Search results for: human concept learning
14354 Defect Classification of Hydrogen Fuel Pressure Vessels using Deep Learning
Authors: Dongju Kim, Youngjoo Suh, Hyojin Kim, Gyeongyeong Kim
Abstract:
Acoustic Emission Testing (AET) is widely used to test the structural integrity of an operational hydrogen storage container, and clustering algorithms are frequently used in pattern recognition methods to interpret AET results. However, the interpretation of AET results can vary from user to user as the tuning of the relevant parameters relies on the user's experience and knowledge of AET. Therefore, it is necessary to use a deep learning model to identify patterns in acoustic emission (AE) signal data that can be used to classify defects instead. In this paper, a deep learning-based model for classifying the types of defects in hydrogen storage tanks, using AE sensor waveforms, is proposed. As hydrogen storage tanks are commonly constructed using carbon fiber reinforced polymer composite (CFRP), a defect classification dataset is collected through a tensile test on a specimen of CFRP with an AE sensor attached. The performance of the classification model, using one-dimensional convolutional neural network (1-D CNN) and synthetic minority oversampling technique (SMOTE) data augmentation, achieved 91.09% accuracy for each defect. It is expected that the deep learning classification model in this paper, used with AET, will help in evaluating the operational safety of hydrogen storage containers.Keywords: acoustic emission testing, carbon fiber reinforced polymer composite, one-dimensional convolutional neural network, smote data augmentation
Procedia PDF Downloads 9914353 Ontology Mapping with R-GNN for IT Infrastructure: Enhancing Ontology Construction and Knowledge Graph Expansion
Authors: Andrey Khalov
Abstract:
The rapid growth of unstructured data necessitates advanced methods for transforming raw information into structured knowledge, particularly in domain-specific contexts such as IT service management and outsourcing. This paper presents a methodology for automatically constructing domain ontologies using the DOLCE framework as the base ontology. The research focuses on expanding ITIL-based ontologies by integrating concepts from ITSMO, followed by the extraction of entities and relationships from domain-specific texts through transformers and statistical methods like formal concept analysis (FCA). In particular, this work introduces an R-GNN-based approach for ontology mapping, enabling more efficient entity extraction and ontology alignment with existing knowledge bases. Additionally, the research explores transfer learning techniques using pre-trained transformer models (e.g., DeBERTa-v3-large) fine-tuned on synthetic datasets generated via large language models such as LLaMA. The resulting ontology, termed IT Ontology (ITO), is evaluated against existing methodologies, highlighting significant improvements in precision and recall. This study advances the field of ontology engineering by automating the extraction, expansion, and refinement of ontologies tailored to the IT domain, thus bridging the gap between unstructured data and actionable knowledge.Keywords: ontology mapping, knowledge graphs, R-GNN, ITIL, NER
Procedia PDF Downloads 2614352 An Overview of Domain Models of Urban Quantitative Analysis
Authors: Mohan Li
Abstract:
Nowadays, intelligent research technology is more and more important than traditional research methods in urban research work, and this proportion will greatly increase in the next few decades. Frequently such analyzing work cannot be carried without some software engineering knowledge. And here, domain models of urban research will be necessary when applying software engineering knowledge to urban work. In many urban plan practice projects, making rational models, feeding reliable data, and providing enough computation all make indispensable assistance in producing good urban planning. During the whole work process, domain models can optimize workflow design. At present, human beings have entered the era of big data. The amount of digital data generated by cities every day will increase at an exponential rate, and new data forms are constantly emerging. How to select a suitable data set from the massive amount of data, manage and process it has become an ability that more and more planners and urban researchers need to possess. This paper summarizes and makes predictions of the emergence of technologies and technological iterations that may affect urban research in the future, discover urban problems, and implement targeted sustainable urban strategies. They are summarized into seven major domain models. They are urban and rural regional domain model, urban ecological domain model, urban industry domain model, development dynamic domain model, urban social and cultural domain model, urban traffic domain model, and urban space domain model. These seven domain models can be used to guide the construction of systematic urban research topics and help researchers organize a series of intelligent analytical tools, such as Python, R, GIS, etc. These seven models make full use of quantitative spatial analysis, machine learning, and other technologies to achieve higher efficiency and accuracy in urban research, assisting people in making reasonable decisions.Keywords: big data, domain model, urban planning, urban quantitative analysis, machine learning, workflow design
Procedia PDF Downloads 18014351 Ayurvastra: A Study on the Ancient Indian Textile for Healing
Authors: Reena Aggarwal
Abstract:
The use of textile chemicals in the various pre and post-textile manufacturing processes has made the textile industry conscious of its negative contribution to environmental pollution. Popular environmentally friendly fibers such as recycled polyester and organic cotton have been now increasingly used by fabrics and apparel manufacturers. However, after these textiles or the finished apparel are manufactured, they have to be dyed in the same chemical dyes that are harmful and toxic to the environment. Dyeing is a major area of concern for the environment as well as for people who have chemical sensitivities as it may cause nausea, breathing difficulties, seizures, etc. Ayurvastra or herbal medical textiles are one step ahead of the organic lifestyle, which supports the core concept of holistic well-being and also eliminates the impact of harmful chemicals and pesticides. There is a wide range of herbs that can be used not only for dyeing but also for providing medicinal properties to the textiles like antibacterial, antifungal, antiseptic, antidepressant and for treating insomnia, skin diseases, etc. The concept of herbal dyeing of fabric is to manifest herbal essence in every aspect of clothing, i.e., from production to end-use, additionally to eliminate the impact of harmful chemical dyes and chemicals which are known to result in problems like skin rashes, headache, trouble concentrating, nausea, diarrhea, fatigue, muscle and joint pain, dizziness, difficulty breathing, irregular heartbeat and seizures. Herbal dyeing or finishing on textiles will give an extra edge to the textiles as it adds an extra function to the fabric. The herbal extracts can be applied to the textiles by a simple process like the pad dry cure method and mainly acts on the human body through the skin for aiding in the treatment of disease or managing the medical condition through its herbal properties. This paper, therefore, delves into producing Ayurvastra, which is a perfect amalgamation of cloth and wellness. The aim of the paper is to design and create herbal disposable and non-disposable medical textile products acting mainly topically (through the skin) for providing medicinal properties/managing medical conditions. Keeping that in mind, a range of antifungal socks and antibacterial napkins treated with turmeric and aloe vera were developed, which are recommended for the treatment of fungal and bacterial infections, respectively. Both Herbal Antifungal socks and Antibacterial napkins have proved to be efficient enough in managing and treating fungal and bacterial infections of the skin, respectively.Keywords: ayurvastra, ayurveda, herbal, pandemic, sustainable
