords: specific energy consumption, vibratory shear enhanced process, environmental challenge, water recovery

Procedia PDF Downloads 19
30668 Co-Gasification of Petroleum Waste and Waste Tires: A Numerical and CFD Study

Authors: Thomas Arink, Isam Janajreh

Abstract:

The petroleum industry generates significant amounts of waste in the form of drill cuttings, contaminated soil and oily sludge. Drill cuttings are a product of the off-shore drilling rigs, containing wet soil and total petroleum hydrocarbons (TPH). Contaminated soil comes from different on-shore sites and also contains TPH. The oily sludge is mainly residue or tank bottom sludge from storage tanks. The two main treatment methods currently used are incineration and thermal desorption (TD). Thermal desorption is a method where the waste material is heated to 450ºC in an anaerobic environment to release volatiles, the condensed volatiles can be used as a liquid fuel. For the thermal desorption unit dry contaminated soil is mixed with moist drill cuttings to generate a suitable mixture. By thermo gravimetric analysis (TGA) of the TD feedstock it was found that less than 50% of the TPH are released, the discharged material is stored in landfill. This study proposes co-gasification of petroleum waste with waste tires as an alternative to thermal desorption. Co-gasification with a high-calorific material is necessary since the petroleum waste consists of more than 60 wt% ash (soil/sand), causing its calorific value to be too low for gasification. Since the gasification process occurs at 900ºC and higher, close to 100% of the TPH can be released, according to the TGA. This work consists of three parts: 1. a mathematical gasification model, 2. a reactive flow CFD model and 3. experimental work on a drop tube reactor. Extensive material characterization was done by means of proximate analysis (TGA), ultimate analysis (CHNOS flash analysis) and calorific value measurements (Bomb calorimeter) for the input parameters of the mathematical and CFD model. The mathematical model is a zero dimensional model based on Gibbs energy minimization together with Lagrange multiplier; it is used to find the product species composition (molar fractions of CO, H2, CH4 etc.) for different tire/petroleum feedstock mixtures and equivalence ratios. The results of the mathematical model act as a reference for the CFD model of the drop-tube reactor. With the CFD model the efficiency and product species composition can be predicted for different mixtures and particle sizes. Finally both models are verified by experiments on a drop tube reactor (1540 mm long, 66 mm inner diameter, 1400 K maximum temperature).

Keywords: computational fluid dynamics (CFD), drop tube reactor, gasification, Gibbs energy minimization, petroleum waste, waste tires

Procedia PDF Downloads 523
30667 The Effect of Chelate to RE Ratio on Upconversion Emissions Property of NaYF4: Yb3+ and Tm3+ Nanocrystals

Authors: M. Kaviani Darani, S. Bastani, M. Ghahari, P. Kardar

Abstract:

In this paper the NaYF4: Yb3+, Tm3+ nanocrystals were synthesized by hydrothermal method. Different chelating ligand type (citric acid, butanoic acid, and AOT) was selected to investigate the effect of their concentration on upconversion efficiency. Crystal structure and morphology have been well characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis. Photo luminescence were recorded on a spectrophotometer equipped with 980 nm laser diode az excitation source and an integerating sphere. The products with various morphologies range from sphere to cubic, hexagonal,prism and nanorods were prepared at different ratios. The particle size was found to be dependent on the nucleation rate, which, in turn, was affected by type and concentration of ligands. The optimum amount of chelate to RE ratio was obtained 0.75, 1.5, and 1 for Citric Acid, Butanoic Acid and AOT, respectively. Emissions in the UV (1D2-3H6), blue-violet(1D2-3F4), blue (1G4-3H6), red (1G4-3F4), and NIR (1G4-3H5) were observed and were the direct result of subsequent transfers of energy from the Yb3+ ion to the Tm3+ ion.

Keywords: upconversion nanoparticles, NaYF4, lanthanide, hydrothermal

Procedia PDF Downloads 265
30666 Direct Design of Steel Bridge Using Nonlinear Inelastic Analysis

Authors: Boo-Sung Koh, Seung-Eock Kim

Abstract:

In this paper, a direct design using a nonlinear inelastic analysis is suggested. Also, this paper compares the load carrying capacity obtained by a nonlinear inelastic analysis with experiment results to verify the accuracy of the results. The allowable stress design results of a railroad through a plate girder bridge and the safety factor of the nonlinear inelastic analysis were compared to examine the safety performance. As a result, the load safety factor for the nonlinear inelastic analysis was twice as high as the required safety factor under the allowable stress design standard specified in the civil engineering structure design standards for urban magnetic levitation railways, which further verified the advantages of the proposed direct design method.

