Search results for: rRNA processing
261 The Effects of the New Silk Road Initiatives and the Eurasian Union to the East-Central-Europe’s East Opening Policies
Authors: Tamas Dani
Abstract:
The author’s research explores the geo-economical role and importance of some small and medium sized states, reviews their adaption strategies in foreign trade and also in foreign affairs in the course of changing into a multipolar world, uses international background. With these, the paper analyses the recent years and the future of ‘Opening towards Eastern foreign economic policies’ from East-Central Europe and parallel with that the ‘Western foreign economy policies’ from Asia, as the Chinese One Belt One Road new silk route plans (so far its huge part is an infrastructural development plan to reach international trade and investment aims). It can be today’s question whether these ideas will reshape the global trade or not. How does the new silk road initiatives and the Eurasian Union reflect the effect of globalization? It is worth to analyse that how did Central and Eastern European countries open to Asia; why does China have the focus of the opening policies in many countries and why could China be seen as the ‘winner’ of the world economic crisis after 2008. The research is based on the following methodologies: national and international literature, policy documents and related design documents, complemented by processing of international databases, statistics and live interviews with leaders from East-Central European countries’ companies and public administration, diplomats and international traders. The results also illustrated by mapping and graphs. The research will find out as major findings whether the state decision-makers have enough margin for manoeuvres to strengthen foreign economic relations. This work has a hypothesis that countries in East-Central Europe have real chance to diversify their relations in foreign trade, focus beyond their traditional partners. This essay focuses on the opportunities of East-Central-European countries in diversification of foreign trade relations towards China and Russia in terms of ‘Eastern Openings’. The effects of the new silk road initiatives and the Eurasian Union to Hungary’s economy with a comparing outlook on East-Central European countries and exploring common regional cooperation opportunities in this area. The essay concentrate on the changing trade relations between East-Central-Europe and China as well as Russia, try to analyse the effects of the new silk road initiatives and the Eurasian Union also. In the conclusion part, it shows how the cooperation is necessary for the East-Central European countries if they want to have a non-asymmetric trade with Russia, China or some Chinese regions (Pearl River Delta, Hainan, …). The form of the cooperation for the East-Central European nations can be Visegrad 4 Cooperation (V4), Central and Eastern European Countries (CEEC16), 3 SEAS Cooperation (or BABS – Baltic, Adriatic, Black Seas Initiative).Keywords: China, East-Central Europe, foreign trade relations, geoeconomics, geopolitics, Russia
Procedia PDF Downloads 182260 Hedonic Pricing Model of Parboiled Rice
Authors: Roengchai Tansuchat, Wassanai Wattanutchariya, Aree Wiboonpongse
Abstract:
Parboiled rice is one of the most important food grains and classified in cereal and cereal product. In 2015, parboiled rice was traded more than 14.34 % of total rice trade. The major parboiled rice export countries are Thailand and India, while many countries in Africa and the Middle East such as Nigeria, South Africa, United Arab Emirates, and Saudi Arabia, are parboiled rice import countries. In the global rice market, parboiled rice pricing differs from white rice pricing because parboiled rice is semi-processing product, (soaking, steaming and drying) which affects to their color and texture. Therefore, parboiled rice export pricing does not depend only on the trade volume, length of grain, and percentage of broken rice or purity but also depend on their rice seed attributes such as color, whiteness, consistency of color and whiteness, and their texture. In addition, the parboiled rice price may depend on the country of origin, and other attributes, such as certification mark, label, packaging, and sales locations. The objectives of this paper are to study the attributes of parboiled rice sold in different countries and to evaluate the relationship between parboiled rice price in different countries and their attributes by using hedonic pricing model. These results are useful for product development, and marketing strategies development. The 141 samples of parboiled rice were collected from 5 major parboiled rice consumption countries, namely Nigeria, South Africa, Saudi Arabia, United Arab Emirates and Spain. The physicochemical properties and optical properties, namely size and shape of seed, colour (L*, a*, and b*), parboiled rice texture (hardness, adhesiveness, cohesiveness, springiness, gumminess, and chewiness), nutrition (moisture, protein, carbohydrate, fat, and ash), amylose, package, country of origin, label are considered as explanatory variables. The results from parboiled rice analysis revealed that most of samples are classified as long grain and slender. The highest average whiteness value is the parboiled rice sold in South Africa. The amylose value analysis shows that most of parboiled rice is non-glutinous rice, classified in intermediate amylose content range, and the maximum value was found in United Arab Emirates. The hedonic pricing model showed that size and shape are the key factors to determine parboiled rice price statistically significant. In parts of colour, brightness value (L*) and red-green value (a*) are statistically significant, but the yellow-blue value (b*) is insignificant. In addition, the texture attributes that significantly affect to the parboiled rice price are hardness, adhesiveness, cohesiveness, and gumminess. The findings could help both parboiled rice miller, exporter and retailers formulate better production and marketing strategies by focusing on these attributes.Keywords: hedonic pricing model, optical properties, parboiled rice, physicochemical properties
Procedia PDF Downloads 331259 Dynamic EEG Desynchronization in Response to Vicarious Pain
Authors: Justin Durham, Chanda Rooney, Robert Mather, Mickie Vanhoy
Abstract:
The psychological construct of empathy is to understand a person’s cognitive perspective and experience the other person’s emotional state. Deciphering emotional states is conducive for interpreting vicarious pain. Observing others' physical pain activates neural networks related to the actual experience of pain itself. The study addresses empathy as a nonlinear dynamic process of simulation for individuals to understand the mental states of others and experience vicarious pain, exhibiting self-organized criticality. Such criticality follows from a combination of neural networks with an excitatory feedback loop generating bistability to resonate permutated empathy. Cortical networks exhibit diverse patterns of activity, including oscillations, synchrony and waves, however, the temporal dynamics of neurophysiological activities underlying empathic processes remain poorly understood. Mu rhythms are EEG oscillations with dominant frequencies of 8-13 Hz becoming synchronized when the body is relaxed with eyes open and when the sensorimotor system is in idle, thus, mu rhythm synchrony is expected to be highest in baseline conditions. When the sensorimotor system is activated either by performing or simulating action, mu rhythms become suppressed or desynchronize, thus, should be suppressed while observing video clips of painful injuries if previous research on mirror system activation holds. Twelve undergraduates contributed EEG data and survey responses to empathy and psychopathy scales in addition to watching consecutive video clips of sports injuries. Participants watched a blank, black image on a computer monitor before and after observing a video of consecutive sports injuries incidents. Each video condition lasted five-minutes long. A BIOPAC MP150 recorded EEG signals from sensorimotor and thalamocortical regions related to a complex neural network called the ‘pain matrix’. Physical and social pain are activated in this network to resonate vicarious pain responses to processing empathy. Five EEG single electrode locations were applied to regions measuring sensorimotor electrical activity in microvolts (μV) to monitor mu rhythms. EEG signals were sampled at a rate of 200 Hz. Mu rhythm desynchronization was measured via 8-13 Hz at electrode sites (F3 & F4). Data for each participant’s mu rhythms were analyzed via Fast Fourier Transformation (FFT) and multifractal time series analysis.Keywords: desynchronization, dynamical systems theory, electroencephalography (EEG), empathy, multifractal time series analysis, mu waveform, neurophysiology, pain simulation, social cognition
Procedia PDF Downloads 283258 From By-product To Brilliance: Transforming Adobe Brick Construction Using Meat Industry Waste-derived Glycoproteins
Authors: Amal Balila, Maria Vahdati
Abstract:
Earth is a green building material with very low embodied energy and almost zero greenhouse gas emissions. However, it lacks strength and durability in its natural state. By responsibly sourcing stabilisers, it's possible to enhance its strength. This research draws inspiration from the robustness of termite mounds, where termites incorporate glycoproteins from their saliva during construction. Biomimicry explores the potential of these termite stabilisers in producing bio-inspired adobe bricks. The meat industry generates significant waste during slaughter, including blood, skin, bones, tendons, gastrointestinal contents, and internal organs. While abundant, many meat by-products raise concerns regarding human consumption, religious orders, cultural and ethical beliefs, and also heavily contribute to environmental pollution. Extracting and utilising proteins from this waste is vital for reducing pollution and increasing profitability. Exploring the untapped potential of meat industry waste, this research investigates how glycoproteins could revolutionize adobe brick construction. Bovine serum albumin (BSA) from cows' blood and mucin from porcine stomachs were the chosen glycoproteins used as stabilisers for adobe brick production. Despite their wide usage across various fields, they have very limited utilisation in food processing. Thus, both were identified as potential stabilisers for adobe brick production in this study. Two soil types were utilised to prepare adobe bricks for testing, comparing controlled unstabilised bricks with glycoprotein-stabilised ones. All bricks underwent testing for unconfined compressive strength and erosion resistance. The primary finding of this study is the efficacy of BSA, a glycoprotein derived from cows' blood and a by-product of the beef industry, as an earth construction stabiliser. Adding 0.5% by weight of BSA resulted in a 17% and 41% increase in the unconfined compressive strength for British and Sudanese adobe bricks, respectively. Further, adding 5% by weight of BSA led to a 202% and 97% increase in the unconfined compressive strength for British and Sudanese adobe bricks, respectively. Moreover, using 0.1%, 0.2%, and 0.5% by weight of BSA resulted in erosion rate reductions of 30%, 48%, and 70% for British adobe bricks, respectively, with a 97% reduction observed for Sudanese adobe bricks at 0.5% by weight of BSA. However, mucin from the porcine stomach did not significantly improve the unconfined compressive strength of adobe bricks. Nevertheless, employing 0.1% and 0.2% by weight of mucin resulted in erosion rate reductions of 28% and 55% for British adobe bricks, respectively. These findings underscore BSA's efficiency as an earth construction stabiliser for wall construction and mucin's efficacy for wall render, showcasing their potential for sustainable and durable building practices.Keywords: biomimicry, earth construction, industrial waste management, sustainable building materials, termite mounds.
