Search results for: numerical predictions
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4000

Search results for: numerical predictions

400 NDVI as a Measure of Change in Forest Biomass

Authors: Amritansh Agarwal, Tejaswi Agarwal

Abstract:

Forest ecosystem plays very important role in the global carbon cycle. It stores about 80% of all above ground and 40% of all below ground terrestrial organic carbon. There is much interest in the extent of tropical forests and their rates of deforestation for two reasons: greenhouse gas contributions and the impact of profoundly negative biodiversity. Deforestation has many ecological, social and economic consequences, one of which is the loss of biological diversity. The rapid deployment of remote sensing (RS) satellites and development of RS analysis techniques in the past three decades have provided a reliable, effective, and practical way to characterize terrestrial ecosystem properties. Global estimates of tropical deforestation vary widely and range from 50,000 to 170,000 km2 /yr Recent FAO tropical deforestation estimates for 1990–1995 cite 116,756km2 / yr globally. Remote Sensing can prove to be a very useful tool in monitoring of forests and associated deforestation to a sufficient level of accuracy without the need of physically surveying the forest areas as many of them are physically inaccessible. The methodology for the assessment of forest cover using digital image processing (ERDAS) has been followed. The satellite data for the study was procured from USGS website in the digital format. While procuring the satellite data, care was taken to ensure that the data was cloud and aerosol free by making using of FLAASH atmospheric correction technique. The Normalized Difference Vegetation Index (NDVI) has been used as a numerical indicator of the reduction in ground biomass. NDVI = (near I.R - Red)/ (near I.R + Red). After calculating the NDVI variations and associated mean we have analysed the change in ground biomass. Through this paper we have tried to indicate the rate of deforestation over a given period of time by comparing the forest cover at different time intervals. With the help of remote sensing and GIS techniques it is clearly shows that the total forest cover is continuously degrading and transforming into various land use/land cover category.

Keywords: remote sensing, deforestation, supervised classification, NDVI change detection

Procedia PDF Downloads 373
399 Size Effects on Structural Performance of Concrete Gravity Dams

Authors: Mehmet Akköse

Abstract:

Concern about seismic safety of concrete dams have been growing around the world, partly because the population at risk in locations downstream of major dams continues to expand and also because it is increasingly evident that the seismic design concepts in use at the time most existing dams were built were inadequate. Most of the investigations in the past have been conducted on large dams, typically above 100m high. A large number of concrete dams in our country and in other parts of the world are less than 50m high. Most of these dams were usually designed using pseudo-static methods, ignoring the dynamic characteristics of the structure as well as the characteristics of the ground motion. Therefore, it is important to carry out investigations on seismic behavior this category of dam in order to assess and evaluate the safety of existing dams and improve the knowledge for different high dams to be constructed in the future. In this study, size effects on structural performance of concrete gravity dams subjected to near and far-fault ground motions are investigated including dam-water-foundation interaction. For this purpose, a benchmark problem proposed by ICOLD (International Committee on Large Dams) is chosen as a numerical application. Structural performance of the dam having five different heights is evaluated according to damage criterions in USACE (U.S. Army Corps of Engineers). It is decided according to their structural performance if non-linear analysis of the dams requires or not. The linear elastic dynamic analyses of the dams to near and far-fault ground motions are performed using the step-by-step integration technique. The integration time step is 0.0025 sec. The Rayleigh damping constants are calculated assuming 5% damping ratio. The program NONSAP modified for fluid-structure systems with the Lagrangian fluid finite element is employed in the response calculations.

Keywords: concrete gravity dams, Lagrangian approach, near and far-fault ground motion, USACE damage criterions

Procedia PDF Downloads 251
398 Spatial Variation of WRF Model Rainfall Prediction over Uganda

Authors: Isaac Mugume, Charles Basalirwa, Daniel Waiswa, Triphonia Ngailo

Abstract:

Rainfall is a major climatic parameter affecting many sectors such as health, agriculture and water resources. Its quantitative prediction remains a challenge to weather forecasters although numerical weather prediction models are increasingly being used for rainfall prediction. The performance of six convective parameterization schemes, namely the Kain-Fritsch scheme, the Betts-Miller-Janjic scheme, the Grell-Deveny scheme, the Grell-3D scheme, the Grell-Fretas scheme, the New Tiedke scheme of the weather research and forecast (WRF) model regarding quantitative rainfall prediction over Uganda is investigated using the root mean square error for the March-May (MAM) 2013 season. The MAM 2013 seasonal rainfall amount ranged from 200 mm to 900 mm over Uganda with northern region receiving comparatively lower rainfall amount (200–500 mm); western Uganda (270–550 mm); eastern Uganda (400–900 mm) and the lake Victoria basin (400–650 mm). A spatial variation in simulated rainfall amount by different convective parameterization schemes was noted with the Kain-Fritsch scheme over estimating the rainfall amount over northern Uganda (300–750 mm) but also presented comparable rainfall amounts over the eastern Uganda (400–900 mm). The Betts-Miller-Janjic, the Grell-Deveny, and the Grell-3D underestimated the rainfall amount over most parts of the country especially the eastern region (300–600 mm). The Grell-Fretas captured rainfall amount over the northern region (250–450 mm) but also underestimated rainfall over the lake Victoria Basin (150–300 mm) while the New Tiedke generally underestimated rainfall amount over many areas of Uganda. For deterministic rainfall prediction, the Grell-Fretas is recommended for rainfall prediction over northern Uganda while the Kain-Fritsch scheme is recommended over eastern region.

Keywords: convective parameterization schemes, March-May 2013 rainfall season, spatial variation of parameterization schemes over Uganda, WRF model

Procedia PDF Downloads 291
397 Analysis and Modeling of the Building’s Facades in Terms of Different Convection Coefficients

Authors: Enes Yasa, Guven Fidan

Abstract:

Building Simulation tools need to better evaluate convective heat exchanges between external air and wall surfaces. Previous analysis demonstrated the significant effects of convective heat transfer coefficient values on the room energy balance. Some authors have pointed out that large discrepancies observed between widely used building thermal models can be attributed to the different correlations used to calculate or impose the value of the convective heat transfer coefficients. Moreover, numerous researchers have made sensitivity calculations and proved that the choice of Convective Heat Transfer Coefficient values can lead to differences from 20% to 40% of energy demands. The thermal losses to the ambient from a building surface or a roof mounted solar collector represent an important portion of the overall energy balance and depend heavily on the wind induced convection. In an effort to help designers make better use of the available correlations in the literature for the external convection coefficients due to the wind, a critical discussion and a suitable tabulation is presented, on the basis of algebraic form of the coefficients and their dependence upon characteristic length and wind direction, in addition to wind speed. Many research works have been conducted since early eighties focused on the convection heat transfer problems inside buildings. In this context, a Computational Fluid Dynamics (CFD) program has been used to predict external convective heat transfer coefficients at external building surfaces. For the building facades model, effects of wind speed and temperature differences between the surfaces and the external air have been analyzed, showing different heat transfer conditions and coefficients. In order to provide further information on external convective heat transfer coefficients, a numerical work is presented in this paper, using a Computational Fluid Dynamics (CFD) commercial package (CFX) to predict convective heat transfer coefficients at external building surface.