Keywords: direct design, nonlinear inelastic analysis, residual stress, initial geometric imperfection

Procedia PDF Downloads 534
30665 Developing Biocompatible Iridium Oxide Electrodes for Bone-Guided Extra-Cochlear Implant

Authors: Yung-Shan Lu, Chia-Fone Lee, Shang-Hsuan Li, Chien-Hao Liu

Abstract:

Recently, various bioelectronic devices have been developed for neurologic disease treatments via electro-stimulations such as cochlear implants and retinal prosthesis. Since the electric signal needs electrodes to be transmitted to an organism, electrodes play an important role of stimulations. The materials of stimulation electrodes affect the efficiency of the delivered currents. The higher the efficiency of the electrodes, the lower the threshold current can be used to stimulate the organism which minimizes the potential damages to the adjacent tissues. In this study, we proposed a biocompatible composite electrode composed of high-charge-capacity iridium oxide (IrOₓ) film for a bone-guide extra-cochlear implant. IrOₓ was exploited to decrease the threshold current due to its high capacitance and low impedance. The IrOₓ electrode was fabricated via microelectromechanical systems (MEMS) photolithography and examined with in-vivo tests with guinea pigs. Based on the measured responses of brain waves to sound, the results demonstrated that IrOₓ electrodes have a lower threshold current compared with the Platinum (Pt) electrodes. The research results are expected to be beneficial for implantable and biocompatible electrodes for electrical stimulations.

Keywords: cochlear implants, electrode, electrical stimulation, iridium oxide

Procedia PDF Downloads 196
30664 Finding DEA Targets Using Multi-Objective Programming

Authors: Farzad Sharifi, Raziyeh Shamsi

Abstract:

In this paper, we obtain the projection of inefficient units in data envelopment analysis (DEA) in the case of stochastic inputs and outputs using the multi-objective programming (MOP) structure. In some problems, the inputs might be stochastic while the outputs are deterministic, and vice versa. In such cases, we propose molti-objective DEA-R model, because in some cases (e.g., when unnecessary and irrational weights by the BCC model reduces the efficiency score), an efficient DMU is introduced as inefficient by the BCC model, whereas the DMU is considered efficient by the DEA-R model. In some other case, only the ratio of stochastic data may be available (e.g; the ratio of stochastic inputs to stochastic outputs). Thus, we provide multi objective DEA model without explicit outputs and prove that in-put oriented MOP DEA-R model in the invariable return to scale case can be replacing by MOP- DEA model without explicit outputs in the variable return to scale and vice versa. Using the interactive methods for solving the proposed model, yields a projection corresponding to the viewpoint of the DM and the analyst, which is nearer to reality and more practical. Finally, an application is provided.

Keywords: DEA, MOLP, STOCHASTIC, DEA-R

Procedia PDF Downloads 401
30663 Intelligent Building as a Pragmatic Approach towards Achieving a Sustainable Environment

Authors: Zahra Hamedani

Abstract:

Many wonderful technological developments in recent years has opened up the possibility of using intelligent buildings for a number of important applications, ranging from minimizing resource usage as well as increasing building efficiency to maximizing comfort, adaption to inhabitants and responsiveness to environmental changes. The concept of an intelligent building refers to the highly embedded, interactive environment within which by exploiting the use of artificial intelligence provides the ability to know its configuration, anticipate the optimum dynamic response to prevailing environmental stimuli, and actuate the appropriate physical reaction to provide comfort and efficiency. This paper contains a general identification of the intelligence paradigm and its impacts on the architecture arena, that with examining the performance of artificial intelligence, a mechanism to analyze and finally for decision-making to control the environment will be described. This mechanism would be a hierarchy of the rational agents which includes decision-making, information, communication and physical layers. This multi-agent system relies upon machine learning techniques for automated discovery, prediction and decision-making. Then, the application of this mechanism regarding adaptation and responsiveness of intelligent building will be provided in two scales of environmental and user. Finally, we review the identifications of sustainability and evaluate the potentials of intelligent building systems in the creation of sustainable architecture and environment.

Keywords: artificial intelligence, intelligent building, responsiveness, adaption, sustainability

Procedia PDF Downloads 414
30662 The Development of Online-Class Scheduling Management System Conducted by the Case Study of Department of Social Science: Faculty of Humanities and Social Sciences Suan Sunandha Rajabhat University

Authors: Wipada Chaiwchan, Patcharee Klinhom

Abstract:

This research is aimed to develop the online-class scheduling management system and improve as a complex problem solution, this must take into consideration in various conditions and factors. In addition to the number of courses, the number of students and a timetable to study, the physical characteristics of each class room and regulations used in the class scheduling must also be taken into consideration. This system is developed to assist management in the class scheduling for convenience and efficiency. It can provide several instructors to schedule simultaneously. Both lecturers and students can check and publish a timetable and other documents associated with the system online immediately. It is developed in a web-based application. PHP is used as a developing tool. The database management system was MySQL. The tool that is used for efficiency testing of the system is questionnaire. The system was evaluated by using a Black-Box testing. The sample was composed of 2 groups: 5 experts and 100 general users. The average and the standard deviation of results from the experts were 3.50 and 0.67. The average and the standard deviation of results from the general users were 3.54 and 0.54. In summary, the results from the research indicated that the satisfaction of users was in a good level. Therefore, this system could be implemented in an actual workplace and satisfy the users’ requirement effectively

Keywords: timetable, schedule, management system, online

Procedia PDF Downloads 240