Procedia PDF Downloads 51257 A New Perspective in Cervical Dystonia: Neurocognitive Impairment
Authors: Yesim Sucullu Karadag, Pinar Kurt, Sule Bilen, Nese Subutay Oztekin, Fikri Ak
Abstract:
Background: Primary cervical dystonia is thought to be a purely motor disorder. But recent studies revealed that patients with dystonia had additional non-motor features. Sensory and psychiatric disturbances could be included into the non-motor spectrum of dystonia. The Basal Ganglia receive inputs from all cortical areas and throughout the thalamus project to several cortical areas, thus participating to circuits that have been linked to motor as well as sensory, emotional and cognitive functions. However, there are limited studies indicating cognitive impairment in patients with cervical dystonia. More evidence is required regarding neurocognitive functioning in these patients. Objective: This study is aimed to investigate neurocognitive profile of cervical dystonia patients in comparison to healthy controls (HC) by employing a detailed set of neuropsychological tests in addition to self-reported instruments. Methods: Totally 29 (M/F: 7/22) cervical dystonia patients and 30 HC (M/F: 10/20) were included into the study. Exclusion criteria were depression and not given informed consent. Standard demographic, educational data and clinical reports (disease duration, disability index) were recorded for all patients. After a careful neurological evaluation, all subjects were given a comprehensive battery of neuropsychological tests: Self report of neuropsychological condition (by visual analogue scale-VAS, 0-100), RAVLT, STROOP, PASAT, TMT, SDMT, JLOT, DST, COWAT, ACTT, and FST. Patients and HC were compared regarding demographic, clinical features and neurocognitive tests. Also correlation between disease duration, disability index and self report -VAS were assessed. Results: There was no difference between patients and HCs regarding socio-demographic variables such as age, gender and years of education (p levels were 0.36, 0.436, 0.869; respectively). All of the patients were assessed at the peak of botulinum toxine effect and they were not taking an anticholinergic agent or benzodiazepine. Dystonia patients had significantly impaired verbal learning and memory (RAVLT, p<0.001), divided attention and working memory (ACTT, p<0.001), attention speed (TMT-A and B, p=0.008, 0.050), executive functions (PASAT, p<0.001; SDMT, p= 0.001; FST, p<0.001), verbal attention (DST, p=0.001), verbal fluency (COWAT, p<0.001), visio-spatial processing (JLOT, p<0.001) in comparison to healthy controls. But focused attention (STROOP-spontaneous correction) was not different between two groups (p>0.05). No relationship was found regarding disease duration and disability index with any neurocognitive tests. Conclusions: Our study showed that neurocognitive functions of dystonia patients were worse than control group with the similar age, sex, and education independently clinical expression like disease duration and disability index. This situation may be the result of possible cortical and subcortical changes in dystonia patients. Advanced neuroimaging techniques might be helpful to explain these changes in cervical dystonia patients.Keywords: cervical dystonia, neurocognitive impairment, neuropsychological test, dystonia disability index
Procedia PDF Downloads 420256 Catalytic Alkylation of C2-C4 Hydrocarbons
Authors: Bolysbek Utelbayev, Tasmagambetova Aigerim, Toktasyn Raila, Markayev Yergali, Myrzakhanov Maxat
Abstract:
Intensive development of secondary processes of destructive processing of crude oil has led to the occurrence of oil refining factories resources of C2-C4 hydrocarbons. Except for oil gases also contain basically C2-C4 hydrocarbon gases where some of the amounts are burned. All these data has induced interest to the study of producing alkylate from hydrocarbons С2-С4 which being as components of motor fuels. The purpose of this work was studying transformation propane-propene, butane-butene fractions at the presence of the ruthenium-chromic support catalyst whereas the carrier is served pillar - structural montmorillonite containing in native bentonite clay. In this work is considered condition and structure of the bentonite clay from the South-Kazakhstan area of the Republic Kazakhstan. For preparation rhodium support catalyst (0,5-1,0 mass. % Rh) was used chloride of rhodium-RhCl3∙3H2O, as a carrier was used modified bentonite clay. For modifying natural clay to pillar structural form were used polyhydroxy complexes of chromium. To aqueous solution of chloride chromium gradually flowed the solution of sodium hydroxide at gradual hashing up to pH~3-4. The concentration of chloride chromium was paid off proceeding from calculation 5-30 mmole Cr3+ per gram clay. Suspension bentonite (~1,0 mass. %) received by intensive washing it in water during 4 h, pH-water extract of clay makes -8-9. The acidity of environment supervised by means of digital pH meter OP-208/1. In order to prevent coagulation of a solution polyhydroxy complexes of chromium, it was slowly added to a suspension of clay. "Reserve of basicity" Cr3+:/OH-allowing to prevent coagulation chloride of rhodium made 1/3. After endurance processed suspensions of clay during 24 h, a deposit was washed by water and condensed. The sample, after separate from a liquid phase, dried at first at the room temperature, and then at 110°C (2h) with the subsequent rise the temperature up to 180°C (4h). After cooling the firm mass was pounded to a powder, it was shifted infractions with the certain sizes of particles. Fractions of particles modifying clay in the further were impregnated with an aqueous solution with rhodium-RhCl3∙3H2O (0,5-1,0 mаss % Rh ). Obtained pillar structural bentonite approaches heat resistance and its porous structure above the 773K. Pillar structural bentonite was used for preparation 1.0% Ru/Carrier (modifying bentonite) support catalysts where is realised alkylation of C2-C4 hydrocarbons. The process of alkylation is carried out at a partial pressure of hydrogen 0.5-1.0MPa. Outcome 2.2.4 three methyl pentane and 2.2.3 trimethylpentane achieved 40%. At alkylation butane-butene mixture outcome of the isooctane is achieved 60%. In this condition of studying the ethene is not undergoing to alkylation.Keywords: alkylation, butene, pillar structure, ruthenium catalyst
Procedia PDF Downloads 396255 Biodsorption as an Efficient Technology for the Removal of Phosphate, Nitrate and Sulphate Anions in Industrial Wastewater
Authors: Angel Villabona-Ortíz, Candelaria Tejada-Tovar, Andrea Viera-Devoz
Abstract:
Wastewater treatment is an issue of vital importance in these times where the impacts of human activities are most evident, which have become essential tasks for the normal functioning of society. However, they put entire ecosystems at risk by time destroying the possibility of sustainable development. Various conventional technologies are used to remove pollutants from water. Agroindustrial waste is the product with the potential to be used as a renewable raw material for the production of energy and chemical products, and their use is beneficial since products with added value are generated from materials that were not used before. Considering the benefits that the use of residual biomass brings, this project proposes the use of agro-industrial residues from corn crops for the production of natural adsorbents whose purpose is aimed at the remediation of contaminated water bodies with large loads of nutrients. The adsorption capacity of two biomaterials obtained from the processing of corn stalks was evaluated by batch system tests. Biochar impregnated with sulfuric acid and thermally activated was synthesized. On the other hand, the cellulose was extracted from the corn stalks and chemically modified with cetyltrimethylammonium chloride in order to quaternize the surface of the adsorbent. The adsorbents obtained were characterized by thermogravimetric analysis (TGA), scanning electron microscopy (SEM), infrared spectrometry with Fourier Transform (FTIR), analysis by Brunauer, Emmett and Teller method (BET) and X-ray Diffraction analysis ( XRD), which showed favorable characteristics for the cellulose extraction process. Higher adsorption capacities of the nutrients were obtained with the use of biochar, with phosphate being the anion with the best removal percentages. The effect of the initial adsorbate concentration was evaluated, with which it was shown that the Freundlich isotherm better describes the adsorption process in most systems. The adsorbent-phosphate / nitrate systems fit better to the Pseudo Primer Order kinetic model, while the adsorbent-sulfate systems showed a better fit to the Pseudo second-order model, which indicates that there are both physical and chemical interactions in the process. Multicomponent adsorption tests revealed that phosphate anions have a higher affinity for both adsorbents. On the other hand, the thermodynamic parameters standard enthalpy (ΔH °) and standard entropy (ΔS °) with negative results indicate the exothermic nature of the process, whereas the ascending values of standard Gibbs free energy (ΔG °). The adsorption process of anions with biocarbon and modified cellulose is spontaneous and exothermic. The use of the evaluated biomateriles is recommended for the treatment of industrial effluents contaminated with sulfate, nitrate and phosphate anions.Keywords: adsorption, biochar, modified cellulose, corn stalks
Procedia PDF Downloads 182254 The Impact of Online Learning on Visual Learners
Authors: Ani Demetrashvili
Abstract:
As online learning continues to reshape the landscape of education, questions arise regarding its efficacy for diverse learning styles, particularly for visual learners. This abstract delves into the impact of online learning on visual learners, exploring how digital mediums influence their educational experience and how educational platforms can be optimized to cater to their needs. Visual learners comprise a significant portion of the student population, characterized by their preference for visual aids such as diagrams, charts, and videos to comprehend and retain information. Traditional classroom settings often struggle to accommodate these learners adequately, relying heavily on auditory and written forms of instruction. The advent of online learning presents both opportunities and challenges in addressing the needs of visual learners. Online learning platforms offer a plethora of multimedia resources, including interactive simulations, virtual labs, and video lectures, which align closely with the preferences of visual learners. These platforms have the potential to enhance engagement, comprehension, and retention by presenting information in visually stimulating formats. However, the effectiveness of online learning for visual learners hinges on various factors, including the design of learning materials, user interface, and instructional strategies. Research into the impact of online learning on visual learners encompasses a multidisciplinary approach, drawing from fields such as cognitive psychology, education, and human-computer interaction. Studies employ qualitative and quantitative methods to assess visual learners' preferences, cognitive processes, and learning outcomes in online environments. Surveys, interviews, and observational studies provide insights into learners' preferences for specific types of multimedia content and interactive features. Cognitive tasks, such as memory recall and concept mapping, shed light on the cognitive mechanisms underlying learning in digital settings. Eye-tracking studies offer valuable data on attentional patterns and information processing during online learning activities. The findings from research on the impact of online learning on visual learners have significant implications for educational practice and technology design. Educators and instructional designers can use insights from this research to create more engaging and effective learning materials for visual learners. Strategies such as incorporating visual cues, providing interactive activities, and scaffolding complex concepts with multimedia resources can enhance the learning experience for visual learners in online environments. Moreover, online learning platforms can leverage the findings to improve their user interface and features, making them more accessible and inclusive for visual learners. Customization options, adaptive learning algorithms, and personalized recommendations based on learners' preferences and performance can enhance the usability and effectiveness of online platforms for visual learners.Keywords: online learning, visual learners, digital education, technology in learning