Keywords: CFD in buildings, external convective heat transfer coefficients, building facades, thermal modelling

Procedia PDF Downloads 397
396 Computational Fluid Dynamics (CFD) Simulation of Transient Flow in a Rectangular Bubble Column Using a Coupled Discrete Phase Model (DPM) and Volume of Fluid (VOF) Model

Authors: Sonia Besbes, Mahmoud El Hajem, Habib Ben Aissia, Jean Yves Champagne, Jacques Jay

Abstract:

In this work, we present a computational study for the characterization of the flow in a rectangular bubble column. To simulate the dynamic characteristics of the flow, a three-dimensional transient numerical simulations based on a coupled discrete phase model (DPM) and Volume of Fluid (VOF) model are performed. Modeling of bubble column reactor is often carried out under the assumption of a flat liquid surface with a degassing boundary condition. However, the dynamic behavior of the top surface surmounting the liquid phase will to some extent influence the meandering oscillations of the bubble plume. Therefore it is important to capture the surface behavior, and the assumption of a flat surface may not be applicable. So, the modeling approach needs to account for a dynamic liquid surface induced by the rising bubble plume. The volume of fluid (VOF) model was applied for the liquid and top gas which both interacts with bubbles implemented with a discrete phase model. This model treats the bubbles as Lagrangian particles and the liquid and the top gas as Eulerian phases with a sharp interface. Two-way coupling between Eulerian phases and Lagrangian bubbles are accounted for in a single set continuous phase momentum equation for the mixture of the two Eulerian phases. The effect of gas flow rate on the dynamic and time-averaged flow properties was studied. The time averaged liquid velocity field predicted from simulations and from our previous PIV measurements shows that the liquid is entrained up flow in the wake of the bubbles and down flow near the walls. The simulated and measured vertical velocity profiles exhibit a reasonable agreement looking at the minimum velocity values near the walls and the maximum values at the column center.

Keywords: bubble column, computational fluid dynamics (CFD), coupled DPM and VOF model, hydrodynamics

Procedia PDF Downloads 356
395 Experimental and Numerical Analysis of Wood Pellet Breakage during Pneumatic Transport

Authors: Julian Jaegers, Siegmar Wirtz, Viktor Scherer

Abstract:

Wood pellets belong to the most established trade formats of wood-based fuels. Especially, because of the transportability and the storage properties, but also due to low moisture content, high energy density, and the homogeneous particle size and shape, wood pellets are well suited for power generation in power plants and for the use in automated domestic firing systems. Before they are thermally converted, wood pellets pass various transport and storage procedures. There they undergo different mechanical impacts, which leads to pellet breakage and abrasion and to an increase in fines. The fines lead to operational problems during storage, charging, and discharging of pellets, they can increase the risk of dust explosions and can lead to pollutant emissions during combustion. In the current work, the dependence of the formation of fines caused by breakage during pneumatic transport is analyzed experimentally and numerically. The focus lies on the influence of conveying velocity, pellet loading, pipe diameter, and the shape of pipe components like bends or couplings. A test rig has been built, which allows the experimental evaluation of the pneumatic transport varying the above-mentioned parameters. Two high-speed cameras are installed for the quantitative optical access to the particle-particle and particle-wall contacts. The particle size distribution of the bulk before and after a transport process is measured as well as the amount of fines produced. The experiments will be compared with results of corresponding DEM/CFD simulations to provide information on contact frequencies and forces. The contribution proposed will present experimental results and report on the status of the DEM/CFD simulations. The final goal of the project is to provide a better insight into pellet breakage during pneumatic transport and to develop guidelines ensuring a more gentle transport.

Keywords: DEM/CFD-simulation of pneumatic conveying, mechanical impact on wood pellets during transportation, pellet breakage, pneumatic transport of wood pellets

Procedia PDF Downloads 125
394 Statistical Correlation between Ply Mechanical Properties of Composite and Its Effect on Structure Reliability

Authors: S. Zhang, L. Zhang, X. Chen

Abstract:

Due to the large uncertainty on the mechanical properties of FRP (fibre reinforced plastic), the reliability evaluation of FRP structures are currently receiving much attention in industry. However, possible statistical correlation between ply mechanical properties has been so far overlooked, and they are mostly assumed to be independent random variables. In this study, the statistical correlation between ply mechanical properties of uni-directional and plain weave composite is firstly analyzed by a combination of Monte-Carlo simulation and finite element modeling of the FRP unit cell. Large linear correlation coefficients between the in-plane mechanical properties are observed, and the correlation coefficients are heavily dependent on the uncertainty of the fibre volume ratio. It is also observed that the correlation coefficients related to Poisson’s ratio are negative while others are positive. To experimentally achieve the statistical correlation coefficients between in-plane mechanical properties of FRP, all concerned in-plane mechanical properties of the same specimen needs to be known. In-plane shear modulus of FRP is experimentally derived by the approach suggested in the ASTM standard D5379M. Tensile tests are conducted using the same specimens used for the shear test, and due to non-uniform tensile deformation a modification factor is derived by a finite element modeling. Digital image correlation is adopted to characterize the specimen non-uniform deformation. The preliminary experimental results show a good agreement with the numerical analysis on the statistical correlation. Then, failure probability of laminate plates is calculated in cases considering and not considering the statistical correlation, using the Monte-Carlo and Markov Chain Monte-Carlo methods, respectively. The results highlight the importance of accounting for the statistical correlation between ply mechanical properties to achieve accurate failure probability of laminate plates. Furthermore, it is found that for the multi-layer laminate plate, the statistical correlation between the ply elastic properties significantly affects the laminate reliability while the effect of statistical correlation between the ply strength is minimal.

