Search results for: learning assessment
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12270

Search results for: learning assessment

8700 A Comparative Study on Fish Raised with Feed Formulated with Various Organic Wastes and Commercial Feed

Authors: Charles Chijioke Dike, Hugh Clifford Chima Maduka, Chinwe A. Isibor

Abstract:

Fish is among the products consumed at a very high rate. In most countries of the world, fish are used as part of the daily meal. The high cost of commercial fish feeds in Africa has made it necessary the development of an alternative source of fish feed processing from organic waste. The objective of this research is to investigate the efficacy of fish feeds processed from various animal wastes in order to know whether those feeds shall be alternatives to commercial feeds. This work shall be carried out at the Research Laboratory Unit of the Department of Human Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, Nnamdi Azikiwe University (NAU), Nnewi Campus, Anambra State. The fingerlings to be used shall be gotten from the Agricultural Department of NAU, Awka, Anambra State, and allowed to acclimatize for 14 d. Animal and food wastes shall be gotten from Nnewi. The fish shall be grouped into 1-13 (Chicken manure only, cow dung only, pig manure only, chicken manure + yeast, cow dung + yeast, pig manure + yeast, chicken manure + other wastes + yeast, cow dung + other wastes + yeast, and pig manure + other wastes + yeast. Feed assessment shall be carried out by determining bulk density, feed water absorption, feed hardness, feed oil absorption, and feed water stability. The nutritional analysis shall be carried out on the feeds processed. The risk assessment shall be done on the fish by determining methylmercury (MeHg), polycyclic aromatic hydrocarbons (PAHs), and dichloro-diphenyl-trichloroethane (DDT) in the fish. The results from this study shall be analyzed statistically using SPSS statistical software, version 25. The hypothesis is that fish feeds processed from animal wastes are efficient in raising catfish. The outcome of this study shall provide the basis for the formulation of fish feeds from organic wastes.

Keywords: assessment, feeds, health risk, wastes

Procedia PDF Downloads 107
8699 The Training Demands of Nursing Assistants on Urinary Incontinence in Nursing Homes: A Mixed Methods Study

Authors: Lulu Liao, Huijing Chen, Yinan Zhao, Hongting Ning, Hui Feng

Abstract:

Urinary tract infection rate is an important index of care quality in nursing homes. The aim of the study is to understand the nursing assistant's current knowledge and attitudes of urinary incontinence and to explore related stakeholders' viewpoint about urinary incontinence training. This explanatory sequential study used Knowledge, Practice, and Attitude Model (KAP) and Adult Learning Theories, as the conceptual framework. The researchers collected data from 509 nursing assistants in sixteen nursing homes in Hunan province in China. The questionnaire survey was to assess the knowledge and attitude of urinary incontinence of nursing assistants. On the basis of quantitative research and combined with focus group, training demands were identified, which nurse managers should adopt to improve nursing assistants’ professional practice ability in urinary incontinence. Most nursing assistants held the poor knowledge (14.0 ± 4.18) but had positive attitudes (35.5 ± 3.19) toward urinary incontinence. There was a significant positive correlation between urinary incontinence knowledge and nursing assistants' year of work and educational level, urinary incontinence attitude, and education level (p < 0.001). Despite a general awareness of the importance of prevention of urinary tract infections, not all nurse managers fully valued the training in urinary incontinence compared with daily care training. And the nursing assistants required simple education resources to equip them with skills to address problem about urinary incontinence. The variety of learning methods also highlighted the need for educational materials, and nursing assistants had shown a strong interest in online learning. Related education material should be developed to meet the learning need of nurse assistants and provide suitable training method for planned quality improvement in urinary incontinence.

Keywords: mixed methods, nursing assistants, nursing homes, urinary incontinence

Procedia PDF Downloads 141
8698 Evaluation of the Efficiency of French Language Educational Software for Learners in Semnan Province, Iran

Authors: Alireza Hashemi

Abstract:

In recent decades, language teaching methodology has undergone significant changes due to the advent of computers and the growth of educational software. French language education has also benefited from these developments, and various software has been produced to facilitate the learning of this language. However, the question arises whether these software programs meet the educational needs of Iranian learners, particularly in Semnan Province. The aim of this study is to evaluate the efficiency and effectiveness of French language educational software for learners in Semnan Province, considering educational, cultural, and technical criteria. In this study, content analysis and performance evaluation methods were used to examine the educational software ‘Français Facile’. This software was evaluated based on criteria such as teaching methods, cultural compatibility, and technical features. To collect data, standardized questionnaires and semi-structured interviews with learners in Semnan Province were used. Additionally, the SPSS statistical software was employed for quantitative data analysis, and the thematic analysis method was used for qualitative data. The results indicated that the ‘Français Facile’ software has strengths such as providing diverse educational content and an interactive learning environment. However, some weaknesses include the lack of alignment of educational content with the learning culture of learners in Semnan Province and technical issues in software execution. Statistical data showed that 65% of learners were satisfied with the educational content, but 55% reported issues related to cultural alignment with their needs. This study indicates that to enhance the efficiency of French language educational software, there is a need to localize educational content and improve technical infrastructure. Producing locally adapted educational software can improve the quality of language learning and increase the motivation of learners in Semnan Province. This research emphasizes the importance of understanding the cultural and educational needs of learners in the development of educational software and recommends that developers of educational software pay special attention to these aspects.