Procedia PDF Downloads 38253 UV-Cured Thiol-ene Based Polymeric Phase Change Materials for Thermal Energy Storage
Authors: M. Vezir Kahraman, Emre Basturk
Abstract:
Energy storage technology offers new ways to meet the demand to obtain efficient and reliable energy storage materials. Thermal energy storage systems provide the potential to acquire energy savings, which in return decrease the environmental impact related to energy usage. For this purpose, phase change materials (PCMs) that work as 'latent heat storage units' which can store or release large amounts of energy are preferred. Phase change materials (PCMs) are being utilized to absorb, collect and discharge thermal energy during the cycle of melting and freezing, converting from one phase to another. Phase Change Materials (PCMs) can generally be arranged into three classes: organic materials, salt hydrates and eutectics. Many kinds of organic and inorganic PCMs and their blends have been examined as latent heat storage materials. PCMs have found different application areas such as solar energy storage and transfer, HVAC (Heating, Ventilating and Air Conditioning) systems, thermal comfort in vehicles, passive cooling, temperature controlled distributions, industrial waste heat recovery, under floor heating systems and modified fabrics in textiles. Ultraviolet (UV)-curing technology has many advantages, which made it applicable in many different fields. Low energy consumption, high speed, room-temperature operation, low processing costs, high chemical stability, and being environmental friendly are some of its main benefits. UV-curing technique has many applications. One of the many advantages of UV-cured PCMs is that they prevent the interior PCMs from leaking. Shape-stabilized PCM is prepared by blending the PCM with a supporting material, usually polymers. In our study, this problem is minimized by coating the fatty alcohols with a photo-cross-linked thiol-ene based polymeric system. Leakage is minimized because photo-cross-linked polymer acts a matrix. The aim of this study is to introduce a novel thiol-ene based shape-stabilized PCM. Photo-crosslinked thiol-ene based polymers containing fatty alcohols were prepared and characterized for the purpose of phase change materials (PCMs). Different types of fatty alcohols were used in order to investigate their properties as shape-stable PCMs. The structure of the PCMs was confirmed by ATR-FTIR techniques. The phase transition behaviors, thermal stability of the prepared photo-crosslinked PCMs were investigated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). This work was supported by Marmara University, Commission of Scientific Research Project.Keywords: differential scanning calorimetry (DSC), Polymeric phase change material, thermal energy storage, UV-curing
Procedia PDF Downloads 228252 Bioflavonoids Derived from Mandarin Processing Wastes: Functional Hydrogels as a Sustainable Food Systems
Authors: Niharika Kaushal, Minni Singh
Abstract:
Fruit crops are widely cultivated throughout the World, with citrus being one of the most common. Mandarins, oranges, grapefruits, lemons, and limes are among the most frequently grown varieties. Citrus cultivars are industrially processed into juice, resulting in approx. 25-40% by wt. of biomass in the form of peels and seeds, generally considered as waste. In consequence, a significant amount of this nutraceutical-enriched biomass goes to waste, which, if utilized wisely, could revolutionize the functional food industry, as this biomass possesses a wide range of bioactive compounds, mainly within the class of polyphenols and terpenoids, making them an abundant source of functional bioactive. Mandarin is a potential source of bioflavonoids with putative antioxidative properties, and its potential application for developing value-added products is obvious. In this study, ‘kinnow’ mandarin (Citrus nobilis X Citrus deliciosa) biomass was studied for its flavonoid profile. For this, dried and pulverized peels were subjected to green and sustainable extraction techniques, namely, supercritical fluid extraction carried out under conditions pressure: 330 bar, temperature: 40 ̊ C and co-solvent: 10% ethanol. The obtained extract was observed to contain 47.3±1.06 mg/ml rutin equivalents as total flavonoids. Mass spectral analysis revealed the prevalence of polymethoxyflavones (PMFs), chiefly tangeretin and nobiletin. Furthermore, the antioxidant potential was analyzed by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method, which was estimated to be at an IC₅₀ of 0.55μg/ml. The pre-systemic metabolism of flavonoids limits their functionality, as was observed in this study through in vitro gastrointestinal studies where nearly 50.0% of the flavonoids were degraded within 2 hours of gastric exposure. We proposed nanoencapsulation as a means to overcome this problem, and flavonoids-laden polylactic-co-glycolic acid (PLGA) nano encapsulates were bioengineered using solvent evaporation method, and these were furnished to a particle size between 200-250nm, which exhibited protection of flavonoids in the gastric environment, allowing only 20% to be released in 2h. A further step involved impregnating the nano encapsulates within alginate hydrogels which were fabricated by ionic cross-linking, which would act as delivery vehicles within the gastrointestinal (GI) tract. As a result, 100% protection was achieved from the pre-systemic release of bioflavonoids. These alginate hydrogels had key significant features, i.e., less porosity of nearly 20.0%, and Cryo-SEM (Cryo-scanning electron microscopy) images of the composite corroborate the packing ability of the alginate hydrogel. As a result of this work, it is concluded that the waste can be used to develop functional biomaterials while retaining the functionality of the bioactive itself.Keywords: bioflavonoids, gastrointestinal, hydrogels, mandarins
Procedia PDF Downloads 80251 Mechanism of Veneer Colouring for Production of Multilaminar Veneer from Plantation-Grown Eucalyptus Globulus
Authors: Ngoc Nguyen
Abstract:
There is large plantation of Eucalyptus globulus established which has been grown to produce pulpwood. This resource is not suitable for the production of decorative products, principally due to low grades of wood and “dull” appearance but many trials have been already undertaken for the production of veneer and veneer-based engineered wood products, such as plywood and laminated veneer lumber (LVL). The manufacture of veneer-based products has been recently identified as an unprecedented opportunity to promote higher value utilisation of plantation resources. However, many uncertainties remain regarding the impacts of inferior wood quality of young plantation trees on product recovery and value, and with respect to optimal processing techniques. Moreover, the quality of veneer and veneer-based products is far from optimal as trees are young and have small diameters; and the veneers have the significant colour variation which affects to the added value of final products. Developing production methods which would enhance appearance of low-quality veneer would provide a great potential for the production of high-value wood products such as furniture, joinery, flooring and other appearance products. One of the methods of enhancing appearance of low quality veneer, developed in Italy, involves the production of multilaminar veneer, also named “reconstructed veneer”. An important stage of the multilaminar production is colouring the veneer which can be achieved by dyeing veneer with dyes of different colours depending on the type of appearance products, their design and market demand. Although veneer dyeing technology has been well advanced in Italy, it has been focused on poplar veneer from plantation which wood is characterized by low density, even colour, small amount of defects and high permeability. Conversely, the majority of plantation eucalypts have medium to high density, have a lot of defects, uneven colour and low permeability. Therefore, detailed study is required to develop dyeing methods suitable for colouring eucalypt veneers. Brown reactive dye is used for veneer colouring process. Veneers from sapwood and heartwood of two moisture content levels are used to conduct colouring experiments: green veneer and veneer dried to 12% MC. Prior to dyeing, all samples are treated. Both soaking (dipping) and vacuum pressure methods are used in the study to compare the results and select most efficient method for veneer dyeing. To date, the results of colour measurements by CIELAB colour system showed significant differences in the colour of the undyed veneers produced from heartwood part. The colour became moderately darker with increasing of Sodium chloride, compared to control samples according to the colour measurements. It is difficult to conclude a suitable dye solution used in the experiments at this stage as the variables such as dye concentration, dyeing temperature or dyeing time have not been done. The dye will be used with and without UV absorbent after all trials are completed using optimal parameters in colouring veneers.Keywords: Eucalyptus globulus, veneer colouring/dyeing, multilaminar veneer, reactive dye
Procedia PDF Downloads 350250 Applying Biosensors’ Electromyography Signals through an Artificial Neural Network to Control a Small Unmanned Aerial Vehicle
Authors: Mylena McCoggle, Shyra Wilson, Andrea Rivera, Rocio Alba-Flores
Abstract:
This work introduces the use of EMGs (electromyography) from muscle sensors to develop an Artificial Neural Network (ANN) for pattern recognition to control a small unmanned aerial vehicle. The objective of this endeavor exhibits interfacing drone applications beyond manual control directly. MyoWare Muscle sensor contains three EMG electrodes (dual and single type) used to collect signals from the posterior (extensor) and anterior (flexor) forearm and the bicep. Collection of raw voltages from each sensor were connected to an Arduino Uno and a data processing algorithm was developed with the purpose of interpreting the voltage signals given when performing flexing, resting, and motion of the arm. Each sensor collected eight values over a two-second period for the duration of one minute, per assessment. During each two-second interval, the movements were alternating between a resting reference class and an active motion class, resulting in controlling the motion of the drone with left and right movements. This paper further investigated adding up to three sensors to differentiate between hand gestures to control the principal motions of the drone (left, right, up, and land). The hand gestures chosen to execute these movements were: a resting position, a thumbs up, a hand swipe right motion, and a flexing position. The MATLAB software was utilized to collect, process, and analyze the signals from the sensors. The protocol (machine learning tool) was used to classify the hand gestures. To generate the input vector to the ANN, the mean, root means squared, and standard deviation was processed for every two-second interval of the hand gestures. The neuromuscular information was then trained using an artificial neural network with one hidden layer of 10 neurons to categorize the four targets, one for each hand gesture. Once the machine learning training was completed, the resulting network interpreted the processed inputs and returned the probabilities of each class. Based on the resultant probability of the application process, once an output was greater or equal to 80% of matching a specific target class, the drone would perform the motion expected. Afterward, each movement was sent from the computer to the drone through a Wi-Fi network connection. These procedures have been successfully tested and integrated into trial flights, where the drone has responded successfully in real-time to predefined command inputs with the machine learning algorithm through the MyoWare sensor interface. The full paper will describe in detail the database of the hand gestures, the details of the ANN architecture, and confusion matrices results.Keywords: artificial neural network, biosensors, electromyography, machine learning, MyoWare muscle sensors, Arduino
Procedia PDF Downloads 174249 Upgrade of Value Chains and the Effect on Resilience of Russia’s Coal Industry and Receiving Regions on the Path of Energy Transition
Authors: Sergey Nikitenko, Vladimir Klishin, Yury Malakhov, Elena Goosen
Abstract:
Transition to renewable energy sources (solar, wind, bioenergy, etc.) and launching of alternative energy generation has weakened the role of coal as a source of energy. The Paris Agreement and assumption of obligations by many nations to orderly reduce CO₂ emissions by means of technological modernization and climate change adaptation has abridged coal demand yet more. This paper aims to assess current resilience of the coal industry to stress and to define prospects for coal production optimization using high technologies pursuant to global challenges and requirements of energy transition. Our research is based on the resilience concept adapted to the coal industry. It is proposed to divide the coal sector into segments depending on the prevailing value chains (VC). Four representative models of VC are identified in the coal sector. The most promising lines of upgrading VC in the coal industry include: •Elongation of VC owing to introduction of clean technologies of coal conversion and utilization; •Creation of parallel VC by means of waste management; •Branching of VC (conversion of a company’s VC into a production network). The upgrade effectiveness is governed in many ways by applicability of advanced coal processing technologies, usability of waste, expandability of production, entrance to non-rival markets and localization of new segments of VC in receiving regions. It is also important that upgrade of VC by means of formation of agile high-tech inter-industry production networks within the framework of operating surface and underground mines can reduce social, economic and ecological risks associated with closure of coal mines. Such promising route of VC upgrade is application of methanotrophic bacteria to produce protein to be used as feed-stuff in fish, poultry and cattle breeding, or in production of ferments, lipoids, sterols, antioxidants, pigments and polysaccharides. Closed mines can use recovered methane as a clean energy source. There exist methods of methane utilization from uncontrollable sources, including preliminary treatment and recovery of methane from air-and-methane mixture, or decomposition of methane to hydrogen and acetylene. Separated hydrogen is used in hydrogen fuel cells to generate power to feed the process of methane utilization and to supply external consumers. Despite the recent paradigm of carbon-free energy generation, it is possible to preserve the coal mining industry using the differentiated approach to upgrade of value chains based on flexible technologies with regard to specificity of mining companies.Keywords: resilience, resilience concept, resilience indicator, resilience in the Russian coal industry, value chains
Procedia PDF Downloads 107248 Predicting Susceptibility to Coronary Artery Disease using Single Nucleotide Polymorphisms with a Large-Scale Data Extraction from PubMed and Validation in an Asian Population Subset
Authors: K. H. Reeta, Bhavana Prasher, Mitali Mukerji, Dhwani Dholakia, Sangeeta Khanna, Archana Vats, Shivam Pandey, Sandeep Seth, Subir Kumar Maulik
Abstract:
Introduction Research has demonstrated a connection between coronary artery disease (CAD) and genetics. We did a deep literature mining using both bioinformatics and manual efforts to identify the susceptible polymorphisms in coronary artery disease. Further, the study sought to validate these findings in an Asian population. Methodology In first phase, we used an automated pipeline which organizes and presents structured information on SNPs, Population and Diseases. The information was obtained by applying Natural Language Processing (NLP) techniques to approximately 28 million PubMed abstracts. To accomplish this, we utilized Python scripts to extract and curate disease-related data, filter out false positives, and categorize them into 24 hierarchical groups using named Entity Recognition (NER) algorithms. From the extensive research conducted, a total of 466 unique PubMed Identifiers (PMIDs) and 694 Single Nucleotide Polymorphisms (SNPs) related to coronary artery disease (CAD) were identified. To refine the selection process, a thorough manual examination of all the studies was carried out. Specifically, SNPs that demonstrated susceptibility to CAD and exhibited a positive Odds Ratio (OR) were selected, and a final pool of 324 SNPs was compiled. The next phase involved validating the identified SNPs in DNA samples of 96 CAD patients and 37 healthy controls from Indian population using Global Screening Array. ResultsThe results exhibited out of 324, only 108 SNPs were expressed, further 4 SNPs showed significant difference of minor allele frequency in cases and controls. These were rs187238 of IL-18 gene, rs731236 of VDR gene, rs11556218 of IL16 gene and rs5882 of CETP gene. Prior researches have reported association of these SNPs with various pathways like endothelial damage, susceptibility of vitamin D receptor (VDR) polymorphisms, and reduction of HDL-cholesterol levels, ultimately leading to the development of CAD. Among these, only rs731236 had been studied in Indian population and that too in diabetes and vitamin D deficiency. For the first time, these SNPs were reported to be associated with CAD in Indian population. Conclusion: This pool of 324 SNP s is a unique kind of resource that can help to uncover risk associations in CAD. Here, we validated in Indian population. Further, validation in different populations may offer valuable insights and contribute to the development of a screening tool and may help in enabling the implementation of primary prevention strategies targeted at the vulnerable population.Keywords: coronary artery disease, single nucleotide polymorphism, susceptible SNP, bioinformatics
Procedia PDF Downloads 76247 The Data Quality Model for the IoT based Real-time Water Quality Monitoring Sensors
Authors: Rabbia Idrees, Ananda Maiti, Saurabh Garg, Muhammad Bilal Amin
Abstract:
IoT devices are the basic building blocks of IoT network that generate enormous volume of real-time and high-speed data to help organizations and companies to take intelligent decisions. To integrate this enormous data from multisource and transfer it to the appropriate client is the fundamental of IoT development. The handling of this huge quantity of devices along with the huge volume of data is very challenging. The IoT devices are battery-powered and resource-constrained and to provide energy efficient communication, these IoT devices go sleep or online/wakeup periodically and a-periodically depending on the traffic loads to reduce energy consumption. Sometime these devices get disconnected due to device battery depletion. If the node is not available in the network, then the IoT network provides incomplete, missing, and inaccurate data. Moreover, many IoT applications, like vehicle tracking and patient tracking require the IoT devices to be mobile. Due to this mobility, If the distance of the device from the sink node become greater than required, the connection is lost. Due to this disconnection other devices join the network for replacing the broken-down and left devices. This make IoT devices dynamic in nature which brings uncertainty and unreliability in the IoT network and hence produce bad quality of data. Due to this dynamic nature of IoT devices we do not know the actual reason of abnormal data. If data are of poor-quality decisions are likely to be unsound. It is highly important to process data and estimate data quality before bringing it to use in IoT applications. In the past many researchers tried to estimate data quality and provided several Machine Learning (ML), stochastic and statistical methods to perform analysis on stored data in the data processing layer, without focusing the challenges and issues arises from the dynamic nature of IoT devices and how it is impacting data quality. A comprehensive review on determining the impact of dynamic nature of IoT devices on data quality is done in this research and presented a data quality model that can deal with this challenge and produce good quality of data. This research presents the data quality model for the sensors monitoring water quality. DBSCAN clustering and weather sensors are used in this research to make data quality model for the sensors monitoring water quality. An extensive study has been done in this research on finding the relationship between the data of weather sensors and sensors monitoring water quality of the lakes and beaches. The detailed theoretical analysis has been presented in this research mentioning correlation between independent data streams of the two sets of sensors. With the help of the analysis and DBSCAN, a data quality model is prepared. This model encompasses five dimensions of data quality: outliers’ detection and removal, completeness, patterns of missing values and checks the accuracy of the data with the help of cluster’s position. At the end, the statistical analysis has been done on the clusters formed as the result of DBSCAN, and consistency is evaluated through Coefficient of Variation (CoV).Keywords: clustering, data quality, DBSCAN, and Internet of things (IoT)
Procedia PDF Downloads 139246 Valorization of Banana Peels for Mercury Removal in Environmental Realist Conditions
Authors: E. Fabre, C. Vale, E. Pereira, C. M. Silva
Abstract:
Introduction: Mercury is one of the most troublesome toxic metals responsible for the contamination of the aquatic systems due to its accumulation and bioamplification along the food chain. The 2030 agenda for sustainable development of United Nations promotes the improving of water quality by reducing water pollution and foments an enhance in wastewater treatment, encouraging their recycling and safe water reuse globally. Sorption processes are widely used in wastewater treatments due to their many advantages such as high efficiency and low operational costs. In these processes the target contaminant is removed from the solution by a solid sorbent. The more selective and low cost is the biosorbent the more attractive becomes the process. Agricultural wastes are especially attractive approaches for sorption. They are largely available, have no commercial value and require little or no processing. In this work, banana peels were tested for mercury removal from low concentrated solutions. In order to investigate the applicability of this solid, six water matrices were used increasing the complexity from natural waters to a real wastewater. Studies of kinetics and equilibrium were also performed using the most known models to evaluate the viability of the process In line with the concept of circular economy, this study adds value to this by-product as well as contributes to liquid waste management. Experimental: The solutions were prepared with Hg(II) initial concentration of 50 µg L-1 in natural waters, at 22 ± 1 ºC, pH 6, magnetically stirring at 650 rpm and biosorbent mass of 0.5 g L-1. NaCl was added to obtain the salt solutions, seawater was collected from the Portuguese coast and the real wastewater was kindly provided by ISQ - Instituto de Soldadura e qualidade (Welding and Quality Institute) and diluted until the same concentration of 50 µg L-1. Banana peels were previously freeze-drying, milled, sieved and the particles < 1 mm were used. Results: Banana peels removed more than 90% of Hg(II) from all the synthetic solutions studied. In these cases, the enhance in the complexity of the water type promoted a higher mercury removal. In salt waters, the biosorbent showed removals of 96%, 95% and 98 % for 3, 15 and 30 g L-1 of NaCl, respectively. The residual concentration of Hg(II) in solution achieved the level of drinking water regulation (1 µg L-1). For real matrices, the lower Hg(II) elimination (93 % for seawater and 81 % for the real wastewaters), can be explained by the competition between the Hg(II) ions and the other elements present in these solutions for the sorption sites. Regarding the equilibrium study, the experimental data are better described by the Freundlich isotherm (R ^ 2=0.991). The Elovich equation provided the best fit to the kinetic points. Conclusions: The results exhibited the great ability of the banana peels to remove mercury. The environmental realist conditions studied in this work, highlight their potential usage as biosorbents in water remediation processes.Keywords: banana peels, mercury removal, sorption, water treatment
Procedia PDF Downloads 155245 Development of 3D Printed Natural Fiber Reinforced Composite Scaffolds for Maxillofacial Reconstruction
Authors: Sri Sai Ramya Bojedla, Falguni Pati
Abstract:
Nature provides the best of solutions to humans. One such incredible gift to regenerative medicine is silk. The literature has publicized a long appreciation for silk owing to its incredible physical and biological assets. Its bioactive nature, unique mechanical strength, and processing flexibility make us curious to explore further to apply it in the clinics for the welfare of mankind. In this study, Antheraea mylitta and Bombyx mori silk fibroin microfibers are developed by two economical and straightforward steps via degumming and hydrolysis for the first time, and a bioactive composite is manufactured by mixing silk fibroin microfibers at various concentrations with polycaprolactone (PCL), a biocompatible, aliphatic semi-crystalline synthetic polymer. Reconstructive surgery in any part of the body except for the maxillofacial region deals with replacing its function. But answering both the aesthetics and function is of utmost importance when it comes to facial reconstruction as it plays a critical role in the psychological and social well-being of the patient. The main concern in developing adequate bone graft substitutes or a scaffold is the noteworthy variation in each patient's bone anatomy. Additionally, the anatomical shape and size will vary based on the type of defect. The advent of additive manufacturing (AM) or 3D printing techniques to bone tissue engineering has facilitated overcoming many of the restraints of conventional fabrication techniques. The acquired patient's CT data is converted into a stereolithographic (STL)-file which is further utilized by the 3D printer to create a 3D scaffold structure in an interconnected layer-by-layer fashion. This study aims to address the limitations of currently available materials and fabrication technologies and develop a customized biomaterial implant via 3D printing technology to reconstruct complex form, function, and aesthetics of the facial anatomy. These composite scaffolds underwent structural and mechanical characterization. Atomic force microscopic (AFM) and field emission scanning electron microscopic (FESEM) images showed the uniform dispersion of the silk fibroin microfibers in the PCL matrix. With the addition of silk, there is improvement in the compressive strength of the hybrid scaffolds. The scaffolds with Antheraea mylitta silk revealed higher compressive modulus than that of Bombyx mori silk. The above results of PCL-silk scaffolds strongly recommend their utilization in bone regenerative applications. Successful completion of this research will provide a great weapon in the maxillofacial reconstructive armamentarium.Keywords: compressive modulus, 3d printing, maxillofacial reconstruction, natural fiber reinforced composites, silk fibroin microfibers
Procedia PDF Downloads 197244 Religiosity and Involvement in Purchasing Convenience Foods: Using Two-Step Cluster Analysis to Identify Heterogenous Muslim Consumers in the UK
Authors: Aisha Ijaz
Abstract:
The paper focuses on the impact of Muslim religiosity on convenience food purchases and involvement experienced in a non-Muslim culture. There is a scarcity of research on the purchasing patterns of Muslim diaspora communities residing in risk societies, particularly in contexts where there is an increasing inclination toward industrialized food items alongside a renewed interest in the concept of natural foods. The United Kingdom serves as an appropriate setting for this study due to the increasing Muslim population in the country, paralleled by the expanding Halal Food Market. A multi-dimensional framework is proposed, testing for five forms of involvement, specifically Purchase Decision Involvement, Product Involvement, Behavioural Involvement, Intrinsic Risk and Extrinsic Risk. Quantitative cross-sectional consumer data were collected through a face-to-face survey contact method with 141 Muslims during the summer of 2020 in Liverpool located in the Northwest of England. proportion formula was utilitsed, and the population of interest was stratified by gender and age before recruitment took place through local mosques and community centers. Six input variables were used (intrinsic religiosity and involvement dimensions), dividing the sample into 4 clusters using the Two-Step Cluster Analysis procedure in SPSS. Nuanced variances were observed in the type of involvement experienced by religiosity group, which influences behaviour when purchasing convenience food. Four distinct market segments were identified: highly religious ego-involving (39.7%), less religious active (26.2%), highly religious unaware (16.3%), less religious concerned (17.7%). These segments differ significantly with respects to their involvement, behavioural variables (place of purchase and information sources used), socio-cultural (acculturation and social class), and individual characteristics. Choosing the appropriate convenience food is centrally related to the value system of highly religious ego-involving first-generation Muslims, which explains their preference for shopping at ethnic food stores. Less religious active consumers are older and highly alert in information processing to make the optimal food choice, relying heavily on product label sources. Highly religious unaware Muslims are less dietary acculturated to the UK diet and tend to rely on digital and expert advice sources. The less-religious concerned segment, who are typified by younger age and third generation, are engaged with the purchase process because they are worried about making unsuitable food choices. Research implications are outlined and potential avenues for further explorations are identified.Keywords: consumer behaviour, consumption, convenience food, religion, muslims, UK
Procedia PDF Downloads 56243 A Fermatean Fuzzy MAIRCA Approach for Maintenance Strategy Selection of Process Plant Gearbox Using Sustainability Criteria
Authors: Soumava Boral, Sanjay K. Chaturvedi, Ian Howard, Kristoffer McKee, V. N. A. Naikan
Abstract:
Due to strict regulations from government to enhance the possibilities of sustainability practices in industries, and noting the advances in sustainable manufacturing practices, it is necessary that the associated processes are also sustainable. Maintenance of large scale and complex machines is a pivotal task to maintain the uninterrupted flow of manufacturing processes. Appropriate maintenance practices can prolong the lifetime of machines, and prevent associated breakdowns, which subsequently reduces different cost heads. Selection of the best maintenance strategies for such machines are considered as a burdensome task, as they require the consideration of multiple technical criteria, complex mathematical calculations, previous fault data, maintenance records, etc. In the era of the fourth industrial revolution, organizations are rapidly changing their way of business, and they are giving their utmost importance to sensor technologies, artificial intelligence, data analytics, automations, etc. In this work, the effectiveness of several maintenance strategies (e.g., preventive, failure-based, reliability centered, condition based, total productive maintenance, etc.) related to a large scale and complex gearbox, operating in a steel processing plant is evaluated in terms of economic, social, environmental and technical criteria. As it is not possible to obtain/describe some criteria by exact numerical values, these criteria are evaluated linguistically by cross-functional experts. Fuzzy sets are potential soft-computing technique, which has been useful to deal with linguistic data and to provide inferences in many complex situations. To prioritize different maintenance practices based on the identified sustainable criteria, multi-criteria decision making (MCDM) approaches can be considered as potential tools. Multi-Attributive Ideal Real Comparative Analysis (MAIRCA) is a recent addition in the MCDM family and has proven its superiority over some well-known MCDM approaches, like TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) and ELECTRE (ELimination Et Choix Traduisant la REalité). It has a simple but robust mathematical approach, which is easy to comprehend. On the other side, due to some inherent drawbacks of Intuitionistic Fuzzy Sets (IFS) and Pythagorean Fuzzy Sets (PFS), recently, the use of Fermatean Fuzzy Sets (FFSs) has been proposed. In this work, we propose the novel concept of FF-MAIRCA. We obtain the weights of the criteria by experts’ evaluation and use them to prioritize the different maintenance practices according to their suitability by FF-MAIRCA approach. Finally, a sensitivity analysis is carried out to highlight the robustness of the approach.Keywords: Fermatean fuzzy sets, Fermatean fuzzy MAIRCA, maintenance strategy selection, sustainable manufacturing, MCDM