Keywords: failure probability, FRP, reliability, statistical correlation

Procedia PDF Downloads 132
393 Centrifuge Modelling Approach on Sysmic Loading Analysis of Clay: A Geotechnical Study

Authors: Anthony Quansah, Tresor Ntaryamira, Shula Mushota

Abstract:

Models for geotechnical centrifuge testing are usually made from re-formed soil, allowing for comparisons with naturally occurring soil deposits. However, there is a fundamental omission in this process because the natural soil is deposited in layers creating a unique structure. Nonlinear dynamics of clay material deposit is an essential part of changing the attributes of ground movements when subjected to solid seismic loading, particularly when diverse intensification conduct of speeding up and relocation are considered. The paper portrays a review of axis shaking table tests and numerical recreations to explore the offshore clay deposits subjected to seismic loadings. These perceptions are accurately reenacted by DEEPSOIL with appropriate soil models and parameters reviewed from noteworthy centrifuge modeling researches. At that point, precise 1-D site reaction investigations are performed on both time and recurrence spaces. The outcomes uncover that for profound delicate clay is subjected to expansive quakes, noteworthy increasing speed lessening may happen close to the highest point of store because of soil nonlinearity and even neighborhood shear disappointment; nonetheless, huge enhancement of removal at low frequencies are normal in any case the forces of base movements, which proposes that for dislodging touchy seaward establishments and structures, such intensified low-recurrence relocation reaction will assume an essential part in seismic outline. This research shows centrifuge as a tool for creating a layered sample important for modelling true soil behaviour (such as permeability) which is not identical in all directions. Currently, there are limited methods for creating layered soil samples.

Keywords: seismic analysis, layered modeling, terotechnology, finite element modeling

Procedia PDF Downloads 131
392 Influence of HDI in the Spread of RSV Bronchiolitis in Children Aged 0 to 2 Years

Authors: Chloé Kernaléguen, Laura Kundun, Tessie Lery, Ryan Laleg, Zhangyun Tan

Abstract:

This study explores global disparities in respiratory syncytial virus (RSV) bronchiolitis incidence among children aged 0-2 years, focusing on the human development index (HDI) as a key determinant. RSV bronchiolitis poses a significant health risk to young children, influenced by factors, including socio-economic conditions captured by the HDI. Through a comprehensive systematic review and dataset selection (Switzerland, Brazil, United States of America), we formulated an HDI-SEIRS numerical model within the SEIRS framework. Results show variations in RSV bronchiolitis dynamics across countries, emphasizing the influence of HDI. Modelling reveals a correlation between higher HDI and increased bronchiolitis spread, notably in the USA and Switzerland. The ratios HDIcountry over HDImax strengthen this association, while climate disparities contribute to variations, especially in colder climates like the USA and Switzerland. The study raises the hypothesis of an indirect link between higher HDI and more frequent bronchiolitis, underlining the need for nuanced understanding. Factors like improved healthcare access, population density, mobility, and social behaviors in higher HDI countries might contribute to unexpected trends. Limitations include dataset quality and restricted RSV bronchiolitis data. Future research should encompass diverse HDI datasets to refine HDI's role in bronchiolitis dynamics. In conclusion, HDI-SEIRS models offer insights into factors influencing RSV bronchiolitis spread. While HDI is a significant indicator, its impact is indirect, necessitating a holistic approach to effective public health policies. This analysis sets the stage for further investigations into multifaceted interactions shaping bronchiolitis dynamics in diverse socio-economic contexts.

Keywords: bronchiolitis propagation, HDI influence, respiratory syncytial virus, SEIRS model

Procedia PDF Downloads 30
391 Laminar Separation Bubble Prediction over an Airfoil Using Transition SST Turbulence Model on Moderate Reynolds Number

Authors: Younes El Khchine, Mohammed Sriti

Abstract:

A parametric study has been conducted to analyse the flow around S809 airfoil of a wind turbine in order to better understand the characteristics and effects of laminar separation bubble (LSB) on aerodynamic design for maximizing wind turbine efficiency. Numerical simulations were performed at low Reynolds numbers by solving the Unsteady Reynolds Averaged Navier-Stokes (URANS) equations based on C-type structural mesh and using the γ-Reθt turbulence model. A two-dimensional study was conducted for the chord Reynolds number of 1×10⁵ and angles of attack (AoA) between 0 and 20.15 degrees. The simulation results obtained for the aerodynamic coefficients at various angles of attack (AoA) were compared with XFoil results. A sensitivity study was performed to examine the effects of Reynolds number and free-stream turbulence intensity on the location and length of the laminar separation bubble and the aerodynamic performances of wind turbines. The results show that increasing the Reynolds number leads to a delay in the laminar separation on the upper surface of the airfoil. The increase in Reynolds number leads to an accelerated transition process, and the turbulent reattachment point moves closer to the leading edge owing to an earlier reattachment of the turbulent shear layer. This leads to a considerable reduction in the length of the separation bubble as the Reynolds number is increased. The increase in the level of free-stream turbulence intensity leads to a decrease in separation bubble length and an increase in the lift coefficient while having negligible effects on the stall angle. When the AoA increased, the bubble on the suction airfoil surface was found to move upstream to the leading edge of the airfoil, that causes earlier laminar separation.

Keywords: laminar separation bubble, turbulence intensity, S809 airfoil, transition model, Reynolds number

Procedia PDF Downloads 50
390 Simulation of Nano Drilling Fluid in an Extended Reach Well

Authors: Lina Jassim, Robiah Yunus, , Amran Salleh

Abstract:

Since nano particles have been assessed as thermo stabilizer, rheology enhancer, and ecology safer, nano drilling fluid can be utilized to overcome the complexity of hole cleaning in highly deviated interval of an extended reach wells. The eccentric annular flow is a flow with special considerations; it forms a vital part of drilling fluid flow analysis in an extended reach wells. In this work eccentric, dual phase flow (different types of rock cuttings with different size were blended with nano fluid) through horizontal well (an extended reach well) are simulated with the help of CFD, Fluent package. In horizontal wells flow occurs in an adverse pressure gradient condition, that makes the particle inside it susceptible to reversed flow. Thus the flow has to be analyzed in a three dimensional manner. Moreover the non-Newtonian behavior of the nano fluid makes the problem really challenging in numerical and physical aspects. The primary objective of the work is to establish a relationship between different flow characteristics with the speed of inner wall rotation. The nano fluid flow characteristics include swirl of flow and its effect on wellbore cleaning ability , wall shear stress and its effect on fluid viscosity to suspend and carry the rock cuttings, axial velocity and its effect on transportation of rock cuttings to the wellbore surface, finally pressure drop and its effect on managed of drilling pressure. The importance of eccentricity of the inner cylinder has to be analyzed as a part of it. Practical horizontal well flows contain a good amount of particles (rock cuttings) with moderate axial velocity, which verified nano drilling fluid ability of carrying and transferring cuttings particles in the highly deviated eccentric annular flow is also of utmost importance.