Keywords: educational software, French language, Iran, learners in Semnan province

Procedia PDF Downloads 44
8697 Students' Perspectives about Humor and the Process of Learning Spanish as a Foreign Language

Authors: Samuel Marínez González

Abstract:

In the last decades, the studies about humor have been increasing significantly in all areas. In the field of education and, specially, in the second language teaching, most research has concentrated on the beneficial effects that the introduction of humor in the process of teaching and learning a foreign language, as well as its impact on teachers and students. In the following research, we will try to know the learners’ perspectives about humor and its use in the Spanish as a Foreign Language classes. In order to do this, a different range of students from the Spanish courses at the University of Cape Town will participate in a survey that will reveal their beliefs about the frequency of humor in their daily lives and their Spanish lessons, their reactions to humorous situations, and the main advantages or disadvantages, from their point of view, to the introduction of humor in the teaching of Spanish as a Foreign Language.

Keywords: education, foreign languages, humor, pedagogy, Spanish as a Foreign Language, students’ perceptions

Procedia PDF Downloads 342
8696 Integrating AI in Education: Enhancing Learning Processes and Personalization

Authors: Waleed Afandi

Abstract:

Artificial intelligence (AI) has rapidly transformed various sectors, including education. This paper explores the integration of AI in education, emphasizing its potential to revolutionize learning processes, enhance teaching methodologies, and personalize education. We examine the historical context of AI in education, current applications, and the potential challenges and ethical considerations associated with its implementation. By reviewing a wide range of literature, this study aims to provide a comprehensive understanding of how AI can be leveraged to improve educational outcomes and the future directions of AI-driven educational innovations. Additionally, the paper discusses the impact of AI on student engagement, teacher support, and administrative efficiency. Case studies highlighting successful AI applications in diverse educational settings are presented, showcasing the practical benefits and real-world implications. The analysis also addresses potential disparities in access to AI technologies and suggests strategies to ensure equitable implementation. Through a balanced examination of the promises and pitfalls of AI in education, this study seeks to inform educators, policymakers, and technologists about the optimal pathways for integrating AI to foster an inclusive, effective, and innovative educational environment.

Keywords: artificial intelligence, education, personalized learning, teaching methodologies, educational outcomes, AI applications, student engagement, teacher support, administrative efficiency, equity in education

Procedia PDF Downloads 38
8695 The Development and Evaluation of the Reliability and Validity of the Science Flow Experience Scale

Authors: Wen-Wei Chiang

Abstract:

In this study, the researcher developed a scale for use in measuring the degree to which high school students experience a state of flow. The researcher then verified its reliability and validity in an actual classroom setting. The ultimate objective was to identify feasible methods by which to promote the experience of a flow state among high school students engaged in the study of science. The nine indices identified in this study to assess the engagement of high school students focus primarily on the study of science-related topics; however, the principles on which they are based are applicable to a wide range of learning situations. Teachers must outline the goals of each lesson clearly and provide unambiguous feedback. They must also look for ways to make the lessons more fun and appealing.

Keywords: flow experience, positive psychology, questionnaire, science learning

Procedia PDF Downloads 121
8694 Development of Evolutionary Algorithm by Combining Optimization and Imitation Approach for Machine Learning in Gaming

Authors: Rohit Mittal, Bright Keswani, Amit Mithal

Abstract:

This paper provides a sense about the application of computational intelligence techniques used to develop computer games, especially car racing. For the deep sense and knowledge of artificial intelligence, this paper is divided into various sections that is optimization, imitation, innovation and combining approach of optimization and imitation. This paper is mainly concerned with combining approach which tells different aspects of using fitness measures and supervised learning techniques used to imitate aspects of behavior. The main achievement of this paper is based on modelling player behaviour and evolving new game content such as racing tracks as single car racing on single track.

Keywords: evolution algorithm, genetic, optimization, imitation, racing, innovation, gaming

Procedia PDF Downloads 648
8693 Low-Impact Development Strategies Assessment for Urban Design

Authors: Y. S. Lin, H. L. Lin

Abstract:

Climate change and land-use change caused by urban expansion increase the frequency of urban flooding. To mitigate the increase in runoff volume, low-impact development (LID) is a green approach for reducing the area of impervious surface and managing stormwater at the source with decentralized micro-scale control measures. However, the current benefit assessment and practical application of LID in Taiwan is still tending to be development plan in the community and building site scales. As for urban design, site-based moisture-holding capacity has been common index for evaluating LID’s effectiveness of urban design, which ignore the diversity, and complexity of the urban built environments, such as different densities, positive and negative spaces, volumes of building and so on. Such inflexible regulations not only probably make difficulty for most of the developed areas to implement, but also not suitable for every different types of built environments, make little benefits to some types of built environments. Looking toward to enable LID to strength the link with urban design to reduce the runoff in coping urban flooding, the research consider different characteristics of different types of built environments in developing LID strategy. Classify the built environments by doing the cluster analysis based on density measures, such as Ground Space Index (GSI), Floor Space Index (FSI), Floors (L), and Open Space Ratio (OSR), and analyze their impervious surface rates and runoff volumes. Simulate flood situations by using quasi-two-dimensional flood plain flow model, and evaluate the flood mitigation effectiveness of different types of built environments in different low-impact development strategies. The information from the results of the assessment can be more precisely implement in urban design. In addition, it helps to enact regulations of low-Impact development strategies in urban design more suitable for every different type of built environments.

Keywords: low-impact development, urban design, flooding, density measures

Procedia PDF Downloads 336
8692 Classification of Generative Adversarial Network Generated Multivariate Time Series Data Featuring Transformer-Based Deep Learning Architecture

Authors: Thrivikraman Aswathi, S. Advaith

Abstract:

As there can be cases where the use of real data is somehow limited, such as when it is hard to get access to a large volume of real data, we need to go for synthetic data generation. This produces high-quality synthetic data while maintaining the statistical properties of a specific dataset. In the present work, a generative adversarial network (GAN) is trained to produce multivariate time series (MTS) data since the MTS is now being gathered more often in various real-world systems. Furthermore, the GAN-generated MTS data is fed into a transformer-based deep learning architecture that carries out the data categorization into predefined classes. Further, the model is evaluated across various distinct domains by generating corresponding MTS data.