Procedia PDF Downloads 138242 Dynamic-cognition of Strategic Mineral Commodities; An Empirical Assessment
Authors: Carlos Tapia Cortez, Serkan Saydam, Jeff Coulton, Claude Sammut
Abstract:
Strategic mineral commodities (SMC) both energetic and metals have long been fundamental for human beings. There is a strong and long-run relation between the mineral resources industry and society's evolution, with the provision of primary raw materials, becoming one of the most significant drivers of economic growth. Due to mineral resources’ relevance for the entire economy and society, an understanding of the SMC market behaviour to simulate price fluctuations has become crucial for governments and firms. For any human activity, SMC price fluctuations are affected by economic, geopolitical, environmental, technological and psychological issues, where cognition has a major role. Cognition is defined as the capacity to store information in memory, processing and decision making for problem-solving or human adaptation. Thus, it has a significant role in those systems that exhibit dynamic equilibrium through time, such as economic growth. Cognition allows not only understanding past behaviours and trends in SCM markets but also supports future expectations of demand/supply levels and prices, although speculations are unavoidable. Technological developments may also be defined as a cognitive system. Since the Industrial Revolution, technological developments have had a significant influence on SMC production costs and prices, likewise allowing co-integration between commodities and market locations. It suggests a close relation between structural breaks, technology and prices evolution. SCM prices forecasting have been commonly addressed by econometrics and Gaussian-probabilistic models. Econometrics models may incorporate the relationship between variables; however, they are statics that leads to an incomplete approach of prices evolution through time. Gaussian-probabilistic models may evolve through time; however, price fluctuations are addressed by the assumption of random behaviour and normal distribution which seems to be far from the real behaviour of both market and prices. Random fluctuation ignores the evolution of market events and the technical and temporal relation between variables, giving the illusion of controlled future events. Normal distribution underestimates price fluctuations by using restricted ranges, curtailing decisions making into a pre-established space. A proper understanding of SMC's price dynamics taking into account the historical-cognitive relation between economic, technological and psychological factors over time is fundamental in attempting to simulate prices. The aim of this paper is to discuss the SMC market cognition hypothesis and empirically demonstrate its dynamic-cognitive capacity. Three of the largest and traded SMC's: oil, copper and gold, will be assessed to examine the economic, technological and psychological cognition respectively.Keywords: commodity price simulation, commodity price uncertainties, dynamic-cognition, dynamic systems
Procedia PDF Downloads 460241 Assessment Environmental and Economic of Yerba Mate as a Feed Additive on Feedlot Lamb
Authors: Danny Alexander R. Moreno, Gustavo L. Sartorello, Yuli Andrea P. Bermudez, Richard R. Lobo, Ives Claudio S. Bueno, Augusto H. Gameiro
Abstract:
Meat production is a significant sector for Brazil's economy; however, the agricultural segment has suffered censure regarding the negative impacts on the environment, which consequently results in climate change. Therefore, it is essential the implementation of nutritional strategies that can improve the environmental performance of livestock. This research aimed to estimate the environmental impact and profitability of the use of yerba mate extract (Ilex paraguariensis) as an additive in the feeding of feedlot lamb. Thirty-six castrated male lambs (average weight of 23.90 ± 3.67 kg and average age of 75 days) were randomly assigned to four experimental diets with different levels of inclusion of yerba mate extract (0, 1, 2, and 4 %) based on dry matter. The animals were confined for fifty-three days and fed with 60:40 corn silage to concentrate ratio. As an indicator of environmental impact, the carbon footprint (CF) was measured as kg of CO₂ equivalent (CO₂-eq) per kg of body weight produced (BWP). The greenhouse gas (GHG) emissions such as methane (CH₄) generated from enteric fermentation, were calculated using the sulfur hexafluoride gas tracer (SF₆) technique; while the CH₄, nitrous oxide (N₂O - emissions generated by feces and urine), and carbon dioxide (CO₂ - emissions generated by concentrate and silage processing) were estimated using the Intergovernmental Panel on Climate Change (IPCC) methodology. To estimate profitability, the gross margin was used, which is the total revenue minus the total cost; the latter is composed of the purchase of animals and food. The boundaries of this study considered only the lamb fattening system. The enteric CH₄ emission from the lamb was the largest source of on-farm GHG emissions (47%-50%), followed by CH₄ and N₂O emissions from manure (10%-20%) and CO₂ emission from the concentrate, silage, and fossil energy (17%-5%). The treatment that generated the least environmental impact was the group with 4% of yerba mate extract (YME), which showed a 3% reduction in total GHG emissions in relation to the control (1462.5 and 1505.5 kg CO₂-eq, respectively). However, the scenario with 1% YME showed an increase in emissions of 7% compared to the control group. In relation to CF, the treatment with 4% YME had the lowest value (4.1 kg CO₂-eq/kg LW) compared with the other groups. Nevertheless, although the 4% YME inclusion scenario showed the lowest CF, the gross margin decreased by 36% compared to the control group (0% YME), due to the cost of YME as a food additive. The results showed that the extract has the potential for use in reducing GHG. However, the cost of implementing this input as a mitigation strategy increased the production cost. Therefore, it is important to develop political strategies that help reduce the acquisition costs of input that contribute to the search for the environmental and economic benefit of the livestock sector.Keywords: meat production, natural additives, profitability, sheep
Procedia PDF Downloads 139240 Fractional, Component and Morphological Composition of Ambient Air Dust in the Areas of Mining Industry
Authors: S.V. Kleyn, S.Yu. Zagorodnov, А.А. Kokoulina
Abstract:
Technogenic emissions of the mining and processing complex are characterized by a high content of chemical components and solid dust particles. However, each industrial enterprise and the surrounding area have features that require refinement and parameterization. Numerous studies have shown the negative impact of fine dust PM10 and PM2.5 on the health, as well as the possibility of toxic components absorption, including heavy metals by dust particles. The target of the study was the quantitative assessment of the fractional and particle size composition of ambient air dust in the area of impact by primary magnesium production complex. Also, we tried to describe the morphology features of dust particles. Study methods. To identify the dust emission sources, the analysis of the production process has been carried out. The particulate composition of the emissions was measured using laser particle analyzer Microtrac S3500 (covered range of particle size is 20 nm to 2000 km). Particle morphology and the component composition were established by electron microscopy by scanning microscope of high resolution (magnification rate - 5 to 300 000 times) with X-ray fluorescence device S3400N ‘HITACHI’. The chemical composition was identified by X-ray analysis of the samples using an X-ray diffractometer XRD-700 ‘Shimadzu’. Determination of the dust pollution level was carried out using model calculations of emissions in the atmosphere dispersion. The calculations were verified by instrumental studies. Results of the study. The results demonstrated that the dust emissions of different technical processes are heterogeneous and fractional structure is complicated. The percentage of particle sizes up to 2.5 micrometres inclusive was ranged from 0.00 to 56.70%; particle sizes less than 10 microns inclusive – 0.00 - 85.60%; particle sizes greater than 10 microns - 14.40% -100.00%. During microscopy, the presence of nanoscale size particles has been detected. Studied dust particles are round, irregular, cubic and integral shapes. The composition of the dust includes magnesium, sodium, potassium, calcium, iron, chlorine. On the base of obtained results, it was performed the model calculations of dust emissions dispersion and establishment of the areas of fine dust РМ 10 and РМ 2.5 distribution. It was found that the dust emissions of fine powder fractions PM10 and PM2.5 are dispersed over large distances and beyond the border of the industrial site of the enterprise. The population living near the enterprise is exposed to the risk of diseases associated with dust exposure. Data are transferred to the economic entity to make decisions on the measures to minimize the risks. Exposure and risks indicators on the health are used to provide named patient health and preventive care to the citizens living in the area of negative impact of the facility.Keywords: dust emissions, еxposure assessment, PM 10, PM 2.5
Procedia PDF Downloads 261239 Application of Deep Learning Algorithms in Agriculture: Early Detection of Crop Diseases
Authors: Manaranjan Pradhan, Shailaja Grover, U. Dinesh Kumar
Abstract:
Farming community in India, as well as other parts of the world, is one of the highly stressed communities due to reasons such as increasing input costs (cost of seeds, fertilizers, pesticide), droughts, reduced revenue leading to farmer suicides. Lack of integrated farm advisory system in India adds to the farmers problems. Farmers need right information during the early stages of crop’s lifecycle to prevent damage and loss in revenue. In this paper, we use deep learning techniques to develop an early warning system for detection of crop diseases using images taken by farmers using their smart phone. The research work leads to building a smart assistant using analytics and big data which could help the farmers with early diagnosis of the crop diseases and corrective actions. The classical approach for crop disease management has been to identify diseases at crop level. Recently, ImageNet Classification using the convolutional neural network (CNN) has been successfully used to identify diseases at individual plant level. Our model uses convolution filters, max pooling, dense layers and dropouts (to avoid overfitting). The models are built for binary classification (healthy or not healthy) and multi class classification (identifying which disease). Transfer learning is used to modify the weights of parameters learnt through ImageNet dataset and apply them on crop diseases, which reduces number of epochs to learn. One shot learning is used to learn from very few images, while data augmentation techniques are used to improve accuracy with images taken from farms by using techniques such as rotation, zoom, shift and blurred images. Models built using combination of these techniques are more robust for deploying in the real world. Our model is validated using tomato crop. In India, tomato is affected by 10 different diseases. Our model achieves an accuracy of more than 95% in correctly classifying the diseases. The main contribution of our research is to create a personal assistant for farmers for managing plant disease, although the model was validated using tomato crop, it can be easily extended to other crops. The advancement of technology in computing and availability of large data has made possible the success of deep learning applications in computer vision, natural language processing, image recognition, etc. With these robust models and huge smartphone penetration, feasibility of implementation of these models is high resulting in timely advise to the farmers and thus increasing the farmers' income and reducing the input costs.Keywords: analytics in agriculture, CNN, crop disease detection, data augmentation, image recognition, one shot learning, transfer learning