Keywords: Non-Newtonian, dual phase, eccentric annular, CFD

Procedia PDF Downloads 410
389 Effect of Different Thermomechanical Cycles on Microstructure of AISI 4140 Steel

Authors: L.L. Costa, A. M. G. Brito, S. Khan, L. Schaeffer

Abstract:

Microstructure resulting from the forging process is studied as a function of variables such as temperature, deformation, austenite grain size and cooling rate. The purpose of this work is to study the thermomechanical behavior of DIN 42CrMo4 (AISI 4140) steel maintained at the temperatures of 900°, 1000°, 1100° and 1200°C for the austenization times of 22, 66 and 200 minutes each and subsequently forged. These samples were quenched in water in order to study the austenite grain and to investigate the microstructure instead of quenching the annealed samples after forging they were cooled down naturally in the air. The morphologies and properties of the materials such as hardness; prepared by these two different routes have been compared. In addition to the forging experiments, the numerical simulation using the finite element model (FEM), microhardness profiles and metallography images have been presented. Forging force vs position curves has been compared with metallographic results for each annealing condition. The microstructural phenomena resulting from the hot conformation proved that longer austenization time and higher temperature decrease the forging force in the curves. The complete recrystallization phenomenon (static, dynamic and meta dynamic) was observed at the highest temperature and longest time i.e., the samples austenized for 200 minutes at 1200ºC. However, higher hardness of the quenched samples was obtained when the temperature was 900ºC for 66 minutes. The phases observed in naturally cooled samples were exclusively ferrite and perlite, but the continuous cooling diagram indicates the presence of austenite and bainite. The morphology of the phases of naturally cooled samples has shown that the phase arrangement and the previous austenitic grain size are the reasons to high hardness in obtained samples when temperature were 900ºC and 1100ºC austenization times of 22 and 66 minutes, respectively.

Keywords: austenization time, thermomechanical effects, forging process, steel AISI 4140

Procedia PDF Downloads 121
388 A Case Study on Performance of Isolated Bridges under Near-Fault Ground Motion

Authors: Daniele Losanno, H. A. Hadad, Giorgio Serino

Abstract:

This paper presents a numerical investigation on the seismic performance of a benchmark bridge with different optimal isolation systems under near fault ground motion. Usually, very large displacements make seismic isolation an unfeasible solution due to boundary conditions, especially in case of existing bridges or high risk seismic regions. Hence, near-fault ground motions are most likely to affect either structures with long natural period range like isolated structures or structures sensitive to velocity content such as viscously damped structures. The work is aimed at analyzing the seismic performance of a three-span continuous bridge designed with different isolation systems having different levels of damping. The case study was analyzed in different configurations including: (a) simply supported, (b) isolated with lead rubber bearings (LRBs), (c) isolated with rubber isolators and 10% classical damping (HDLRBs), and (d) isolated with rubber isolators and 70% supplemental damping ratio. Case (d) represents an alternative control strategy that combines the effect of seismic isolation with additional supplemental damping trying to take advantages from both solutions. The bridge is modeled in SAP2000 and solved by time history direct-integration analyses under a set of six recorded near-fault ground motions. In addition to this, a set of analysis under Italian code provided seismic action is also conducted, in order to evaluate the effectiveness of the suggested optimal control strategies under far field seismic action. Results of the analysis demonstrated that an isolated bridge equipped with HDLRBs and a total equivalent damping ratio of 70% represents a very effective design solution for both mitigation of displacement demand at the isolation level and base shear reduction in the piers also in case of near fault ground motion.

Keywords: isolated bridges, near-fault motion, seismic response, supplemental damping, optimal design

Procedia PDF Downloads 260
387 Applicability of Linearized Model of Synchronous Generator for Power System Stability Analysis

Authors: J. Ritonja, B. Grcar

Abstract:

For the synchronous generator simulation and analysis and for the power system stabilizer design and synthesis a mathematical model of synchronous generator is needed. The model has to accurately describe dynamics of oscillations, while at the same time has to be transparent enough for an analysis and sufficiently simplified for design of control system. To study the oscillations of the synchronous generator against to the rest of the power system, the model of the synchronous machine connected to an infinite bus through a transmission line having resistance and inductance is needed. In this paper, the linearized reduced order dynamic model of the synchronous generator connected to the infinite bus is presented and analysed in details. This model accurately describes dynamics of the synchronous generator only in a small vicinity of an equilibrium state. With the digression from the selected equilibrium point the accuracy of this model is decreasing considerably. In this paper, the equations’ descriptions and the parameters’ determinations for the linearized reduced order mathematical model of the synchronous generator are explained and summarized and represent the useful origin for works in the areas of synchronous generators’ dynamic behaviour analysis and synchronous generator’s control systems design and synthesis. The main contribution of this paper represents the detailed analysis of the accuracy of the linearized reduced order dynamic model in the entire synchronous generator’s operating range. Borders of the areas where the linearized reduced order mathematical model represents accurate description of the synchronous generator’s dynamics are determined with the systemic numerical analysis. The thorough eigenvalue analysis of the linearized models in the entire operating range is performed. In the paper, the parameters of the linearized reduced order dynamic model of the laboratory salient poles synchronous generator were determined and used for the analysis. The theoretical conclusions were confirmed with the agreement of experimental and simulation results.

Keywords: eigenvalue analysis, mathematical model, power system stability, synchronous generator

Procedia PDF Downloads 222
386 Determination of Mechanical Properties of Adhesives via Digital Image Correlation (DIC) Method

Authors: Murat Demir Aydin, Elanur Celebi

Abstract:

Adhesively bonded joints are used as an alternative to traditional joining methods due to the important advantages they provide. The most important consideration in the use of adhesively bonded joints is that these joints have appropriate requirements for their use in terms of safety. In order to ensure control of this condition, damage analysis of the adhesively bonded joints should be performed by determining the mechanical properties of the adhesives. When the literature is investigated; it is generally seen that the mechanical properties of adhesives are determined by traditional measurement methods. In this study, to determine the mechanical properties of adhesives, the Digital Image Correlation (DIC) method, which can be an alternative to traditional measurement methods, has been used. The DIC method is a new optical measurement method which is used to determine the parameters of displacement and strain in an appropriate and correct way. In this study, tensile tests of Thick Adherent Shear Test (TAST) samples formed using DP410 liquid structural adhesive and steel materials and bulk tensile specimens formed using and DP410 liquid structural adhesive was performed. The displacement and strain values of the samples were determined by DIC method and the shear stress-strain curves of the adhesive for TAST specimens and the tensile strain curves of the bulk adhesive specimens were obtained. Various methods such as numerical methods are required as conventional measurement methods (strain gauge, mechanic extensometer, etc.) are not sufficient in determining the strain and displacement values of the very thin adhesive layer such as TAST samples. As a result, the DIC method removes these requirements and easily achieves displacement measurements with sufficient accuracy.