Keywords: GAN, transformer, classification, multivariate time series

Procedia PDF Downloads 133
8691 Learning Language through Story: Development of Storytelling Website Project for Amazighe Language Learning

Authors: Siham Boulaknadel

Abstract:

Every culture has its share of a rich history of storytelling in oral, visual, and textual form. The Amazigh language, as many languages, has its own which has entertained and informed across centuries and cultures, and its instructional potential continues to serve teachers. According to many researchers, listening to stories draws attention to the sounds of language and helps children develop sensitivity to the way language works. Stories including repetitive phrases, unique words, and enticing description encourage students to join in actively to repeat, chant, sing, or even retell the story. This kind of practice is important to language learners’ oral language development, which is believed to correlate completely with student’s academic success. Today, with the advent of multimedia, digital storytelling for instance can be a practical and powerful learning tool. It has the potential in transforming traditional learning into a world of unlimited imaginary environment. This paper reports on a research project on development of multimedia Storytelling Website using traditional Amazigh oral narratives called “tell me a story”. It is a didactic tool created for the learning of good moral values in an interactive multimedia environment combining on-screen text, graphics and audio in an enticing environment and enabling the positive values of stories to be projected. This Website developed in this study is based on various pedagogical approaches and learning theories deemed suitable for children age 8 to 9 year-old. The design and development of Website was based on a well-researched conceptual framework enabling users to: (1) re-play and share the stories in schools or at home, and (2) access the Website anytime and anywhere. Furthermore, the system stores the students work and activities over the system, allowing parents or teachers to monitor students’ works, and provide online feedback. The Website contains following main feature modules: Storytelling incorporates a variety of media such as audio, text and graphics in presenting the stories. It introduces the children to various kinds of traditional Amazigh oral narratives. The focus of this module is to project the positive values and images of stories using digital storytelling technique. Besides development good moral sense in children using projected positive images and moral values, it also allows children to practice their comprehending and listening skills. Reading module is developed based on multimedia material approach which offers the potential for addressing the challenges of reading instruction. This module is able to stimulate children and develop reading practice indirectly due to the tutoring strategies of scaffolding, self-explanation and hyperlinks offered in this module. Word Enhancement assists the children in understanding the story and appreciating the good moral values more efficiently. The difficult words or vocabularies are attached to present the explanation, which makes the children understand the vocabulary better. In conclusion, we believe that the interactive multimedia storytelling reveals an interesting and exciting tool for learning Amazigh. We plan to address some learning issues, in particularly the uses of activities to test and evaluate the children on their overall understanding of story and words presented in the learning modules.

Keywords: Amazigh language, e-learning, storytelling, language teaching

Procedia PDF Downloads 406
8690 Statistical Classification, Downscaling and Uncertainty Assessment for Global Climate Model Outputs

Authors: Queen Suraajini Rajendran, Sai Hung Cheung

Abstract:

Statistical down scaling models are required to connect the global climate model outputs and the local weather variables for climate change impact prediction. For reliable climate change impact studies, the uncertainty associated with the model including natural variability, uncertainty in the climate model(s), down scaling model, model inadequacy and in the predicted results should be quantified appropriately. In this work, a new approach is developed by the authors for statistical classification, statistical down scaling and uncertainty assessment and is applied to Singapore rainfall. It is a robust Bayesian uncertainty analysis methodology and tools based on coupling dependent modeling error with classification and statistical down scaling models in a way that the dependency among modeling errors will impact the results of both classification and statistical down scaling model calibration and uncertainty analysis for future prediction. Singapore data are considered here and the uncertainty and prediction results are obtained. From the results obtained, directions of research for improvement are briefly presented.

Keywords: statistical downscaling, global climate model, climate change, uncertainty

Procedia PDF Downloads 372
8689 Agenesis of the Corpus Callosum: The Role of Neuropsychological Assessment with Implications to Psychosocial Rehabilitation

Authors: Ron Dick, P. S. D. V. Prasadarao, Glenn Coltman

Abstract:

Agenesis of the corpus callosum (ACC) is a failure to develop corpus callosum - the large bundle of fibers of the brain that connects the two cerebral hemispheres. It can occur as a partial or complete absence of the corpus callosum. In the general population, its estimated prevalence rate is 1 in 4000 and a wide range of genetic, infectious, vascular, and toxic causes have been attributed to this heterogeneous condition. The diagnosis of ACC is often achieved by neuroimaging procedures. Though persons with ACC can perform normally on intelligence tests they generally present with a range of neuropsychological and social deficits. The deficit profile is characterized by poor coordination of motor movements, slow reaction time, processing speed and, poor memory. Socially, they present with deficits in communication, language processing, the theory of mind, and interpersonal relationships. The present paper illustrates the role of neuropsychological assessment with implications to psychosocial management in a case of agenesis of the corpus callosum. Method: A 27-year old left handed Caucasian male with a history of ACC was self-referred for a neuropsychological assessment to assist him in his employment options. Parents noted significant difficulties with coordination and balance at an early age of 2-3 years and he was diagnosed with dyspraxia at the age of 14 years. History also indicated visual impairment, hypotonia, poor muscle coordination, and delayed development of motor milestones. MRI scan indicated agenesis of the corpus callosum with ventricular morphology, widely spaced parallel lateral ventricles and mild dilatation of the posterior horns; it also showed colpocephaly—a disproportionate enlargement of the occipital horns of the lateral ventricles which might be affecting his motor abilities and visual defects. The MRI scan ruled out other structural abnormalities or neonatal brain injury. At the time of assessment, the subject presented with such problems as poor coordination, slowed processing speed, poor organizational skills and time management, and difficulty with social cues and facial expressions. A comprehensive neuropsychological assessment was planned and conducted to assist in identifying the current neuropsychological profile to facilitate the formulation of a psychosocial and occupational rehabilitation programme. Results: General intellectual functioning was within the average range and his performance on memory-related tasks was adequate. Significant visuospatial and visuoconstructional deficits were evident across tests; constructional difficulties were seen in tasks such as copying a complex figure, building a tower and manipulating blocks. Poor visual scanning ability and visual motor speed were evident. Socially, the subject reported heightened social anxiety, difficulty in responding to cues in the social environment, and difficulty in developing intimate relationships. Conclusion: Persons with ACC are known to present with specific cognitive deficits and problems in social situations. Findings from the current neuropsychological assessment indicated significant visuospatial difficulties, poor visual scanning and problems in social interactions. His general intellectual functioning was within the average range. Based on the findings from the comprehensive neuropsychological assessment, a structured psychosocial rehabilitation programme was developed and recommended.