Procedia PDF Downloads 119238 Embedded Semantic Segmentation Network Optimized for Matrix Multiplication Accelerator
Authors: Jaeyoung Lee
Abstract:
Autonomous driving systems require high reliability to provide people with a safe and comfortable driving experience. However, despite the development of a number of vehicle sensors, it is difficult to always provide high perceived performance in driving environments that vary from time to season. The image segmentation method using deep learning, which has recently evolved rapidly, provides high recognition performance in various road environments stably. However, since the system controls a vehicle in real time, a highly complex deep learning network cannot be used due to time and memory constraints. Moreover, efficient networks are optimized for GPU environments, which degrade performance in embedded processor environments equipped simple hardware accelerators. In this paper, a semantic segmentation network, matrix multiplication accelerator network (MMANet), optimized for matrix multiplication accelerator (MMA) on Texas instrument digital signal processors (TI DSP) is proposed to improve the recognition performance of autonomous driving system. The proposed method is designed to maximize the number of layers that can be performed in a limited time to provide reliable driving environment information in real time. First, the number of channels in the activation map is fixed to fit the structure of MMA. By increasing the number of parallel branches, the lack of information caused by fixing the number of channels is resolved. Second, an efficient convolution is selected depending on the size of the activation. Since MMA is a fixed, it may be more efficient for normal convolution than depthwise separable convolution depending on memory access overhead. Thus, a convolution type is decided according to output stride to increase network depth. In addition, memory access time is minimized by processing operations only in L3 cache. Lastly, reliable contexts are extracted using the extended atrous spatial pyramid pooling (ASPP). The suggested method gets stable features from an extended path by increasing the kernel size and accessing consecutive data. In addition, it consists of two ASPPs to obtain high quality contexts using the restored shape without global average pooling paths since the layer uses MMA as a simple adder. To verify the proposed method, an experiment is conducted using perfsim, a timing simulator, and the Cityscapes validation sets. The proposed network can process an image with 640 x 480 resolution for 6.67 ms, so six cameras can be used to identify the surroundings of the vehicle as 20 frame per second (FPS). In addition, it achieves 73.1% mean intersection over union (mIoU) which is the highest recognition rate among embedded networks on the Cityscapes validation set.Keywords: edge network, embedded network, MMA, matrix multiplication accelerator, semantic segmentation network
Procedia PDF Downloads 129237 Virtual Experiments on Coarse-Grained Soil Using X-Ray CT and Finite Element Analysis
Authors: Mohamed Ali Abdennadher
Abstract:
Digital rock physics, an emerging field leveraging advanced imaging and numerical techniques, offers a promising approach to investigating the mechanical properties of granular materials without extensive physical experiments. This study focuses on using X-Ray Computed Tomography (CT) to capture the three-dimensional (3D) structure of coarse-grained soil at the particle level, combined with finite element analysis (FEA) to simulate the soil's behavior under compression. The primary goal is to establish a reliable virtual testing framework that can replicate laboratory results and offer deeper insights into soil mechanics. The methodology involves acquiring high-resolution CT scans of coarse-grained soil samples to visualize internal particle morphology. These CT images undergo processing through noise reduction, thresholding, and watershed segmentation techniques to isolate individual particles, preparing the data for subsequent analysis. A custom Python script is employed to extract particle shapes and conduct a statistical analysis of particle size distribution. The processed particle data then serves as the basis for creating a finite element model comprising approximately 500 particles subjected to one-dimensional compression. The FEA simulations explore the effects of mesh refinement and friction coefficient on stress distribution at grain contacts. A multi-layer meshing strategy is applied, featuring finer meshes at inter-particle contacts to accurately capture mechanical interactions and coarser meshes within particle interiors to optimize computational efficiency. Despite the known challenges in parallelizing FEA to high core counts, this study demonstrates that an appropriate domain-level parallelization strategy can achieve significant scalability, allowing simulations to extend to very high core counts. The results show a strong correlation between the finite element simulations and laboratory compression test data, validating the effectiveness of the virtual experiment approach. Detailed stress distribution patterns reveal that soil compression behavior is significantly influenced by frictional interactions, with frictional sliding, rotation, and rolling at inter-particle contacts being the primary deformation modes under low to intermediate confining pressures. These findings highlight that CT data analysis combined with numerical simulations offers a robust method for approximating soil behavior, potentially reducing the need for physical laboratory experiments.Keywords: X-Ray computed tomography, finite element analysis, soil compression behavior, particle morphology
Procedia PDF Downloads 29236 Advancing the Analysis of Physical Activity Behaviour in Diverse, Rapidly Evolving Populations: Using Unsupervised Machine Learning to Segment and Cluster Accelerometer Data
Authors: Christopher Thornton, Niina Kolehmainen, Kianoush Nazarpour
Abstract:
Background: Accelerometers are widely used to measure physical activity behavior, including in children. The traditional method for processing acceleration data uses cut points, relying on calibration studies that relate the quantity of acceleration to energy expenditure. As these relationships do not generalise across diverse populations, they must be parametrised for each subpopulation, including different age groups, which is costly and makes studies across diverse populations difficult. A data-driven approach that allows physical activity intensity states to emerge from the data under study without relying on parameters derived from external populations offers a new perspective on this problem and potentially improved results. We evaluated the data-driven approach in a diverse population with a range of rapidly evolving physical and mental capabilities, namely very young children (9-38 months old), where this new approach may be particularly appropriate. Methods: We applied an unsupervised machine learning approach (a hidden semi-Markov model - HSMM) to segment and cluster the accelerometer data recorded from 275 children with a diverse range of physical and cognitive abilities. The HSMM was configured to identify a maximum of six physical activity intensity states and the output of the model was the time spent by each child in each of the states. For comparison, we also processed the accelerometer data using published cut points with available thresholds for the population. This provided us with time estimates for each child’s sedentary (SED), light physical activity (LPA), and moderate-to-vigorous physical activity (MVPA). Data on the children’s physical and cognitive abilities were collected using the Paediatric Evaluation of Disability Inventory (PEDI-CAT). Results: The HSMM identified two inactive states (INS, comparable to SED), two lightly active long duration states (LAS, comparable to LPA), and two short-duration high-intensity states (HIS, comparable to MVPA). Overall, the children spent on average 237/392 minutes per day in INS/SED, 211/129 minutes per day in LAS/LPA, and 178/168 minutes in HIS/MVPA. We found that INS overlapped with 53% of SED, LAS overlapped with 37% of LPA and HIS overlapped with 60% of MVPA. We also looked at the correlation between the time spent by a child in either HIS or MVPA and their physical and cognitive abilities. We found that HIS was more strongly correlated with physical mobility (R²HIS =0.5, R²MVPA= 0.28), cognitive ability (R²HIS =0.31, R²MVPA= 0.15), and age (R²HIS =0.15, R²MVPA= 0.09), indicating increased sensitivity to key attributes associated with a child’s mobility. Conclusion: An unsupervised machine learning technique can segment and cluster accelerometer data according to the intensity of movement at a given time. It provides a potentially more sensitive, appropriate, and cost-effective approach to analysing physical activity behavior in diverse populations, compared to the current cut points approach. This, in turn, supports research that is more inclusive across diverse populations.Keywords: physical activity, machine learning, under 5s, disability, accelerometer
Procedia PDF Downloads 210235 The Participation of Experts in the Criminal Policy on Drugs: The Proposal of a Cannabis Regulation Model in Spain by the Cannabis Policy Studies Group
Authors: Antonio Martín-Pardo
Abstract:
With regard to the context in which this paper is inserted, it is noteworthy that the current criminal policy model in which we find immersed, denominated by some doctrine sector as the citizen security model, is characterized by a marked tendency towards the discredit of expert knowledge. This type of technic knowledge has been displaced by the common sense and by the daily experience of the people at the time of legislative drafting, as well as by excessive attention to the short-term political effects of the law. Despite this criminal-political adverse scene, we still find valuable efforts in the side of experts to bring some rationality to the legislative development. This is the case of the proposal for a new cannabis regulation model in Spain carried out by the Cannabis Policy Studies Group (hereinafter referred as ‘GEPCA’). The GEPCA is a multidisciplinary group composed by authors with multiple/different orientations, trajectories and interests, but with a common minimum objective: the conviction that the current situation regarding cannabis is unsustainable and, that a rational legislative solution must be given to the growing social pressure for the regulation of their consumption and production. This paper details the main lines through which this technical proposal is developed with the purpose of its dissemination and discussion in the Congress. The basic methodology of the proposal is inductive-expository. In that way, firstly, we will offer a brief, but solid contextualization of the situation of cannabis in Spain. This contextualization will touch on issues such as the national regulatory situation and its relationship with the international context; the criminal, judicial and penitentiary impact of the offer and consumption of cannabis, or the therapeutic use of the substance, among others. In second place, we will get down to the business properly by detailing the minutia of the three main cannabis access channels that are proposed. Namely: the regulated market, the associations of cannabis users and personal self-cultivation. In each of these options, especially in the first two, special attention will be paid to both, the production and processing of the substance and the necessary administrative control of the activity. Finally, in a third block, some notes will be given on a series of subjects that surround the different access options just mentioned above and that give fullness and coherence to the proposal outlined. Among those related issues we find some such as consumption and tenure of the substance; the issue of advertising and promotion of cannabis; consumption in areas of special risk (work or driving v. g.); the tax regime; the need to articulate evaluation instruments for the entire process; etc. The main conclusion drawn from the analysis of the proposal is the unsustainability of the current repressive system, clearly unsuccessful, and the need to develop new access routes to cannabis that guarantee both public health and the rights of people who have freely chosen to consume it.Keywords: cannabis regulation proposal, cannabis policies studies group, criminal policy, expertise participation
Procedia PDF Downloads 119234 Stochastic Approach for Technical-Economic Viability Analysis of Electricity Generation Projects with Natural Gas Pressure Reduction Turbines
Authors: Roberto M. G. Velásquez, Jonas R. Gazoli, Nelson Ponce Jr, Valério L. Borges, Alessandro Sete, Fernanda M. C. Tomé, Julian D. Hunt, Heitor C. Lira, Cristiano L. de Souza, Fabio T. Bindemann, Wilmar Wounnsoscky
Abstract:
Nowadays, society is working toward reducing energy losses and greenhouse gas emissions, as well as seeking clean energy sources, as a result of the constant increase in energy demand and emissions. Energy loss occurs in the gas pressure reduction stations at the delivery points in natural gas distribution systems (city gates). Installing pressure reduction turbines (PRT) parallel to the static reduction valves at the city gates enhances the energy efficiency of the system by recovering the enthalpy of the pressurized natural gas, obtaining in the pressure-lowering process shaft work and generating electrical power. Currently, the Brazilian natural gas transportation network has 9,409 km in extension, while the system has 16 national and 3 international natural gas processing plants, including more than 143 delivery points to final consumers. Thus, the potential of installing PRT in Brazil is 66 MW of power, which could yearly avoid the emission of 235,800 tons of CO2 and generate 333 GWh/year of electricity. On the other hand, an economic viability analysis of these energy efficiency projects is commonly carried out based on estimates of the project's cash flow obtained from several variables forecast. Usually, the cash flow analysis is performed using representative values of these variables, obtaining a deterministic set of financial indicators associated with the project. However, in most cases, these variables cannot be predicted with sufficient accuracy, resulting in the need to consider, to a greater or lesser degree, the risk associated with the calculated financial return. This paper presents an approach applied to the technical-economic viability analysis of PRTs projects that explicitly considers the uncertainties associated with the input parameters for the financial model, such as gas pressure at the delivery point, amount of energy generated by TRP, the future price of energy, among others, using sensitivity analysis techniques, scenario analysis, and Monte Carlo methods. In the latter case, estimates of several financial risk indicators, as well as their empirical probability distributions, can be obtained. This is a methodology for the financial risk analysis of PRT projects. The results of this paper allow a more accurate assessment of the potential PRT project's financial feasibility in Brazil. This methodology will be tested at the Cuiabá thermoelectric plant, located in the state of Mato Grosso, Brazil, and can be applied to study the potential in other countries.Keywords: pressure reduction turbine, natural gas pressure drop station, energy efficiency, electricity generation, monte carlo methods
Procedia PDF Downloads 113233 The Effect of the Performance Evolution System on the Productivity of Administrating and a Case Study
Authors: Ertuğrul Ferhat Yilmaz, Ali Riza Perçin
Abstract:
In the business enterprises implemented modern business enterprise principles, the most important issues are increasing the performance of workers and getting maximum income. Through the twentieth century, rapid development of the sectors of data processing and communication and because of the free trade politics arising of multilateral business enterprises have canceled the economical borders and changed the local rivalry into the spherical rivalry. In this rivalry conditions, the business enterprises have to work active and productive in order to continue their existences. The employees worked at business enterprises have formed the most important factor of product. Therefore, the business enterprises inferring the importance of the human factors in order to increase the profit have used “the performance evolution system” to increase the success and development of the employees. The evolution of the performance is aimed to increase the manpower productive by using the employees in an active way. Furthermore, this system assists the wage politics implemented in business enterprise, determining the strategically plans in business enterprises through the short and long terms, being promoted and determining the educational needs of employees, making decisions as dismissing and work rotation. It requires a great deal of effort to catch the pace of change in the working realm and to keep up ourselves up-to-date. To get the quality in people,to have an effect in workplace depends largely on the knowledge and competence of managers and prospective managers. Therefore,managers need to use the performance evaluation systems in order to base their managerial decisions on sound data. This study aims at finding whether the organizations effectively use performance evaluation systms,how much importance is put on this issue and how much the results of the evaulations have an effect on employees. Whether the organizations have the advantage of competition and can keep on their activities depend to a large extent on how they effectively and efficiently use their employees.Therefore,it is of vital importance to evaluate employees' performance and to make them better according to the results of that evaluation. The performance evaluation system which evaluates the employees according to the criteria related to that organization has become one of the most important topics for management. By means of those important ends mentioned above,performance evaluation system seems to be a tool that can be used to improve the efficiency and effectiveness of organization. Because of its contribution to organizational success, thinking performance evaluation on the axis of efficiency shows the importance of this study on a different angle. In this study, we have explained performance evaluation system ,efficiency and the relation between those two concepts. We have also analyzed the results of questionnaires conducted on the textile workers in Edirne city.We have got positive answers from the questions about the effects of performance evaluation on efficiency.After factor analysis ,the efficiency and motivation which are determined as factors of performance evaluation system have the biggest variance (%19.703) in our sample. Thus, this study shows that objective performance evaluation increases the efficiency and motivation of employees.Keywords: performance, performance evolution system, productivity, Edirne region
Procedia PDF Downloads 303232 Improving Working Memory in School Children through Chess Training
Authors: Veena Easvaradoss, Ebenezer Joseph, Sumathi Chandrasekaran, Sweta Jain, Aparna Anna Mathai, Senta Christy
Abstract:
Working memory refers to a cognitive processing space where information is received, managed, transformed, and briefly stored. It is an operational process of transforming information for the execution of cognitive tasks in different and new ways. Many class room activities require children to remember information and mentally manipulate it. While the impact of chess training on intelligence and academic performance has been unequivocally established, its impact on working memory needs to be studied. This study, funded by the Cognitive Science Research Initiative, Department of Science & Technology, Government of India, analyzed the effect of one-year chess training on the working memory of children. A pretest–posttest with control group design was used, with 52 children in the experimental group and 50 children in the control group. The sample was selected from children studying in school (grades 3 to 9), which included both the genders. The experimental group underwent weekly chess training for one year, while the control group was involved in extracurricular activities. Working memory was measured by two subtests of WISC-IV INDIA. The Digit Span Subtest involves recalling a list of numbers of increasing length presented orally in forward and in reverse order, and the Letter–Number Sequencing Subtest involves rearranging jumbled alphabets and numbers presented orally following a given rule. Both tasks require the child to receive and briefly store information, manipulate it, and present it in a changed format. The Children were trained using Winning Moves curriculum, audio- visual learning method, hands-on- chess training and recording the games using score sheets, analyze their mistakes, thereby increasing their Meta-Analytical abilities. They were also trained in Opening theory, Checkmating techniques, End-game theory and Tactical principles. Pre equivalence of means was established. Analysis revealed that the experimental group had significant gains in working memory compared to the control group. The present study clearly establishes a link between chess training and working memory. The transfer of chess training to the improvement of working memory could be attributed to the fact that while playing chess, children evaluate positions, visualize new positions in their mind, analyze the pros and cons of each move, and choose moves based on the information stored in their mind. If working-memory’s capacity could be expanded or made to function more efficiently, it could result in the improvement of executive functions as well as the scholastic performance of the child.Keywords: chess training, cognitive development, executive functions, school children, working memory
Procedia PDF Downloads 263