Keywords: structural adhesive, adhesively bonded joints, digital image correlation, thick adhered shear test (TAST)

Procedia PDF Downloads 294
385 A Numerical Model for Simulation of Blood Flow in Vascular Networks

Authors: Houman Tamaddon, Mehrdad Behnia, Masud Behnia

Abstract:

An accurate study of blood flow is associated with an accurate vascular pattern and geometrical properties of the organ of interest. Due to the complexity of vascular networks and poor accessibility in vivo, it is challenging to reconstruct the entire vasculature of any organ experimentally. The objective of this study is to introduce an innovative approach for the reconstruction of a full vascular tree from available morphometric data. Our method consists of implementing morphometric data on those parts of the vascular tree that are smaller than the resolution of medical imaging methods. This technique reconstructs the entire arterial tree down to the capillaries. Vessels greater than 2 mm are obtained from direct volume and surface analysis using contrast enhanced computed tomography (CT). Vessels smaller than 2mm are reconstructed from available morphometric and distensibility data and rearranged by applying Murray’s Laws. Implementation of morphometric data to reconstruct the branching pattern and applying Murray’s Laws to every vessel bifurcation simultaneously, lead to an accurate vascular tree reconstruction. The reconstruction algorithm generates full arterial tree topography down to the first capillary bifurcation. Geometry of each order of the vascular tree is generated separately to minimize the construction and simulation time. The node-to-node connectivity along with the diameter and length of every vessel segment is established and order numbers, according to the diameter-defined Strahler system, are assigned. During the simulation, we used the averaged flow rate for each order to predict the pressure drop and once the pressure drop is predicted, the flow rate is corrected to match the computed pressure drop for each vessel. The final results for 3 cardiac cycles is presented and compared to the clinical data.

Keywords: blood flow, morphometric data, vascular tree, Strahler ordering system

Procedia PDF Downloads 247
384 Drug Delivery to Solid Tumor: Effect of Dynamic Capillary Network Induced by Tumor

Authors: Mostafa Sefidgar, Kaamran Raahemifar, Hossein Bazmara, Madjid Soltani

Abstract:

The computational methods provide condition for investigation related to the process of drug delivery, such as convection and diffusion of drug in extracellular matrices, and drug extravasation from microvascular. The information of this process clarifies the mechanisms of drug delivery from the injection site to absorption by a solid tumor. In this study, an advanced numerical method is used to solve fluid flow and solute transport equations simultaneously to show how capillary network structure induced by tumor affects drug delivery. The effect of heterogeneous capillary network induced by tumor on interstitial fluid flow and drug delivery is investigated by this multi scale method. The sprouting angiogenesis model is used for generating capillary network induced by tumor. Fluid flow governing equations are implemented to calculate blood flow through the tumor-induced capillary network and fluid flow in normal and tumor tissues. The Starling’s law is used for closing this system of equations and coupling the intravascular and extravascular flows. Finally, convection-diffusion-reaction equation is used to simulate drug delivery. The dynamic approach which changes the capillary network structure based on signals sent by hemodynamic and metabolic stimuli is used in this study for more realistic assumption. The study indicates that drug delivery to solid tumors depends on the tumor induced capillary network structure. The dynamic approach generates the irregular capillary network around the tumor and predicts a higher interstitial pressure in the tumor region. This elevated interstitial pressure with irregular capillary network leads to a heterogeneous distribution of drug in the tumor region similar to in vivo observations. The investigation indicates that the drug transport properties have a significant role against the physiological barrier of drug delivery to a solid tumor.

Keywords: solid tumor, physiological barriers to drug delivery, angiogenesis, microvascular network, solute transport

Procedia PDF Downloads 287
383 Computational Modeling of Load Limits of Carbon Fibre Composite Laminates Subjected to Low-Velocity Impact Utilizing Convolution-Based Fast Fourier Data Filtering Algorithms

Authors: Farhat Imtiaz, Umar Farooq

Abstract:

In this work, we developed a computational model to predict ply level failure in impacted composite laminates. Data obtained from physical testing from flat and round nose impacts of 8-, 16-, 24-ply laminates were considered. Routine inspections of the tested laminates were carried out to approximate ply by ply inflicted damage incurred. Plots consisting of load–time, load–deflection, and energy–time history were drawn to approximate the inflicted damages. Impact test generated unwanted data logged due to restrictions on testing and logging systems were also filtered. Conventional filters (built-in, statistical, and numerical) reliably predicted load thresholds for relatively thin laminates such as eight and sixteen ply panels. However, for relatively thick laminates such as twenty-four ply laminates impacted by flat nose impact generated clipped data which can just be de-noised using oscillatory algorithms. The literature search reveals that modern oscillatory data filtering and extrapolation algorithms have scarcely been utilized. This investigation reports applications of filtering and extrapolation of the clipped data utilising fast Fourier Convolution algorithm to predict load thresholds. Some of the results were related to the impact-induced damage areas identified with Ultrasonic C-scans and found to be in acceptable agreement. Based on consistent findings, utilizing of modern data filtering and extrapolation algorithms to data logged by the existing machines has efficiently enhanced data interpretations without resorting to extra resources. The algorithms could be useful for impact-induced damage approximations of similar cases.