Keywords: agenesis, callosum, corpus, neuropsychology, psychosocial, rehabilitation

Procedia PDF Downloads 278
8688 Traffic Analysis and Prediction Using Closed-Circuit Television Systems

Authors: Aragorn Joaquin Pineda Dela Cruz

Abstract:

Road traffic congestion is continually deteriorating in Hong Kong. The largest contributing factor is the increase in vehicle fleet size, resulting in higher competition over the utilisation of road space. This study proposes a project that can process closed-circuit television images and videos to provide real-time traffic detection and prediction capabilities. Specifically, a deep-learning model involving computer vision techniques for video and image-based vehicle counting, then a separate model to detect and predict traffic congestion levels based on said data. State-of-the-art object detection models such as You Only Look Once and Faster Region-based Convolutional Neural Networks are tested and compared on closed-circuit television data from various major roads in Hong Kong. It is then used for training in long short-term memory networks to be able to predict traffic conditions in the near future, in an effort to provide more precise and quicker overviews of current and future traffic conditions relative to current solutions such as navigation apps.

Keywords: intelligent transportation system, vehicle detection, traffic analysis, deep learning, machine learning, computer vision, traffic prediction

Procedia PDF Downloads 104
8687 Potential Ecological Risk Assessment of Selected Heavy Metals in Sediments of Tidal Flat Marsh, the Case Study: Shuangtai Estuary, China

Authors: Chang-Fa Liu, Yi-Ting Wang, Yuan Liu, Hai-Feng Wei, Lei Fang, Jin Li

Abstract:

Heavy metals in sediments can cause adverse ecological effects while it exceeds a given criteria. The present study investigated sediment environmental quality, pollutant enrichment, ecological risk, and source identification for copper, cadmium, lead, zinc, mercury, and arsenic in the sediments collected from tidal flat marsh of Shuangtai estuary, China. The arithmetic mean integrated pollution index, geometric mean integrated pollution index, fuzzy integrated pollution index, and principal component score were used to characterize sediment environmental quality; fuzzy similarity and geo-accumulation Index were used to evaluate pollutant enrichment; correlation matrix, principal component analysis, and cluster analysis were used to identify source of pollution; environmental risk index and potential ecological risk index were used to assess ecological risk. The environmental qualities of sediment are classified to very low degree of contamination or low contamination. The similar order to element background of soil in the Liaohe plain is region of Sanjiaozhou, Honghaitan, Sandaogou, Xiaohe by pollutant enrichment analysis. The source identification indicates that correlations are significantly among metals except between copper and cadmium. Cadmium, lead, zinc, mercury, and arsenic will be clustered in the same clustering as the first principal component. Copper will be clustered as second principal component. The environmental risk assessment level will be scaled to no risk in the studied area. The order of potential ecological risk is As > Cd > Hg > Cu > Pb > Zn.

Keywords: ecological risk assessment, heavy metals, sediment, marsh, Shuangtai estuary

Procedia PDF Downloads 353
8686 Use of Didactic Bibliographic Resources to Improve the Teaching and Learning Processes of Animal Reproduction in Veterinary Science

Authors: Yasser Y. Lenis, Amy Jo Montgomery, Diego F. Carrillo-Gonzalez

Abstract:

Introduction: The use of didactic instruments in different learning environments plays a pivotal role in enhancing the level of knowledge in veterinary science students. The direct instruction of basic animal reproduction concepts in students enrolled in veterinary medicine programs allows them to elucidate the biological and molecular mechanisms that perpetuate the animal species in an ecosystem. Therefore, universities must implement didactic strategies that facilitate the teaching and learning processes for students and, in turn, enrich learning environments. Objective: to evaluate the effect of the use of a didactic textbook on the level of theoretical knowledge in embryo-maternal recognition for veterinary medicine students. Methods: the participants (n=24) were divided into two experimental groups: control (Ctrl) and treatment (Treat). Both groups received 4 hours of theoretical training regarding the basic concepts in bovine embryo-maternal recognition. However, the Treat group was also exposed to a guided lecture and the activity play-to-learn from a cow reproduction didactic textbook. A pre-test and a post-test were applied to assess the prior and subsequent knowledge in the participants. Descriptive statistics were applied to identify the success rates for each of the tests. Afterwards, a repeated measures model was applied where the effect of the intervention was considered. Results: no significant difference (p>0,05) was observed in the number of right answers for groups Ctrl (54,2%±12,7) and Treat (40,8%±16,8) in the pre-test. There was no difference (p>0,05) compering the number of right answers in Ctrl pre-test (54,2%±12,7) and post-test (60,8±18,8). However, the Treat group showed a significant (p>0,05) difference in the number of right answers when comparing pre-test (40,8%±16,8) and post-test (71,7%±14,7). Finally, after the theoretical training and the didactic activity in the Treat group, an increase of 10.9% (p<0,05) in the number of right answers was found when compared with the Ctrl group. Conclusion: the use of didactic tools that include guided lectures and activities like play-to-learn from a didactic textbook enhances the level of knowledge in an animal reproduction course for veterinary medicine students.