Procedia PDF Downloads 13414350 Exploring the Use of Universal Design for Learning to Support The Deaf Learners in Lesotho Secondary Schools: English Teachers Voice
Authors: Ntloyalefu Justinah, Fumane Khanare
Abstract:
English learning has been found as one of the prevalent areas of difficulty for Deaf learners. However, studies conducted indicated that this challenge experienced by Deaf learners is an upsetting concern globally as is blamed and hampered by various reasons such as the way English is taught at schools, lack of teachers ' skills and knowledge, therefore, impact negatively on their academic performance. Despite any difficulty in English learning, this language is considered nowadays as the key tool to an educational and occupational career especially in Lesotho. This paper, therefore, intends to contribute to the existing literature by providing the views of Lesotho English teachers, which focuses on how effectively Universal design for learning can be implemented to enhance the academic performance of Deaf learners in context of the English language classroom. The purpose of this study sought to explore the use of universal design for learning (UDL) to support Deaf learners in Lesotho Secondary schools. The present study is informed by interpretative paradigm and situated within a qualitative research approach. Ten participating English teachers from two inclusive schools were purposefully selected and telephonically interviewed to generate data for this study. The data were thematically analysed. The findings indicated that even though UDL is identified as highly proficient and promotes flexibility in teaching methods teachers reflect limited knowledge of the UDL approach. The findings further showed that UDL ensures education for all learners, including marginalised groups, such as learners with disabilities through different teaching strategies. This means that the findings signify the effective use of UDL for the better performance of the English language by Deaf learners (DLs). This aligns with literature that shows mobilizing English teachers as assets help DLs to be engaged and have control in their communities by defining and solving problems using their resources and connections to other networks for asset and exchange. The study, therefore, concludes that teachers acknowledge that even though they assume to be knowledgeable about the definition of UDL, they have a limited practice of the approach, thus they need to be equipped with some techniques and skills to apply for supporting the performance of DLs by using UDL approach in their English teaching. The researchers recommend the awareness of UDL principles by the ministry of Education and Training and teachers training Universities, as well as teachers training colleges, for them to include it in their curricula so that teachers could be properly trained on how to apply it in their teaching effectivelyKeywords: deaf learners, Lesotho, support learning, universal design for learning
Procedia PDF Downloads 11714349 Learning and Teaching Strategies in Association with EXE Program for Master Course Students of Yerevan Brusov State University of Languages and Social Sciences
Authors: Susanna Asatryan
Abstract:
The author will introduce a single module related to English teaching methodology for master course students getting specialization “A Foreign Language Teacher of High Schools And Professional Educational Institutions” of Yerevan Brusov State University of Languages and Social Sciences. The overall aim of the presentation is to introduce learning and teaching strategies within EXE Computer program for Mastery student-teachers of the University. The author will display the advantages of the use of this program. The learners interact with the teacher in the classroom as well as they are provided an opportunity for virtual domain to carry out their learning procedures in association with assessment and self-assessment. So they get integrated into blended learning. As this strategy is in its piloting stage, the author has elaborated a single module, embracing 3 main sections: -Teaching English vocabulary at high school, -Teaching English grammar at high school, and -Teaching English pronunciation at high school. The author will present the above mentioned topics with corresponding sections and subsections. The strong point is that preparing this module we have planned to display it on the blended learning landscape. So for this account working with EXE program is highly effective. As it allows the users to operate several tools for self-learning and self-testing/assessment. The author elaborated 3 single EXE files for each topic. Each file starts with the section’s subject-specific description: - Objectives and Pre-knowledge, followed by the theoretical part. The author associated and flavored her observations with appropriate samples of charts, drawings, diagrams, recordings, video-clips, photos, pictures, etc. to make learning process more effective and enjoyable. Before or after the article the author has downloaded a video clip, related to the current topic. EXE offers a wide range of tools to work out or prepare different activities and exercises for the learners: 'Interactive/non-interactive' and 'Textual/non-textual'. So with the use of these tools Multi-Select, Multi-Choice, Cloze, Drop-Down, Case Study, Gap-Filling, Matching and different other types of activities have been elaborated and submitted to the appropriate sections. The learners task is to prepare themselves for the coming module or seminar, related to teaching methodology of English vocabulary, grammar, and pronunciation. The point is that the teacher has an opportunity for face to face communication, as well as to connect with the learners through the Moodle, or as a single EXE file offer it to the learners for their self-study and self-assessment. As for the students’ feedback –EXE environment also makes it available.Keywords: blended learning, EXE program, learning/teaching strategies, self-study/assessment, virtual domain,
Procedia PDF Downloads 47114348 Implications of Industry 4.0 to Supply Chain Management and Human Resources Management: The State of the Art
Authors: Ayse Begum Kilic, Sevgi Ozkan
Abstract:
Industry 4.0 (I4.0) is a significant and promising research topic that is expected to gain more importance due to its effects on important concepts like cost, resource management, and accessibility. Instead of focusing those effects in only one area, combining different departments, and see the big picture helps to make more realistic predictions about the future. The aim of this paper is to identify the implications of Industry 4.0 for both supply chain management and human resources management by finding out the topics that take place at the intersection of them. Another objective is helping the readers to realize the expected changes in these two areas due to I4.0 in order to take the necessary steps in advance and make recommendations to catch up the latest trends. The expected changes are concluded from the industry reports and related journal papers in the literature. As found in the literature, this study is the first to combine the Industry 4.0, supply chain management and human resources management and urges to lead future works by finding out the intersections of those three areas. Benefits of I4.0 and the amount, research areas and the publication years of papers on I4.0 in the academic journals are mentioned in this paper. One of the main findings of this research is that a change in the labor force qualifications is expected with the advancements in the technology. There will be a need for higher level of skills from the workers. This will directly affect the human resources management in a way of recruiting and managing those people. Another main finding is, as it is explained with an example in the article, the advancements in the technology will change the place of production. For instance, 'dark factories', a popular topic of I4.0, will enable manufacturers to produce in places that close to their marketplace. The supply chains are expected to be influenced by that change.Keywords: human resources management, industry 4.0, logistics, supply chain management
Procedia PDF Downloads 16214347 Understanding Embryology in Promoting Peace Leadership: A Document Review
Authors: Vasudev Das
Abstract:
The specific problem is that many leaders of the 21st century do not understand that the extermination of embryos wreaks havoc on peace leadership. The purpose of the document review is to understand embryology in facilitating peace leadership. Extermination of human embryos generates a requital wave of violence which later falls on human society in the form of disturbances, considering that violence breeds further violence as a consequentiality. The study results reveal that a deep understanding of embryology facilitates peace leadership, given that minimizing embryo extermination enhances non-violence in the global village. Neo-Newtonians subscribe to the idea that every action has an equal and opposite reaction. The US Federal Government recognizes the embryo or fetus as a member of Homo sapiens. The social change implications of this study are that understanding human embryology promotes peace leadership, considering that the consequentiality of embryo extermination can serve as a deterrent for violence on embryos.Keywords: consequentiality, Homo sapiens, neo-Newtonians, violence
Procedia PDF Downloads 13914346 Understanding of the Impact of Technology in Collaborative Programming for Children
Authors: Nadia Selene Molina-Moreno, Maria Susana Avila-Garcia, Marco Bianchetti, Marcelina Pantoja-Flores
Abstract:
Visual Programming Tools available are a great tool for introducing children to programming and to develop a skill set for algorithmic thinking. On the other hand, collaborative learning and pair programming within the context of programming activities, has demonstrated to have social and learning benefits. However, some of the online tools available for programming for children are not designed to allow simultaneous and equitable participation of the team members since they allow only for a single control point. In this paper, a report the work conducted with children playing a user role is presented. A preliminary study to cull ideas, insights, and design considerations for a formal programming course for children aged 8-10 using collaborative learning as a pedagogical approach was conducted. Three setups were provided: 1) lo-fi prototype, 2) PC, 3) a 46' multi-touch single display groupware limited by the application to a single touch entry. Children were interviewed at the end of the sessions in order to know their opinions about teamwork and the different setups defined. Results are mixed regarding the setup, but they agree to like teamwork.Keywords: children, collaborative programming, visual programming, multi-touch tabletop, lo-fi prototype
Procedia PDF Downloads 31514345 [Keynote Talk]: From Clinical Practice to Academic Setup, 'Quality Circles' for Quality Outputs in Both
Authors: Vandita Mishra
Abstract:
From the management of patients, reception, record, and assistants in a clinical practice; to the management of ongoing research, clinical cases and department profile in an academic setup, the healthcare provider has to deal with all of it. The victory lies in smooth running of the show in both the above situations with an apt solution of problems encountered and smooth management of crisis faced. Thus this paper amalgamates dental science with health administration by means of introduction of a concept for practice management and problem-solving called 'Quality Circles'. This concept uses various tools for problem solving given by experts from different fields. QC tools can be applied in both clinical and academic settings in dentistry for better productivity and for scientifically approaching the process of continuous improvement in both the categories. When approached through QC, our organization showed better patient outcomes and more patient satisfaction. Introduced in 1962 by Kaoru Ishikawa, this tool has been extensively applied in certain fields outside dentistry and healthcare. By exemplification of some clinical cases and virtual scenarios, the tools of Quality circles will be elaborated and discussed upon.Keywords: academics, dentistry, healthcare, quality
Procedia PDF Downloads 10414344 L2 Exposure Environment, Teaching Skills, and Beliefs about Learners’ Out-of-Class Learning: A Survey on Teachers of English as a Foreign Language
Authors: Susilo Susilo
Abstract:
In the process of foreign language acquisition, L2 exposure has been evidently assumed efficient for learners to help increase their proficiency. However, to get enough L2 exposure in the context of learning English as a foreign language is not as easy as that of the first language learning context. Therefore, beyond the classroom L2 exposure is helpful for EFL learners to achieve the language tasks. Alongside the rapid development of technology and media, English as a foreign language is virtually used in the social media of almost all regions, affecting the faces of Teaching English as a Foreign Language (TEFL). This different face of TEFL unavoidably intrigues teachers to treat their students differently in the classroom in order that they can put more effort in maximizing beyond-the-class learning to help improve their in-class achievements. The study aims to investigate: 1) EFL teachers’ teaching skills and beliefs about students’ out-of-class activities in different L2 exposure environments, and 2) the effect on EFL teachers’ teaching skills and beliefs about students’ out-of-class activities of different L2 exposure environments. This