Keywords: fibre reinforced laminates, fast Fourier algorithms, mechanical testing, data filtering and extrapolation

Procedia PDF Downloads 115
382 Numerical Solution of Portfolio Selecting Semi-Infinite Problem

Authors: Alina Fedossova, Jose Jorge Sierra Molina

Abstract:

SIP problems are part of non-classical optimization. There are problems in which the number of variables is finite, and the number of constraints is infinite. These are semi-infinite programming problems. Most algorithms for semi-infinite programming problems reduce the semi-infinite problem to a finite one and solve it by classical methods of linear or nonlinear programming. Typically, any of the constraints or the objective function is nonlinear, so the problem often involves nonlinear programming. An investment portfolio is a set of instruments used to reach the specific purposes of investors. The risk of the entire portfolio may be less than the risks of individual investment of portfolio. For example, we could make an investment of M euros in N shares for a specified period. Let yi> 0, the return on money invested in stock i for each dollar since the end of the period (i = 1, ..., N). The logical goal here is to determine the amount xi to be invested in stock i, i = 1, ..., N, such that we maximize the period at the end of ytx value, where x = (x1, ..., xn) and y = (y1, ..., yn). For us the optimal portfolio means the best portfolio in the ratio "risk-return" to the investor portfolio that meets your goals and risk ways. Therefore, investment goals and risk appetite are the factors that influence the choice of appropriate portfolio of assets. The investment returns are uncertain. Thus we have a semi-infinite programming problem. We solve a semi-infinite optimization problem of portfolio selection using the outer approximations methods. This approach can be considered as a developed Eaves-Zangwill method applying the multi-start technique in all of the iterations for the search of relevant constraints' parameters. The stochastic outer approximations method, successfully applied previously for robotics problems, Chebyshev approximation problems, air pollution and others, is based on the optimal criteria of quasi-optimal functions. As a result we obtain mathematical model and the optimal investment portfolio when yields are not clear from the beginning. Finally, we apply this algorithm to a specific case of a Colombian bank.

Keywords: outer approximation methods, portfolio problem, semi-infinite programming, numerial solution

Procedia PDF Downloads 280
381 Numerical Investigation of Gas Leakage in RCSW-Soil Combinations

Authors: Mahmoud Y. M. Ahmed, Ahmed Konsowa, Mostafa Sami, Ayman Mosallam

Abstract:

Fukushima nuclear accident (Japan 2011) has drawn attention to the issue of gas leakage from hazardous facilities through building boundaries. The rapidly increasing investments in nuclear stations have made the ability to predict, and prevent, gas leakage a rather crucial issue both environmentally and economically. Leakage monitoring for underground facilities is rather complicated due to the combination of Reinforced Concrete Shear Wall (RCSW) and soil. In the framework of a recent research conducted by the authors, the gas insulation capabilities of RCSW-soil combination have been investigated via a lab-scale experimental work. Despite their accuracy, experimental investigations are expensive, time-consuming, hazardous, and lack for flexibility. Numerically simulating the gas leakage as a fluid flow problem based on Computational Fluid Dynamics (CFD) modeling approach can provide a potential alternative. This novel implementation of CFD approach is the topic of the present paper. The paper discusses the aspects of modeling the gas flow through porous media that resemble the RCSW both isolated and combined with the normal soil. A commercial CFD package is utilized in simulating this fluid flow problem. A fixed RCSW layer thickness is proposed, air is taken as the leaking gas, whereas the soil layer is represented as clean sand with variable properties. The variable sand properties include sand layer thickness, fine fraction ratio, and moisture content. The CFD simulation results almost demonstrate what has been found experimentally. A soil layer attached next to a cracked reinforced concrete section plays a significant role in reducing the gas leakage from that cracked section. This role is found to be strongly dependent on the soil specifications.

Keywords: RCSW, gas leakage, Pressure Decay Method, hazardous underground facilities, CFD

Procedia PDF Downloads 392
380 Numerical Modelling of 3-D Fracture Propagation and Damage Evolution of an Isotropic Heterogeneous Rock with a Pre-Existing Surface Flaw under Uniaxial Compression

Authors: S. Mondal, L. M. Olsen-Kettle, L. Gross

Abstract:

Fracture propagation and damage evolution are extremely important for many industrial applications including mining industry, composite materials, earthquake simulations, hydraulic fracturing. The influence of pre-existing flaws and rock heterogeneity on the processes and mechanisms of rock fracture has important ramifications in many mining and reservoir engineering applications. We simulate the damage evolution and fracture propagation in an isotropic sandstone specimen containing a pre-existing 3-D surface flaw in different configurations under uniaxial compression. We apply a damage model based on the unified strength theory and solve the solid deformation and damage evolution equations using the Finite Element Method (FEM) with tetrahedron elements on unstructured meshes through the simulation software, eScript. Unstructured meshes provide higher geometrical flexibility and allow a more accurate way to model the varying flaw depth, angle, and length through locally adapted FEM meshes. The heterogeneity of rock is considered by initializing material properties using a Weibull distribution sampled over a cubic grid. In our model, we introduce a length scale related to the rock heterogeneity which is independent of the mesh size. We investigate the effect of parameters including the heterogeneity of the elastic moduli and geometry of the single flaw in the stress strain response. The generation of three typical surface cracking patterns, called wing cracks, anti-wing cracks and far-field cracks were identified, and these depend on the geometry of the pre-existing surface flaw. This model results help to advance our understanding of fracture and damage growth in heterogeneous rock with the aim to develop fracture simulators for different industry applications.

Keywords: finite element method, heterogeneity, isotropic damage, uniaxial compression

Procedia PDF Downloads 193
379 Combining the Fictitious Stress Method and Displacement Discontinuity Method in Solving Crack Problems in Anisotropic Material

Authors: Bahatti̇n Ki̇mençe, Uğur Ki̇mençe

Abstract:

In this study, the purpose of obtaining the influence functions of the displacement discontinuity in an anisotropic elastic medium is to produce the boundary element equations. A Displacement Discontinuous Method formulation (DDM) is presented with the aim of modeling two-dimensional elastic fracture problems. This formulation is found by analytical integration of the fundamental solution along a straight-line crack. With this purpose, Kelvin's fundamental solutions for anisotropic media on an infinite plane are used to form dipoles from singular loads, and the various combinations of the said dipoles are used to obtain the influence functions of displacement discontinuity. This study introduces a technique for coupling Fictitious Stress Method (FSM) and DDM; the reason for applying this technique to some examples is to demonstrate the effectiveness of the proposed coupling method. In this study, displacement discontinuity equations are obtained by using dipole solutions calculated with known singular force solutions in an anisotropic medium. The displacement discontinuities method obtained from the solutions of these equations and the fictitious stress methods is combined and compared with various examples. In this study, one or more crack problems with various geometries in rectangular plates in finite and infinite regions, under the effect of tensile stress with coupled FSM and DDM in the anisotropic environment, were examined, and the effectiveness of the coupled method was demonstrated. Since crack problems can be modeled more easily with DDM, it has been observed that the use of DDM has increased recently. In obtaining the displacement discontinuity equations, Papkovitch functions were used in Crouch, and harmonic functions were chosen to satisfy various boundary conditions. A comparison is made between two indirect boundary element formulations, DDM, and an extension of FSM, for solving problems involving cracks. Several numerical examples are presented, and the outcomes are contrasted to existing analytical or reference outs.