Keywords: animal reproduction, pedagogic, level of knowledge, learning environment

Procedia PDF Downloads 66
8685 Image Processing techniques for Surveillance in Outdoor Environment

Authors: Jayanth C., Anirudh Sai Yetikuri, Kavitha S. N.

Abstract:

This paper explores the development and application of computer vision and machine learning techniques for real-time pose detection, facial recognition, and number plate extraction. Utilizing MediaPipe for pose estimation, the research presents methods for detecting hand raises and ducking postures through real-time video analysis. Complementarily, facial recognition is employed to compare and verify individual identities using the face recognition library. Additionally, the paper demonstrates a robust approach for extracting and storing vehicle number plates from images, integrating Optical Character Recognition (OCR) with a database management system. The study highlights the effectiveness and versatility of these technologies in practical scenarios, including security and surveillance applications. The findings underscore the potential of combining computer vision techniques to address diverse challenges and enhance automated systems for both individual and vehicular identification. This research contributes to the fields of computer vision and machine learning by providing scalable solutions and demonstrating their applicability in real-world contexts.

Keywords: computer vision, pose detection, facial recognition, number plate extraction, machine learning, real-time analysis, OCR, database management

Procedia PDF Downloads 30
8684 Music Education in Aged Care: Positive Ageing through Instrumental Music Learning

Authors: Ellina Zipman

Abstract:

This research investigates the place of music education in aged care facilities through the implementation of a program of regular piano lessons for residents. Using a qualitative case study methodology, the research explores aged care residents’ experiences in learning to play the piano. Since the aged care homes are unlikely places for formal learning and since older adults, especially in residential care, are not considered likely candidates for learning, this research opens the door for innovative and transformative thinking about where and to whom educational programs can be delivered. By addressing the educational needs of residents in aged care facilities, this research fills the gap in the literature. The research took place in Australia in two of Melbourne’s residential aged care facilities, engaging two residents (a nonagenarian female and an octogenarian male) to participate in 12-months weekly individual piano lessons. The data was collected through video recording of lessons, observations, interviews, emails, and a reflective journal. Data analysis was done using Nvivo and hard copy analysis with identifications of themes. The case studies revealed that passion for music was a major driver in participants’ motivation to engage in a long-term piano lessons program. This participation led to experiences of positive emotions, positive attitude, successes and challenges, the exercise of control, maintaining and building new relationships, improved self-confidence through autonomy and independent skills development, and discovering new identities through finding a new purpose and new roles in life. Speaking through participants’ voices, this research project demonstrates the importance of music education for older adults and hopes to influence transformation in the residential aged care sector.

Keywords: adult music education, quality of life, passion, positive ageing, wellbeing

Procedia PDF Downloads 89
8683 Fuzzy Inference System for Risk Assessment Evaluation of Wheat Flour Product Manufacturing Systems

Authors: Yas Barzegaar, Atrin Barzegar

Abstract:

The aim of this research is to develop an intelligent system to analyze the risk level of wheat flour product manufacturing system. The model consists of five Fuzzy Inference Systems in two different layers to analyse the risk of a wheat flour product manufacturing system. The first layer of the model consists of four Fuzzy Inference Systems with three criteria. The output of each one of the Physical, Chemical, Biological and Environmental Failures will be the input of the final manufacturing systems. The proposed model based on Mamdani Fuzzy Inference Systems gives a performance ranking of wheat flour products manufacturing systems. The first step is obtaining data to identify the failure modes from expert’s opinions. The second step is the fuzzification process to convert crisp input to a fuzzy set., then the IF-then fuzzy rule applied through inference engine, and in the final step, the defuzzification process is applied to convert the fuzzy output into real numbers.

Keywords: failure modes, fuzzy rules, fuzzy inference system, risk assessment

Procedia PDF Downloads 105
8682 Insights into the Assessment of Intercultural Competence of Female University Students in the KSA

Authors: Agnes Havril

Abstract:

The aim of this paper is to introduce some partial findings of an ongoing research project which is investigating the improvement of intercultural competence of Saudi female university students in English as a Second Language academic environment at the multicultural Jazan University. Since previous research results support the idea that this university generation has the desire to become interculturally or globally competent university students, the present-day investigation is focusing on the assessment of Saudi-specific cultural terms and intercultural competence components in comparison with the Anglo-Saxon oriented western perspective of intercultural competence theories and models. On this stage of the research quantitative research methodology is applied and a survey is being conducted among the female university students in different academic specializations. This paper discusses some empirical data with the aim of identifying and evaluating certain supplementary aspects of intercultural dimensions and components of the intercultural competence construct. The research results also highlight several gender issues in the gender separated higher education in the Kingdom of Saudi Arabia.

Keywords: gender separation, globally competent university student, intercultural competence, intercultural competence construct, higher education

Procedia PDF Downloads 339
8681 Structural Reliability of Existing Structures: A Case Study

Authors: Z. Sakka, I. Assakkaf, T. Al-Yaqoub, J. Parol

Abstract:

A reliability-based methodology for the analysis assessment and evaluation of reinforced concrete structural elements of concrete structures is presented herein. The results of the reliability analysis and assessment for structural elements are verified by the results obtained from the deterministic methods. The analysis outcomes of reliability-based analysis are compared against the safety limits of the required reliability index β according to international standards and codes. The methodology is based on probabilistic analysis using reliability concepts and statistics of the main random variables that are relevant to the subject matter, and for which they are to be used in the performance-function equation(s) related to the structural elements under study. These methodology techniques can result in reliability index β, which is commonly known as the reliability index or reliability measure value that can be utilized to assess and evaluate the safety, human risk, and functionality of the structural component. Also, these methods can result in revised partial safety factor values for certain target reliability indices that can be used for the purpose of redesigning the reinforced concrete elements of the building and in which they could assist in considering some other remedial actions to improve the safety and functionality of the member.