is a survey for 80 EFL teachers from Senior High Schools in three regions of two provinces in Indonesia. A questionnaire using a four-point Likert scale was distributed to the respondents to elicit data. The questionnaires were developed by reffering to the constructs of teaching skills (i.e. teaching preparation, teaching action, and teaching evaluation) and beliefs about out-of-class learning (i.e. setting, process and atmosphere), which have been taken from some expert definitions. The internal consistencies for those constructs were examined by using Cronbach Alpha. The data of the study were analyzed by using SPSS program, i.e. descriptive statistics and independent sample t-test. The standard for determining the significance was p < .05. The results revealed that: 1) teaching skills performed by the teachers of English as a foreign language in different exposure environments showed various focus of teaching skills, 2) the teachers showed various ways of beliefs about students’ out-of-class activities in different exposure environments, 3) there was a significant difference in the scores for NNESTs’ teaching skills in urban regions (M=34.5500, SD=4.24838) and those in rural schools (M=24.9500, SD=2.42794) conditions; t (78)=12.408, p = 0.000; and 4) there was a significant difference in the scores for NNESTs’ beliefs about students’ out-of-class activities in urban schools (M=36.9250, SD=6.17434) and those in rural regions (M=29.4250, SD=4.56793) conditions; t (78)=6.176, p = 0.000. These results suggest that different L2 exposure environments really do have effects on teachers’ teaching skills and beliefs about their students’ out-of-class learning.Keywords: belief about EFL out-of-class learning, L2 exposure environment, teachers of English as a foreign language, teaching skills
Procedia PDF Downloads 34314343 Blended Cloud Based Learning Approach in Information Technology Skills Training and Paperless Assessment: Case Study of University of Cape Coast
Authors: David Ofosu-Hamilton, John K. E. Edumadze
Abstract:
Universities have come to recognize the role Information and Communication Technology (ICT) skills plays in the daily activities of tertiary students. The ability to use ICT – essentially, computers and their diverse applications – are important resources that influence an individual’s economic and social participation and human capital development. Our society now increasingly relies on the Internet, and the Cloud as a means to communicate and disseminate information. The educated individual should, therefore, be able to use ICT to create and share knowledge that will improve society. It is, therefore, important that universities require incoming students to demonstrate a level of computer proficiency or trained to do so at a minimal cost by deploying advanced educational technologies. The training and standardized assessment of all in-coming first-year students of the University of Cape Coast in Information Technology Skills (ITS) have become a necessity as students’ most often than not highly overestimate their digital skill and digital ignorance is costly to any economy. The one-semester course is targeted at fresh students and aimed at enhancing the productivity and software skills of students. In this respect, emphasis is placed on skills that will enable students to be proficient in using Microsoft Office and Google Apps for Education for their academic work and future professional work whiles using emerging digital multimedia technologies in a safe, ethical, responsible, and legal manner. The course is delivered in blended mode - online and self-paced (student centered) using Alison’s free cloud-based tutorial (Moodle) of Microsoft Office videos. Online support is provided via discussion forums on the University’s Moodle platform and tutor-directed and assisted at the ICT Centre and Google E-learning laboratory. All students are required to register for the ITS course during either the first or second semester of the first year and must participate and complete it within a semester. Assessment focuses on Alison online assessment on Microsoft Office, Alison online assessment on ALISON ABC IT, Peer assessment on e-portfolio created using Google Apps/Office 365 and an End of Semester’s online assessment at the ICT Centre whenever the student was ready in the cause of the semester. This paper, therefore, focuses on the digital culture approach of hybrid teaching, learning and paperless examinations and the possible adoption by other courses or programs at the University of Cape Coast.Keywords: assessment, blended, cloud, paperless
Procedia PDF Downloads 25314342 Automatic Classification of Periodic Heart Sounds Using Convolutional Neural Network
Authors: Jia Xin Low, Keng Wah Choo
Abstract:
This paper presents an automatic normal and abnormal heart sound classification model developed based on deep learning algorithm. MITHSDB heart sounds datasets obtained from the 2016 PhysioNet/Computing in Cardiology Challenge database were used in this research with the assumption that the electrocardiograms (ECG) were recorded simultaneously with the heart sounds (phonocardiogram, PCG). The PCG time series are segmented per heart beat, and each sub-segment is converted to form a square intensity matrix, and classified using convolutional neural network (CNN) models. This approach removes the need to provide classification features for the supervised machine learning algorithm. Instead, the features are determined automatically through training, from the time series provided. The result proves that the prediction model is able to provide reasonable and comparable classification accuracy despite simple implementation. This approach can be used for real-time classification of heart sounds in Internet of Medical Things (IoMT), e.g. remote monitoring applications of PCG signal.Keywords: convolutional neural network, discrete wavelet transform, deep learning, heart sound classification
Procedia PDF Downloads 35114341 ROOP: Translating Sequential Code Fragments to Distributed Code Fragments Using Deep Reinforcement Learning
Authors: Arun Sanjel, Greg Speegle
Abstract:
Every second, massive amounts of data are generated, and Data Intensive Scalable Computing (DISC) frameworks have evolved into effective tools for analyzing such massive amounts of data. Since the underlying architecture of these distributed computing platforms is often new to users, building a DISC application can often be time-consuming and prone to errors. The automated conversion of a sequential program to a DISC program will consequently significantly improve productivity. However, synthesizing a user’s intended program from an input specification is complex, with several important applications, such as distributed program synthesizing and code refactoring. Existing works such as Tyro and Casper rely entirely on deductive synthesis techniques or similar program synthesis approaches. Our approach is to develop a data-driven synthesis technique to identify sequential components and translate them to equivalent distributed operations. We emphasize using reinforcement learning and unit testing as feedback mechanisms to achieve our objectives.Keywords: program synthesis, distributed computing, reinforcement learning, unit testing, DISC