Keywords: displacement discontinuity method, fictitious stress method, crack problems, anisotropic material

Procedia PDF Downloads 54
378 Effect of Loop Diameter, Height and Insulation on a High Temperature CO2 Based Natural Circulation Loop

Authors: S. Sadhu, M. Ramgopal, S. Bhattacharyya

Abstract:

Natural circulation loops (NCLs) are buoyancy driven flow systems without any moving components. NCLs have vast applications in geothermal, solar and nuclear power industry where reliability and safety are of foremost concern. Due to certain favorable thermophysical properties, especially near supercritical regions, carbon dioxide can be considered as an ideal loop fluid in many applications. In the present work, a high temperature NCL that uses supercritical carbon dioxide as loop fluid is analysed. The effects of relevant design and operating variables on loop performance are studied. The system operating under steady state is modelled taking into account the axial conduction through loop fluid and loop wall, and heat transfer with surroundings. The heat source is considered to be a heater with controlled heat flux and heat sink is modelled as an end heat exchanger with water as the external cold fluid. The governing equations for mass, momentum and energy conservation are normalized and are solved numerically using finite volume method. Results are obtained for a loop pressure of 90 bar with the power input varying from 0.5 kW to 6.0 kW. The numerical results are validated against the experimental results reported in the literature in terms of the modified Grashof number (Grm) and Reynolds number (Re). Based on the results, buoyancy and friction dominated regions are identified for a given loop. Parametric analysis has been done to show the effect of loop diameter, loop height, ambient temperature and insulation. The results show that for the high temperature loop, heat loss to surroundings affects the loop performance significantly. Hence this conjugate heat transfer between the loop and surroundings has to be considered in the analysis of high temperature NCLs.

Keywords: conjugate heat transfer, heat loss, natural circulation loop, supercritical carbon dioxide

Procedia PDF Downloads 214
377 Impact of Drainage Defect on the Railway Track Surface Deflections; A Numerical Investigation

Authors: Shadi Fathi, Moura Mehravar, Mujib Rahman

Abstract:

The railwaytransportation network in the UK is over 100 years old and is known as one of the oldest mass transit systems in the world. This aged track network requires frequent closure for maintenance. One of the main reasons for closure is inadequate drainage due to the leakage in the buried drainage pipes. The leaking water can cause localised subgrade weakness, which subsequently can lead to major ground/substructure failure.Different condition assessment methods are available to assess the railway substructure. However, the existing condition assessment methods are not able to detect any local ground weakness/damageand provide details of the damage (e.g. size and location). To tackle this issue, a hybrid back-analysis technique based on artificial neural network (ANN) and genetic algorithm (GA) has been developed to predict the substructurelayers’ moduli and identify any soil weaknesses. At first, afinite element (FE) model of a railway track section under Falling Weight Deflection (FWD) testing was developed and validated against field trial. Then a drainage pipe and various scenarios of the local defect/ soil weakness around the buried pipe with various geometriesand physical properties were modelled. The impact of the soil local weaknesson the track surface deflection wasalso studied. The FE simulations results were used to generate a database for ANN training, and then a GA wasemployed as an optimisation tool to optimise and back-calculate layers’ moduli and soil weakness moduli (ANN’s input). The hybrid ANN-GA back-analysis technique is a computationally efficient method with no dependency on seed modulus values. The modelcan estimate substructures’ layer moduli and the presence of any localised foundation weakness.

Keywords: finite element (FE) model, drainage defect, falling weight deflectometer (FWD), hybrid ANN-GA

Procedia PDF Downloads 130
376 FEM for Stress Reduction by Optimal Auxiliary Holes in a Loaded Plate with Elliptical Hole

Authors: Basavaraj R. Endigeri, S. G. Sarganachari

Abstract:

Steel is widely used in machine parts, structural equipment and many other applications. In many steel structural elements, holes of different shapes and orientations are made with a view to satisfy the design requirements. The presence of holes in steel elements creates stress concentration, which eventually reduce the mechanical strength of the structure. Therefore, it is of great importance to investigate the state of stress around the holes for the safety and properties design of such elements. By literature survey, it is known that till date, there is no analytical solution to reduce the stress concentration by providing auxiliary holes at a definite location and radii in a steel plate. The numerical method can be used to determine the optimum location and radii of auxiliary holes. In the present work plate with an elliptical hole, for a steel material subjected to uniaxial load is analyzed and the effect of stress concentration is graphically represented .The introduction of auxiliary holes at a optimum location and radii with its effect on stress concentration is also represented graphically. The finite element analysis package ANSYS 11.0 is used to analyse the steel plate. The analysis is carried out using a plane 42 element. Further the ANSYS optimization model is used to determine the location and radii for optimum values of auxiliary hole to reduce stress concentration. All the results for different diameter to plate width ratio are presented graphically. The results of this study are in the form of the graphs for determining the locations and diameter of optimal auxiliary holes. The graph of stress concentration v/s central hole diameter to plate width ratio. The Finite Elements results of the study indicates that the stress concentration effect of central elliptical hole in an uniaxial loaded plate can be reduced by introducing auxiliary holes on either side of the central circular hole.

Keywords: finite element method, optimization, stress concentration factor, auxiliary holes

Procedia PDF Downloads 426
375 A General Form of Characteristics Method Applied on Minimum Length Nozzles Design

Authors: Merouane Salhi, Mohamed Roudane, Abdelkader Kirad

Abstract:

In this work, we present a new form of characteristics method, which is a technique for solving partial differential equations. Typically, it applies to first-order equations; the aim of this method is to reduce a partial differential equation to a family of ordinary differential equations along which the solution can be integrated from some initial data. This latter developed under the real gas theory, because when the thermal and the caloric imperfections of a gas increases, the specific heat and their ratio do not remain constant anymore and start to vary with the gas parameters. The gas doesn’t stay perfect. Its state equation change and it becomes for a real gas. The presented equations of the characteristics remain valid whatever area or field of study. Here we need have inserted the developed Prandtl Meyer function in the mathematical system to find a new model when the effect of stagnation pressure is taken into account. In this case, the effects of molecular size and intermolecular attraction forces intervene to correct the state equation, the thermodynamic parameters and the value of Prandtl Meyer function. However, with the assumptions that Berthelot’s state equation accounts for molecular size and intermolecular force effects, expressions are developed for analyzing the supersonic flow for thermally and calorically imperfect gas. The supersonic parameters depend directly on the stagnation parameters of the combustion chamber. The resolution has been made by the finite differences method using the corrector predictor algorithm. As results, the developed mathematical model used to design 2D minimum length nozzles under effect of the stagnation parameters of fluid flow. A comparison for air with the perfect gas PG and high temperature models on the one hand and our results by the real gas theory on the other of nozzles shapes and characteristics are made.