Keywords: structural reliability, concrete structures, FORM, Monte Carlo simulation

Procedia PDF Downloads 520
8680 DEEPMOTILE: Motility Analysis of Human Spermatozoa Using Deep Learning in Sri Lankan Population

Authors: Chamika Chiran Perera, Dananjaya Perera, Chirath Dasanayake, Banuka Athuraliya

Abstract:

Male infertility is a major problem in the world, and it is a neglected and sensitive health issue in Sri Lanka. It can be determined by analyzing human semen samples. Sperm motility is one of many factors that can evaluate male’s fertility potential. In Sri Lanka, this analysis is performed manually. Manual methods are time consuming and depend on the person, but they are reliable and it can depend on the expert. Machine learning and deep learning technologies are currently being investigated to automate the spermatozoa motility analysis, and these methods are unreliable. These automatic methods tend to produce false positive results and false detection. Current automatic methods support different techniques, and some of them are very expensive. Due to the geographical variance in spermatozoa characteristics, current automatic methods are not reliable for motility analysis in Sri Lanka. The suggested system, DeepMotile, is to explore a method to analyze motility of human spermatozoa automatically and present it to the andrology laboratories to overcome current issues. DeepMotile is a novel deep learning method for analyzing spermatozoa motility parameters in the Sri Lankan population. To implement the current approach, Sri Lanka patient data were collected anonymously as a dataset, and glass slides were used as a low-cost technique to analyze semen samples. Current problem was identified as microscopic object detection and tackling the problem. YOLOv5 was customized and used as the object detector, and it achieved 94 % mAP (mean average precision), 86% Precision, and 90% Recall with the gathered dataset. StrongSORT was used as the object tracker, and it was validated with andrology experts due to the unavailability of annotated ground truth data. Furthermore, this research has identified many potential ways for further investigation, and andrology experts can use this system to analyze motility parameters with realistic accuracy.

Keywords: computer vision, deep learning, convolutional neural networks, multi-target tracking, microscopic object detection and tracking, male infertility detection, motility analysis of human spermatozoa

Procedia PDF Downloads 109
8679 Performance Assessment of Multi-Level Ensemble for Multi-Class Problems

Authors: Rodolfo Lorbieski, Silvia Modesto Nassar

Abstract:

Many supervised machine learning tasks require decision making across numerous different classes. Multi-class classification has several applications, such as face recognition, text recognition and medical diagnostics. The objective of this article is to analyze an adapted method of Stacking in multi-class problems, which combines ensembles within the ensemble itself. For this purpose, a training similar to Stacking was used, but with three levels, where the final decision-maker (level 2) performs its training by combining outputs from the tree-based pair of meta-classifiers (level 1) from Bayesian families. These are in turn trained by pairs of base classifiers (level 0) of the same family. This strategy seeks to promote diversity among the ensembles forming the meta-classifier level 2. Three performance measures were used: (1) accuracy, (2) area under the ROC curve, and (3) time for three factors: (a) datasets, (b) experiments and (c) levels. To compare the factors, ANOVA three-way test was executed for each performance measure, considering 5 datasets by 25 experiments by 3 levels. A triple interaction between factors was observed only in time. The accuracy and area under the ROC curve presented similar results, showing a double interaction between level and experiment, as well as for the dataset factor. It was concluded that level 2 had an average performance above the other levels and that the proposed method is especially efficient for multi-class problems when compared to binary problems.

Keywords: stacking, multi-layers, ensemble, multi-class

Procedia PDF Downloads 271
8678 Discourses in Mother Tongue-Based Classes: The Case of Hiligaynon Language

Authors: Kayla Marie Sarte

Abstract:

This study sought to describe mother tongue-based classes in the light of classroom interactional discourse using the Sinclair and Coulthard model. It specifically identified the exchanges, grouped into Teaching and Boundary types; moves, coded as Opening, Answering and Feedback; and the occurrence of the 13 acts (Bid, Cue, Nominate, Reply, React, Acknowledge, Clue, Accept, Evaluate, Loop, Comment, Starter, Conclusion, Aside and Silent Stress) in the classroom, and determined what these reveal about the teaching and learning processes in the MTB classroom. Being a qualitative study, using the Single Collective Case Within-Site (embedded) design, varied data collection procedures such as non-participant observations, audio-recordings and transcription of MTB classes, and semi-structured interviews were utilized. The results revealed the presence of all the codes in the model (except for the silent stress) which also implied that the Hiligaynon mother tongue-based class was eclectic, cultural and communicative, and had a healthy, analytical and focused environment which aligned with the aims of MTB-MLE, and affirmed the purported benefits of mother tongue teaching. Through the study, gaps in the mother tongue teaching and learning were also identified which involved the difficulty of children in memorizing Hiligaynon terms expressed in English in their homes and in the communities.