Procedia PDF Downloads 11514340 English for Academic and Specific Purposes: A Corpus-Informed Approach to Designing Vocabulary Teaching Materials
Authors: Said Ahmed Zohairy
Abstract:
Significant shifts in the theory and practice of teaching vocabulary affect teachers’ decisions about learning materials’ design. Relevant literature supports teaching specialised, authentic, and multi-word lexical items rather than focusing on single-word vocabulary lists. Corpora, collections of texts stored in a database, presents a reliable source of teaching and learning materials. Although corpus-informed studies provided guidance for teachers to identify useful language chunks and phraseological units, there is a scarcity in the literature discussing the use of corpora in teaching English for academic and specific purposes (EASP). The aim of this study is to improve teaching practices and provide a description of the pedagogical choices and procedures of an EASP tutor in an attempt to offer guidance for novice corpus users. It draws on the researcher’s experience of utilising corpus linguistic tools to design vocabulary learning activities without focusing on students’ learning outcomes. Hence, it adopts a self-study research methodology which is based on five methodological components suggested by other self-study researchers. The findings of the study noted that designing specialised and corpus-informed vocabulary learning activities could be challenging for teachers, as they require technical knowledge of how to navigate corpora and utilise corpus analysis tools. Findings also include a description of the researcher’s approach to building and analysing a specialised corpus for the benefit of novice corpus users; they should be able to start their own journey of designing corpus-based activities.Keywords: corpora, corpus linguistics, corpus-informed, English for academic and specific purposes, agribusiness, vocabulary, phraseological units, materials design
Procedia PDF Downloads 3214339 Transforming Urban Living: How Co-Living Solutions Address Social Isolation, Foster Community, and Offer Innovative Approaches to Housing Challenges in Modern Cities
Authors: Yujie Lei
Abstract:
This article examines the evolving concept of urban living through the lens of co-living spaces, focusing on Liverpool. It explores how co-living can address challenges such as rising urban isolation, housing affordability, and social autism, particularly among younger generations. The research aims to understand how these spaces can mitigate social isolation and maximize urban space use. Using a case study approach, the study examines models like Superloft, co-office spaces, and platforms like Airbnb. Findings reveal that Liverpool’s co-living initiatives have gained popularity, offering flexibility and community engagement. This concept has the potential for expansion, not only for the younger generation but also for elderly communities, fostering intergenerational living. The dissertation concludes that co-living offers a sustainable alternative to traditional housing models, aligning with digital-age lifestyles that prioritize flexibility and community. It presents a promising framework for shaping the future of urban development.Keywords: co-living, urban design, social isolation, urban development, housing challenges
Procedia PDF Downloads 3714338 Overall Student Satisfaction at Tabor School of Education: An Examination of Key Factors Based on the AUSSE SEQ
Authors: Francisco Ben, Tracey Price, Chad Morrison, Victoria Warren, Willy Gollan, Robyn Dunbar, Frank Davies, Mark Sorrell
Abstract:
This paper focuses particularly on the educational aspects that contribute to the overall educational satisfaction rated by Tabor School of Education students who participated in the Australasian Survey of Student Engagement (AUSSE) conducted by the Australian Council for Educational Research (ACER) in 2010, 2012 and 2013. In all three years of participation, Tabor ranked first especially in the area of overall student satisfaction. By using a single level path analysis in relation to the AUSSE datasets collected using the Student Engagement Questionnaire (SEQ) for Tabor School of Education, seven aspects that contribute to overall student satisfaction have been identified. There appears to be a direct causal link between aspects of the Supportive Learning Environment, Work Integrated Learning, Career Readiness, Academic Challenge, and overall educational satisfaction levels. A further three aspects, being Student and Staff Interactions, Active Learning, and Enriching Educational Experiences, indirectly influence overall educational satisfaction levels.Keywords: attrition, retention, educational experience, pre-service teacher education, student satisfaction
Procedia PDF Downloads 35614337 A Machine Learning Approach for Detecting and Locating Hardware Trojans
Authors: Kaiwen Zheng, Wanting Zhou, Nan Tang, Lei Li, Yuanhang He
Abstract:
The integrated circuit industry has become a cornerstone of the information society, finding widespread application in areas such as industry, communication, medicine, and aerospace. However, with the increasing complexity of integrated circuits, Hardware Trojans (HTs) implanted by attackers have become a significant threat to their security. In this paper, we proposed a hardware trojan detection method for large-scale circuits. As HTs introduce physical characteristic changes such as structure, area, and power consumption as additional redundant circuits, we proposed a machine-learning-based hardware trojan detection method based on the physical characteristics of gate-level netlists. This method transforms the hardware trojan detection problem into a machine-learning binary classification problem based on physical characteristics, greatly improving detection speed. To address the problem of imbalanced data, where the number of pure circuit samples is far less than that of HTs circuit samples, we used the SMOTETomek algorithm to expand the dataset and further improve the performance of the classifier. We used three machine learning algorithms, K-Nearest Neighbors, Random Forest, and Support Vector Machine, to train and validate benchmark circuits on Trust-Hub, and all achieved good results. In our case studies based on AES encryption circuits provided by trust-hub, the test results showed the effectiveness of the proposed method. To further validate the method’s effectiveness for detecting variant HTs, we designed variant HTs using open-source HTs. The proposed method can guarantee robust detection accuracy in the millisecond level detection time for IC, and FPGA design flows and has good detection performance for library variant HTs.Keywords: hardware trojans, physical properties, machine learning, hardware security
Procedia PDF Downloads 15314336 New Method for the Determination of Montelukast in Human Plasma by Solid Phase Extraction Using Liquid Chromatography Tandem Mass Spectrometry
Authors: Vijayalakshmi Marella, NageswaraRaoPilli
Abstract:
This paper describes a simple, rapid and sensitive liquid chromatography / tandem mass spectrometry assay for the determination of montelukast in human plasma using montelukast d6 as an internal standard. Analyte and the internal standard were extracted from 50 µL of human plasma via solid phase extraction technique without evaporation, drying and reconstitution steps. The chromatographic separation was achieved on a C18 column by using a mixture of methanol and 5mM ammonium acetate (80:20, v/v) as the mobile phase at a flow rate of 0.8 mL/min. Good linearity results were obtained during the entire course of validation. Method validation was performed as per FDA guidelines and the results met the acceptance criteria. A run time of 2.5 min for each sample made it possible to analyze more number of samples in short time, thus increasing the productivity. The proposed method was found to be applicable to clinical studies.Keywords: Montelukast, tandem mass spectrometry, montelukast d6, FDA guidelines
Procedia PDF Downloads 31914335 Accomplishing Mathematical Tasks in Bilingual Primary Classrooms
Authors: Gabriela Steffen
Abstract:
Learning in a bilingual classroom not only implies learning in two languages or in an L2, it also means learning content subjects through the means of bilingual or plurilingual resources, which is of a qualitatively different nature than ‘monolingual’ learning. These resources form elements of a didactics of plurilingualism, aiming not only at the development of a plurilingual competence, but also at drawing on plurilingual resources for nonlinguistic subject learning. Applying a didactics of plurilingualism allows for taking account of the specificities of bilingual content subject learning in bilingual education classrooms. Bilingual education is used here as an umbrella term for different programs, such as bilingual education, immersion, CLIL, bilingual modules in which one or several non-linguistic subjects are taught partly or completely in an L2. This paper aims at discussing first results of a study on pupil group work in bilingual classrooms in several Swiss primary schools. For instance, it analyses two bilingual classes in two primary schools in a French-speaking region of Switzerland that follows a part of their school program through German in addition to French, the language of instruction in this region. More precisely, it analyses videotaped classroom interaction and in situ classroom practices of pupil group work in a mathematics lessons. The ethnographic observation of pupils’ group work and the analysis of their interaction (analytical tools of conversational analysis, discourse analysis and plurilingual interaction) enhance the description of whole-class interaction done in the same (and several other) classes. While the latter are teacher-student interactions, the former are student-student interactions giving more space to and insight into pupils’ talk. This study aims at the description of the linguistic and multimodal resources (in German L2 and/or French L1) pupils mobilize while carrying out a mathematical task. The analysis shows that the accomplishment of the mathematical task takes place in a bilingual mode, whether the whole-class interactions are conducted rather in a bilingual (German L2-French L1) or a monolingual mode in L2 (German). The pupils make plenty of use of German L2 in a setting that lends itself to use French L1 (peer groups with French as a dominant language, in absence of the teacher and a task with a mathematical aim). They switch from French to German and back ‘naturally’, which is regular for bilingual speakers. Their linguistic resources in German L2 are not sufficient to allow them to (inter-)act well enough to accomplish the task entirely in German L2, despite their efforts to do so. However, this does not stop them from carrying out the task in mathematics adequately, which is the main objective, by drawing on the bilingual resources at hand.Keywords: bilingual content subject learning, bilingual primary education, bilingual pupil group work, bilingual teaching/learning resources, didactics of plurilingualism
Procedia PDF Downloads 16514334 Development of pm2.5 Forecasting System in Seoul, South Korea Using Chemical Transport Modeling and ConvLSTM-DNN
Authors: Ji-Seok Koo, Hee‑Yong Kwon, Hui-Young Yun, Kyung-Hui Wang, Youn-Seo Koo
Abstract:
This paper presents a forecasting system for PM2.5 levels in Seoul, South Korea, leveraging a combination of chemical transport modeling and ConvLSTM-DNN machine learning technology. Exposure to PM2.5 has known detrimental impacts on public health, making its prediction crucial for establishing preventive measures. Existing forecasting models, like the Community Multiscale Air Quality (CMAQ) and Weather Research and Forecasting (WRF), are hindered by their reliance on uncertain input data, such as anthropogenic emissions and meteorological patterns, as well as certain intrinsic model limitations. The system we've developed specifically addresses these issues by integrating machine learning and using carefully selected input features that account for local and distant sources of PM2.5. In South Korea, the PM2.5 concentration is greatly influenced by both local emissions and long-range transport from China, and our model effectively captures these spatial and temporal dynamics. Our PM2.5 prediction system combines the strengths of advanced hybrid machine learning algorithms, convLSTM and DNN, to improve upon the limitations of the traditional CMAQ model. Data used in the system include forecasted information from CMAQ and WRF models, along with actual PM2.5 concentration and weather variable data from monitoring stations in China and South Korea. The system was implemented specifically for Seoul's PM2.5 forecasting.Keywords: PM2.5 forecast, machine learning, convLSTM, DNN
Procedia PDF Downloads 6014333 COVID-19 Analysis with Deep Learning Model Using Chest X-Rays Images
Authors: Uma Maheshwari V., Rajanikanth Aluvalu, Kumar Gautam
Abstract:
The COVID-19 disease is a highly contagious viral infection with major worldwide health implications. The global economy suffers as a result of COVID. The spread of this pandemic disease can be slowed if positive patients are found early. COVID-19 disease prediction is beneficial for identifying patients' health problems that are at risk for COVID. Deep learning and machine learning algorithms for COVID prediction using X-rays have the potential to be extremely useful in solving the scarcity of doctors and clinicians in remote places. In this paper, a convolutional neural network (CNN) with deep layers is presented for recognizing COVID-19 patients using real-world datasets. We gathered around 6000 X-ray scan images from various sources and split them into two categories: normal and COVID-impacted. Our model examines chest X-ray images to recognize such patients. Because X-rays are commonly available and affordable, our findings show that X-ray analysis is effective in COVID diagnosis. The predictions performed well, with an average accuracy of 99% on training photographs and 88% on X-ray test images.Keywords: deep CNN, COVID–19 analysis, feature extraction, feature map, accuracy
Procedia PDF Downloads 8414332 Predicting the Human Impact of Natural Onset Disasters Using Pattern Recognition Techniques and Rule Based Clustering
Authors: Sara Hasani
Abstract:
This research focuses on natural sudden onset disasters characterised as ‘occurring with little or no warning and often cause excessive injuries far surpassing the national response capacities’. Based on the panel analysis of the historic record of 4,252 natural onset disasters between 1980 to 2015, a predictive method was developed to predict the human impact of the disaster (fatality, injured, homeless) with less than 3% of errors. The geographical dispersion of the disasters includes every country where the data were available and cross-examined from various humanitarian sources. The records were then filtered into 4252 records of the disasters where the five predictive variables (disaster type, HDI, DRI, population, and population density) were clearly stated. The procedure was designed based on a combination of pattern recognition techniques and rule-based clustering for prediction and discrimination analysis to validate the results further. The result indicates that there is a relationship between the disaster human impact and the five socio-economic characteristics of the affected country mentioned above. As a result, a framework was put forward, which could predict the disaster’s human impact based on their severity rank in the early hours of disaster strike. The predictions in this model were outlined in two worst and best-case scenarios, which respectively inform the lower range and higher range of the prediction. A necessity to develop the predictive framework can be highlighted by noticing that despite the existing research in literature, a framework for predicting the human impact and estimating the needs at the time of the disaster is yet to be developed. This can further be used to allocate the resources at the response phase of the disaster where the data is scarce.Keywords: disaster management, natural disaster, pattern recognition, prediction
Procedia PDF Downloads 15714331 Mutiple Medical Landmark Detection on X-Ray Scan Using Reinforcement Learning
Authors: Vijaya Yuvaram Singh V M, Kameshwar Rao J V
Abstract:
The challenge with development of neural network based methods for medical is the availability of data. Anatomical landmark detection in the medical domain is a process to find points on the x-ray scan report of the patient. Most of the time this task is done manually by trained professionals as it requires precision and domain knowledge. Traditionally object detection based methods are used for landmark detection. Here, we utilize reinforcement learning and query based method to train a single agent capable of detecting multiple landmarks. A deep Q network agent is trained to detect single and multiple landmarks present on hip and shoulder from x-ray scan of a patient. Here a single agent is trained to find multiple landmark making it superior to having individual agents per landmark. For the initial study, five images of different patients are used as the environment and tested the agents performance on two unseen images.Keywords: reinforcement learning, medical landmark detection, multi target detection, deep neural network
Procedia PDF Downloads 14714330 Innovative Pump Design Using the Concept of Viscous Fluid Sinusoidal Excitation
Authors: Ahmed H. Elkholy
Abstract:
The concept of applying a prescribed oscillation to viscous fluids to aid or increase flow is used to produce a maintenance free pump. Application of this technique to fluids presents unique problems such as physical separation; control of heat and mass transfer in certain industrial applications; and improvement of some fluid process methods. The problem as stated is to obtain the velocity distribution, wall shear stress and energy expended when a pipe containing a stagnant viscous fluid is externally excited by a sinusoidal pulse, one end of the pipe being pinned. On the other hand, the effect of different parameters on the results are presented. Such parameters include fluid viscosity, frequency of oscillations and pipe geometry. It was found that the flow velocity through the pump is maximum at the pipe wall, and it decreases rapidly towards the pipe centerline. The frequency of oscillation should be above a certain value in order to obtain meaningful flow velocity. The amount of energy absorbed in the system is mainly due to pipe wall strain energy, while the fluid pressure and kinetic energies are comparatively small.Keywords: sinusoidal excitation, pump, shear stress, flow
Procedia PDF Downloads 32014329 A Desire for Solitude or an Escape from Solitude: A Sociological Study of One Hundred Years of Solitude with the Principles of Emile Durkheim’s Suicide through the Theme Solitude
Authors: Omur Sercan Oral
Abstract:
In this paper, the individual and social conflicts are examined with a sociological perspective during the social process of Macondo described in the post-modern book of Gabriel Garcia Marquez, One Hundred Years of Solitude. More specifically, the theme of the solitude of individuals who choose to be isolated and who are isolated is studied within the context of the suicide of Emile Durkheim. As a self-reflective product of individuals in the result-based process, both economically and socially founded in the text, solitude reflects the ultimate process of separation from society. In this sense, the various and multiplying layers of the collective codes of Macondo as microcosm and their interactions with the individuals are examined in this paper under the roof of suicide in the sociological concept. The attempts to explain the reasons, shift, and its reflections on individuals are carried out to cross the lines of one discipline. In doing that, the ideas of Durkheim, Foucault, Weber, and Clausewitz, to some extent, are planted explicitly and implicitly throughout the paper.Keywords: Durkheim’s concept of suicide, solitude theme in Marquez, collective consciousness, isolation from society, subjectivity
Procedia PDF Downloads 25914328 Predicting Blockchain Technology Installation Cost in Supply Chain System through Supervised Learning
Authors: Hossein Havaeji, Tony Wong, Thien-My Dao
Abstract:
1. Research Problems and Research Objectives: Blockchain Technology-enabled Supply Chain System (BT-enabled SCS) is the system using BT to drive SCS transparency, security, durability, and process integrity as SCS data is not always visible, available, or trusted. The costs of operating BT in the SCS are a common problem in several organizations. The costs must be estimated as they can impact existing cost control strategies. To account for system and deployment costs, it is necessary to overcome the following hurdle. The problem is that the costs of developing and running a BT in SCS are not yet clear in most cases. Many industries aiming to use BT have special attention to the importance of BT installation cost which has a direct impact on the total costs of SCS. Predicting BT installation cost in SCS may help managers decide whether BT is to be an economic advantage. The purpose of the research is to identify some main BT installation cost components in SCS needed for deeper cost analysis. We then identify and categorize the main groups of cost components in more detail to utilize them in the prediction process. The second objective is to determine the suitable Supervised Learning technique in order to predict the costs of developing and running BT in SCS in a particular case study. The last aim is to investigate how the running BT cost can be involved in the total cost of SCS. 2. Work Performed: Applied successfully in various fields, Supervised Learning is a method to set the data frame, treat the data, and train/practice the method sort. It