Keywords: numerical methods, nozzles design, real gas, stagnation parameters, supersonic expansion, the characteristics method

Procedia PDF Downloads 217
374 Improving Fingerprinting-Based Localization System Using Generative Artificial Intelligence

Authors: Getaneh Berie Tarekegn

Abstract:

A precise localization system is crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. The most common method for providing continuous positioning services in outdoor environments is by using a global navigation satellite system (GNSS). Due to nonline-of-sight, multipath, and weather conditions, GNSS systems do not perform well in dense urban, urban, and suburban areas.This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a novel semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 39 cm, and more than 90% of the errors are less than 82 cm. That is, numerical results proved that, in comparison to traditional methods, the proposed SRCLoc method can significantly improve positioning performance and reduce radio map construction costs.

Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine

Procedia PDF Downloads 45
373 Streamlining Coastal Defense: Investigating the Impact of Seawall Geometry on Wave Loads

Authors: Ahmadreza Ebadati, Asaad Y. Shamseldin, Amin Ghadirian

Abstract:

Seawall geometry plays a crucial role in mitigating wave impacts, though detailed exploration of its manipulation is limited. This study delves into the effects of varying cross-shore seawall geometry on the dynamics of wave impacts, with a particular focus on vertical seawalls. Inspired by foundational insights linking seawall shape to hydraulic efficiency, this investigation centres on how alterations in seawall geometry can influence wave energy dissipation and subsequent wave impacts. The study investigates the 2D interaction of regular waves with a period of 2.1s with a vertical seawall and berm featuring small-scale cross-shore protrusions and recesses. Utilising OpenFOAM® simulations and a k-ω SST turbulence model, this investigation compares results to a base case simulation, which is partially calibrated with experimental data from a flume study. The analysis evaluates various geometric modifications, specifically interchanged protrusions and recesses at different heights and orientations along the seawall. Findings suggest that specific configurations, such as interchanged protrusions and recesses, can mitigate initial impact forces, while certain arrangements may intensify subsequent impacts. Key insights include the identification of geometry configurations that can effectively reduce the force impulse of slamming waves on coastal structures and potentially decrease the frequency and cost of seawall maintenance. This research contributes to the field by advancing the understanding of how seawall geometry influences wave forces and by providing actionable insights for the design of more resilient seawall structures. Further exploration of seawall geometry variation is recommended, advocating additional case studies to optimise designs tailored to specific coastal environments.

Keywords: seawall geometry, wave impact loads, numerical simulation, coastal engineering, wave-structure interaction

Procedia PDF Downloads 16
372 Analysis of Bridge-Pile Foundation System in Multi-layered Non-Linear Soil Strata Using Energy-Based Method

Authors: Arvan Prakash Ankitha, Madasamy Arockiasamy

Abstract:

The increasing demand for adopting pile foundations in bridgeshas pointed towardsthe need to constantly improve the existing analytical techniques for better understanding of the behavior of such foundation systems. This study presents a simplistic approach using the energy-based method to assess the displacement responses of piles subjected to general loading conditions: Axial Load, Lateral Load, and a Bending Moment. The governing differential equations and the boundary conditions for a bridge pile embedded in multi-layered soil strata subjected to the general loading conditions are obtained using the Hamilton’s principle employing variational principles and minimization of energies. The soil non-linearity has been incorporated through simple constitutive relationships that account for degradation of soil moduli with increasing strain values.A simple power law based on published literature is used where the soil is assumed to be nonlinear-elastic and perfectly plastic. A Tresca yield surface is assumed to develop the soil stiffness variation with different strain levels that defines the non-linearity of the soil strata. This numerical technique has been applied to a pile foundation in a two - layered soil strata for a pier supporting the bridge and solved using the software MATLAB R2019a. The analysis yields the bridge pile displacements at any depth along the length of the pile. The results of the analysis are in good agreement with the published field data and the three-dimensional finite element analysis results performed using the software ANSYS 2019R3. The methodology can be extended to study the response of the multi-strata soil supporting group piles underneath the bridge piers.

Keywords: pile foundations, deep foundations, multilayer soil strata, energy based method

Procedia PDF Downloads 108
371 Improvement of Environment and Climate Change Canada’s Gem-Hydro Streamflow Forecasting System

Authors: Etienne Gaborit, Dorothy Durnford, Daniel Deacu, Marco Carrera, Nathalie Gauthier, Camille Garnaud, Vincent Fortin

Abstract:

A new experimental streamflow forecasting system was recently implemented at the Environment and Climate Change Canada’s (ECCC) Canadian Centre for Meteorological and Environmental Prediction (CCMEP). It relies on CaLDAS (Canadian Land Data Assimilation System) for the assimilation of surface variables, and on a surface prediction system that feeds a routing component. The surface energy and water budgets are simulated with the SVS (Soil, Vegetation, and Snow) Land-Surface Scheme (LSS) at 2.5-km grid spacing over Canada. The routing component is based on the Watroute routing scheme at 1-km grid spacing for the Great Lakes and Nelson River watersheds. The system is run in two distinct phases: an analysis part and a forecast part. During the analysis part, CaLDAS outputs are used to force the routing system, which performs streamflow assimilation. In forecast mode, the surface component is forced with the Canadian GEM atmospheric forecasts and is initialized with a CaLDAS analysis. Streamflow performances of this new system are presented over 2019. Performances are compared to the current ECCC’s operational streamflow forecasting system, which is different from the new experimental system in many aspects. These new streamflow forecasts are also compared to persistence. Overall, the new streamflow forecasting system presents promising results, highlighting the need for an elaborated assimilation phase before performing the forecasts. However, the system is still experimental and is continuously being improved. Some major recent improvements are presented here and include, for example, the assimilation of snow cover data from remote sensing, a backward propagation of assimilated flow observations, a new numerical scheme for the routing component, and a new reservoir model.

Keywords: assimilation system, distributed physical model, offline hydro-meteorological chain, short-term streamflow forecasts

Procedia PDF Downloads 112