Keywords: discourse analysis, language teaching and learning, mother tongue-based education, multilingualism

Procedia PDF Downloads 260
8677 Quantifying the Aspect of ‘Imagining’ in the Map of Dialogical inquiry

Authors: Chua Si Wen Alicia, Marcus Goh Tian Xi, Eunice Gan Ghee Wu, Helen Bound, Lee Liang Ying, Albert Lee

Abstract:

In a world full of rapid changes, people often need a set of skills to help them navigate an ever-changing workscape. These skills, often known as “future-oriented skills,” include learning to learn, critical thinking, understanding multiple perspectives, and knowledge creation. Future-oriented skills are typically assumed to be domain-general, applicable to multiple domains, and can be cultivated through a learning approach called Dialogical Inquiry. Dialogical Inquiry is known for its benefits of making sense of multiple perspectives, encouraging critical thinking, and developing learner’s capability to learn. However, it currently exists as a quantitative tool, which makes it hard to track and compare learning processes over time. With these concerns, the present research aimed to develop and validate a quantitative tool for the Map of Dialogical Inquiry, focusing Imagining aspect of learning. The Imagining aspect four dimensions: 1) speculative/ look for alternatives, 2) risk taking/ break rules, 3) create/ design, and 4) vision/ imagine. To do so, an exploratory literature review was conducted to better understand the dimensions of Imagining. This included deep-diving into the history of the creation of the Map of Dialogical Inquiry and a review on how “Imagining” has been conceptually defined in the field of social psychology, education, and beyond. Then, we synthesised and validated scales. These scales measured the dimension of Imagination and related concepts like creativity, divergent thinking regulatory focus, and instrumental risk. Thereafter, items were adapted from the aforementioned procured scales to form items that would contribute to the preliminary version of the Imagining Scale. For scale validation, 250 participants were recruited. A Confirmatory Factor Analysis (CFA) sought to establish dimensionality of the Imagining Scale with an iterative procedure in item removal. Reliability and validity of the scale’s dimensions were sought through measurements of Cronbach’s alpha, convergent validity, and discriminant validity. While CFA found that the distinction of Imagining’s four dimensions could not be validated, the scale was able to establish high reliability with a Cronbach alpha of .96. In addition, the convergent validity of the Imagining scale was established. A lack of strong discriminant validity may point to overlaps with other components of the Dialogical Map as a measure of learning. Thus, a holistic approach to forming the tool – encompassing all eight different components may be preferable.

Keywords: learning, education, imagining, pedagogy, dialogical teaching

Procedia PDF Downloads 96
8676 A Method for Multimedia User Interface Design for Mobile Learning

Authors: Shimaa Nagro, Russell Campion

Abstract:

Mobile devices are becoming ever more widely available, with growing functionality, and are increasingly used as an enabling technology to give students access to educational material anytime and anywhere. However, the design of educational material user interfaces for mobile devices is beset by many unresolved research issues such as those arising from emphasising the information concepts then mapping this information to appropriate media (modelling information then mapping media effectively). This report describes a multimedia user interface design method for mobile learning. The method covers specification of user requirements and information architecture, media selection to represent the information content, design for directing attention to important information, and interaction design to enhance user engagement based on Human-Computer Interaction design strategies (HCI). The method will be evaluated by three different case studies to prove the method is suitable for application to different areas / applications, these are; an application to teach about major computer networking concepts, an application to deliver a history-based topic; (after these case studies have been completed, the method will be revised to remove deficiencies and then used to develop a third case study), an application to teach mathematical principles. At this point, the method will again be revised into its final format. A usability evaluation will be carried out to measure the usefulness and effectiveness of the method. The investigation will combine qualitative and quantitative methods, including interviews and questionnaires for data collection and three case studies for validating the MDMLM method. The researcher has successfully produced the method at this point which is now under validation and testing procedures. From this point forward in the report, the researcher will refer to the method using the MDMLM abbreviation which means Multimedia Design Mobile Learning Method.

Keywords: human-computer interaction, interface design, mobile learning, education

Procedia PDF Downloads 248
8675 Self-Supervised Learning for Hate-Speech Identification

Authors: Shrabani Ghosh

Abstract:

Automatic offensive language detection in social media has become a stirring task in today's NLP. Manual Offensive language detection is tedious and laborious work where automatic methods based on machine learning are only alternatives. Previous works have done sentiment analysis over social media in different ways such as supervised, semi-supervised, and unsupervised manner. Domain adaptation in a semi-supervised way has also been explored in NLP, where the source domain and the target domain are different. In domain adaptation, the source domain usually has a large amount of labeled data, while only a limited amount of labeled data is available in the target domain. Pretrained transformers like BERT, RoBERTa models are fine-tuned to perform text classification in an unsupervised manner to perform further pre-train masked language modeling (MLM) tasks. In previous work, hate speech detection has been explored in Gab.ai, which is a free speech platform described as a platform of extremist in varying degrees in online social media. In domain adaptation process, Twitter data is used as the source domain, and Gab data is used as the target domain. The performance of domain adaptation also depends on the cross-domain similarity. Different distance measure methods such as L2 distance, cosine distance, Maximum Mean Discrepancy (MMD), Fisher Linear Discriminant (FLD), and CORAL have been used to estimate domain similarity. Certainly, in-domain distances are small, and between-domain distances are expected to be large. The previous work finding shows that pretrain masked language model (MLM) fine-tuned with a mixture of posts of source and target domain gives higher accuracy. However, in-domain performance of the hate classifier on Twitter data accuracy is 71.78%, and out-of-domain performance of the hate classifier on Gab data goes down to 56.53%. Recently self-supervised learning got a lot of attention as it is more applicable when labeled data are scarce. Few works have already been explored to apply self-supervised learning on NLP tasks such as sentiment classification. Self-supervised language representation model ALBERTA focuses on modeling inter-sentence coherence and helps downstream tasks with multi-sentence inputs. Self-supervised attention learning approach shows better performance as it exploits extracted context word in the training process. In this work, a self-supervised attention mechanism has been proposed to detect hate speech on Gab.ai. This framework initially classifies the Gab dataset in an attention-based self-supervised manner. On the next step, a semi-supervised classifier trained on the combination of labeled data from the first step and unlabeled data. The performance of the proposed framework will be compared with the results described earlier and also with optimized outcomes obtained from different optimization techniques.