is a learning model directed to make predictions of an outcome measurement based on a set of unforeseen input data. The following steps must be conducted to search for the objectives of our subject. The first step is to make a literature review to identify the different cost components of BT installation in SCS. Based on the literature review, we should choose some Supervised Learning methods which are suitable for BT installation cost prediction in SCS. According to the literature review, some Supervised Learning algorithms which provide us with a powerful tool to classify BT installation components and predict BT installation cost are the Support Vector Regression (SVR) algorithm, Back Propagation (BP) neural network, and Artificial Neural Network (ANN). Choosing a case study to feed data into the models comes into the third step. Finally, we will propose the best predictive performance to find the minimum BT installation costs in SCS. 3. Expected Results and Conclusion: This study tends to propose a cost prediction of BT installation in SCS with the help of Supervised Learning algorithms. At first attempt, we will select a case study in the field of BT-enabled SCS, and then use some Supervised Learning algorithms to predict BT installation cost in SCS. We continue to find the best predictive performance for developing and running BT in SCS. Finally, the paper will be presented at the conference.Keywords: blockchain technology, blockchain technology-enabled supply chain system, installation cost, supervised learning
Procedia PDF Downloads 12614327 Hear My Voice: The Educational Experiences of Disabled Students
Authors: Karl Baker-Green, Ian Woolsey
Abstract:
Historically, a variety of methods have been used to access the student voice within higher education, including module evaluations and informal classroom feedback. However, currently, the views articulated in student-staff-committee meetings bear the most weight and can therefore have the most significant impact on departmental policy. Arguably, these forums are exclusionary as several students, including those who experience severe anxiety, might feel unable to participate in this face-to-face (large) group activities. Similarly, students who declare a disability, but are not in possession of a learning contract, are more likely to withdraw from their studies than those whose additional needs have been formally recognised. It is also worth noting that whilst the number of disabled students in Higher Education has increased in recent years, the percentage of those who have been issued a learning contract has decreased. These issues foreground the need to explore the educational experiences of students with or without a learning contract in order to identify their respective aspirations and needs and therefore help shape education policy. This is in keeping with the ‘Nothing about us without us’, agenda, which recognises that disabled individuals are best placed to understand their own requirements and the most effective strategies to meet these.Keywords: education, student voice, student experience, student retention
Procedia PDF Downloads 9714326 Soul-Body Relationship in Medieval Islamic Thought – Analysis of Avicenna’s Psychology and Medicine with Implication to Mental Health
Authors: Yula Milshteyn
Abstract:
The present study focuses on the science of the “Soul” in Islamic Medieval Psychology.The main objective of the current essay is to analyze the concept of the “soul” in relation to “mental” disorders, in the philosophical psychology and medicinal treatise of Ibn Sina, a Muslim Persian physician-philosopher (known as Avicenna in the Western world) (981-1037 CE). The examination will concentrate on the nature of the soul, and the relationship of the soul to the body, as well as the manifestation of health and sickness in soul and body, The analysis draws on Avicenna’s Psychology (Kitab al-Najat or The Book of Salvation), Remarks and Admonitions (Al-isharat wa al-tanbihat), and the medical treatise – The Canon of Medicine (al-Qānūn fī al-Ṭibb). Avicenna’s psychology of the soul is primarily based on Aristotelian and Neo-platonic paradigms. For Avicenna, soul is a metaphysical, independent substance, which in modern terms implies independence of human consciousness from the material body. The soul however, is linked to the body and controls all its’ faculties or functions. It is suggested that in the specific case study of schizophrenia, it is a disorder pertained to both, soul and body and can be characterized as a multi-faceted neurobiological, physiological, psychological and metaphysical spiritual phenomenon.Keywords: Avicenna, canon of the medicine, mental disorders, psychology, schizophrenia, soul-body
Procedia PDF Downloads 6614325 Cross-Tier Collaboration between Preservice and Inservice Language Teachers in Designing Online Video-Based Pragmatic Assessment
Authors: Mei-Hui Liu
Abstract:
This paper reports the progression of language teachers’ learning to assess students’ speech act performance via online videos in a cross-tier professional growth community. This yearlong research project collected multiple data sources from several stakeholders, including 12 preservice and 4 inservice English as a foreign language (EFL) teachers, 4 English professionals, and 82 high school students. Data sources included surveys, (focus group) interviews, online reflection journals, online video-based assessment items/scores, and artifacts related to teacher professional learning. The major findings depicted the effectiveness of this proposed learning module on language teacher development in pragmatic assessment as well as its impact on student learning experience. All these teachers appreciated this professional learning experience which enhanced their knowledge in assessing students’ pragmalinguistic and sociopragmatic performance in an English speech act (i.e., making refusals). They learned how to design online video-based assessment items by attending to specific linguistic structures, semantic formula, and sociocultural issues. They further became aware of how to sharpen pragmatic instructional skills in the near future after putting theories into online assessment and related classroom practices. Additionally, data analysis revealed students’ achievement in and satisfaction with the designed online assessment. Yet, during the professional learning process most participating teachers encountered challenges in reaching a consensus on selecting appropriate video clips from available sources to present the sociocultural values in English-speaking refusal contexts. Also included was to construct test items which could testify the influence of interlanguage transfer on students’ pragmatic performance in various conversational scenarios. With pedagogical implications and research suggestions, this study adds to the increasing amount of research into integrating preservice and inservice EFL teacher education in pragmatic assessment and relevant instruction. Acknowledgment: This research project is sponsored by the Ministry of Science and Technology in the Republic of China under the grant number of MOST 106-2410-H-029-038.Keywords: cross-tier professional development, inservice EFL teachers, pragmatic assessment, preservice EFL teachers, student learning experience
Procedia PDF Downloads 262