Keywords: attention learning, language model, offensive language detection, self-supervised learning

Procedia PDF Downloads 108
8674 Assessment of Impact of Manpower Training and Development in the Construction Industry

Authors: Olalekan Bamidele Aruleba

Abstract:

This research assessed the impact of manpower training and development in the construction industry. The aim is to determine the effect of training and development on employees for effective organizational growth in the construction industry to identify the training method for each category of employee in the construction industry, challenges to training and development of workers in the construction industry and impact of manpower training and development on employees and employers. Data for the study were obtained through a well-structured questionnaire administered to building professionals in Nigeria construction firm. Eighty (80) questionnaires were distributed among building professionals in three selected local governments within Ondo State and sixty-four (64) were returned. Data collected were analysed using descriptive statistics and ranking. Findings of the study revealed that in house training and in-service training methods were preferred by most construction industry. It concluded that the attitude of top management and lack of fund was seen as the significant challenges militating against training of employees. The study recommended that manpower training and development must be sustained by all stakeholders in the industry in order to improve workers' productivity; the organization should adopt the right method in training each category of employees and carry out the need assessment for training to avoid training wrong employees.

Keywords: construction, development, manpower, training

Procedia PDF Downloads 240
8673 Assessment of Sustainable Sanitation Systems: Urban Slums

Authors: Ali Hamza, Bertug Akintug

Abstract:

Having an appropriate plan of sanitation systems is one of the critical issues for global urban slums. Poor sanitation systems in urban slums outcomes an enhanced vulnerability of severe diseases, low hygiene and environmental risks within our environment. Mentioning human excreta being one of the most highly risked pollutants among all the other major contributors of sanitation pollutants is increasing public health risks and amounts of pollution loads within the slum environment. Higher population growth, urge of urbanization and illegal status of urban slums makes it impossible to increase the level of performance of sanitation systems in urban slums. According to Sustainable Sanitation Alliance, design parameters for sanitation systems were set up to ensure sustainable environment. This paper reviews the characteristics of human excreta at present, treatment technologies, and procedures of processes that can be adopted feasibly in the urban slums. Keeping these factors as our significant concern of study, assessment of sustainable sanitation systems is done using sanitation chain concept in accordance to the pre-determined sustainability indicators and criteria which reflect the potential and feasible application of waterless sanitation systems bringing sustainable sanitation systems in urban slums.

Keywords: human excreta, sanitation chain, sustainable sanitation systems, urban slums

Procedia PDF Downloads 317
8672 Academic Success, Problem-Based Learning and the Middleman: The Community Voice

Authors: Isabel Medina, Mario Duran

Abstract:

Although Problem-based learning provides students with multiple opportunities for rigorous instructional experiences in which students are challenged to address problems in the community; there are still gaps in connecting community leaders to the PBL process. At a south Texas high school, community participation serves as an integral component of the PBL process. Problem-based learning (PBL) has recently gained momentum due to the increase in global communities that value collaboration and critical thinking. As an instructional approach, PBL engages high school students in meaningful learning experiences. Furthermore, PBL focuses on providing students with a connection to real-world situations that require effective peer collaboration. For PBL leaders, providing students with a meaningful process is as important as the final PBL outcome. To achieve this goal, STEM high school strategically created a space for community involvement to be woven within the PBL fabric. This study examines the impact community members had on PBL students attending a STEM high school in South Texas. At STEM High School, community members represent a support system that works through the PBL process to ensure students receive real-life mentoring from business and industry leaders situated in the community. A phenomenological study using a semi-structured approach was used to collect data about students’ perception of community involvement within the PBL process for one South Texas high school. In our proposed presentation, we will discuss how community involvement in the PBL process academically impacted the educational experience of high school students at STEM high school. We address the instructional concerns PBL critics have with the lack of direct instruction, by providing a representation of how STEM high school utilizes community members to assist in impacting the academic experience of students.

Keywords: phenomenological, STEM education, student engagement, community involvement

Procedia PDF Downloads 93
8671 Reliability Assessment and Failure Detection in a Complex Human-Machine System Using Agent-Based and Human Decision-Making Modeling

Authors: Sanjal Gavande, Thomas Mazzuchi, Shahram Sarkani

Abstract:

In a complex aerospace operational environment, identifying failures in a procedure involving multiple human-machine interactions are difficult. These failures could lead to accidents causing loss of hardware or human life. The likelihood of failure further increases if operational procedures are tested for a novel system with multiple human-machine interfaces and with no prior performance data. The existing approach in the literature of reviewing complex operational tasks in a flowchart or tabular form doesn’t provide any insight into potential system failures due to human decision-making ability. To address these challenges, this research explores an agent-based simulation approach for reliability assessment and fault detection in complex human-machine systems while utilizing a human decision-making model. The simulation will predict the emergent behavior of the system due to the interaction between humans and their decision-making capability with the varying states of the machine and vice-versa. Overall system reliability will be evaluated based on a defined set of success-criteria conditions and the number of recorded failures over an assigned limit of Monte Carlo runs. The study also aims at identifying high-likelihood failure locations for the system. The research concludes that system reliability and failures can be effectively calculated when individual human and machine agent states are clearly defined. This research is limited to the operations phase of a system lifecycle process in an aerospace environment only. Further exploration of the proposed agent-based and human decision-making model will be required to allow for a greater understanding of this topic for application outside of the operations domain.

Keywords: agent-based model, complex human-machine system, human decision-making model, system reliability assessment

Procedia PDF Downloads 171