Search results for: continuous dynamic recrystallization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6048

Search results for: continuous dynamic recrystallization

2478 The Impact of Artificial Intelligence on Human Rights Priciples and Obligations

Authors: Adel Atta Youssef Rezkalla

Abstract:

Russia's invasion of Ukraine tested the international community and prompted not only states but also non-state actors to take deterrent measures in response. In fact, international sports federations, notably FIFA and UEFA, have managed to shift the power dynamic quite effectively by imposing a blanket ban on Russian national teams and clubs. The purpose of this article is to examine the human rights consequences of such actions by international sports organizations. First, the article moves away from assessing the legal status of FIFA and UEFA under international law and examines the question of how a legal connection can be established with their human rights obligations. Secondly, the human rights aspects of the controversial FIFA and UEFA measures against Russian athletes are examined and these are analyzed in more detail using the proportionality test than the principle of non-discrimination under international human rights law. Finally, the main avenues for redress for possible human rights violations related to the actions taken by these organizations are identified and the challenges of arbitration and litigation in Switzerland are highlighted.

Keywords: sustainable development, human rights, the right to development, the human rights-based approach to development, environmental rights, economic development, social sustainability human rights protection, human rights violations, workers’ rights, justice, security.

Procedia PDF Downloads 77
2477 Modeling Usage Patterns of Mobile App Service in App Market Using Hidden Markov Model

Authors: Yangrae Cho, Jinseok Kim, Yongtae Park

Abstract:

Mobile app service ecosystem has been abruptly emerged, explosively grown, and dynamically transformed. In contrast with product markets in which product sales directly cause increment in firm’s income, customer’s usage is less visible but more valuable in service market. Especially, the market situation with cutthroat competition in mobile app store makes securing and keeping of users as vital. Although a few service firms try to manage their apps’ usage patterns by fitting on S-curve or applying other forecasting techniques, the time series approaches based on past sequential data are subject to fundamental limitation in the market where customer’s attention is being moved unpredictably and dynamically. We therefore propose a new conceptual approach for detecting usage pattern of mobile app service with Hidden Markov Model (HMM) which is based on the dual stochastic structure and mainly used to clarify unpredictable and dynamic sequential patterns in voice recognition or stock forecasting. Our approach could be practically utilized for app service firms to manage their services’ lifecycles and academically expanded to other markets.

Keywords: mobile app service, usage pattern, Hidden Markov Model, pattern detection

Procedia PDF Downloads 336
2476 The Effects of Consumer Inertia and Emotions on New Technology Acceptance

Authors: Chyi Jaw

Abstract:

Prior literature on innovation diffusion or acceptance has almost exclusively concentrated on consumers’ positive attitudes and behaviors for new products/services. Consumers’ negative attitudes or behaviors to innovations have received relatively little marketing attention, but it happens frequently in practice. This study discusses consumer psychological factors when they try to learn or use new technologies. According to recent research, technological innovation acceptance has been considered as a dynamic or mediated process. This research argues that consumers can experience inertia and emotions in the initial use of new technologies. However, given such consumer psychology, the argument can be made as to whether the inclusion of consumer inertia (routine seeking and cognitive rigidity) and emotions increases the predictive power of new technology acceptance model. As data from the empirical study find, the process is potentially consumer emotion changing (independent of performance benefits) because of technology complexity and consumer inertia, and impact innovative technology use significantly. Finally, the study presents the superior predictability of the hypothesized model, which let managers can better predict and influence the successful diffusion of complex technological innovations.

Keywords: cognitive rigidity, consumer emotions, new technology acceptance, routine seeking, technology complexity

Procedia PDF Downloads 296
2475 Oxygen Enriched Co-Combustion of Sub-Bituminous Coal/Biomass Waste Fuel Blends

Authors: Chaouki Ghenai

Abstract:

Computational Fluid Dynamic analysis of co-combustion of coal/biomass waste fuel blends is presented in this study. The main objective of this study is to investigate the effects of biomass portions (0%, 10%, 20%, 30%: weight percent) blended with coal and oxygen concentrations (21% for air, 35%, 50%, 75% and 100 % for pure oxygen) on the combustion performance and emissions. The goal is to reduce the air emissions from power plants coal combustion. Sub-bituminous Nigerian coal with calorific value of 32.51 MJ/kg and sawdust (biomass) with calorific value of 16.68 MJ/kg is used in this study. Coal/Biomass fuel blends co-combustion is modeled using mixture fraction/pdf approach for non-premixed combustion and Discrete Phase Modeling (DPM) to predict the trajectories and the heat/mass transfer of the fuel blend particles. The results show the effects of oxygen concentrations and biomass portions in the coal/biomass fuel blends on the gas and particles temperatures, the flow field, the devolitization and burnout rates inside the combustor and the CO2 and NOX emissions at the exit from the combustor. The results obtained in the course of this study show the benefits of enriching combustion air with oxygen and blending biomass waste with coal for reducing the harmful emissions from coal power plants.

Keywords: co-combustion, coal, biomass, fuel blends, CFD, air emissions

Procedia PDF Downloads 417
2474 Safety Testing of Commercial Lithium-Ion Batteries and Failure Modes Analysis

Authors: Romeo Malik, Yashraj Tripathy, Anup Barai

Abstract:

Transportation safety is a major concern for vehicle electrification on a large-scale. The failure cost of lithium-ion batteries is substantial and is significantly impacted by higher liability and replacement cost. With continuous advancement on the material front in terms of higher energy density, upgrading safety characteristics are becoming more crucial for broader integration of lithium-ion batteries. Understanding and impeding thermal runaway is the prime issue for battery safety researchers. In this study, a comprehensive comparison of thermal runaway mechanisms for two different cathode types, Li(Ni₀.₃Co₀.₃Mn₀.₃)O₂ and Li(Ni₀.₈Co₀.₁₅Al₀.₀₅)O₂ is explored. Both the chemistries were studied for different states of charge, and the various abuse scenarios that lead to thermal runaway is investigated. Abuse tests include mechanical abuse, electrical abuse, and thermal abuse. Batteries undergo thermal runaway due to a series of combustible reactions taking place internally; this is observed as multiple jets of flame reaching temperatures of the order of 1000ºC. The physicochemical characterisation was performed on cells, prior to and after abuse. Battery’s state of charge and chemistry have a significant effect on the flame temperature profiles which is otherwise quantified as heat released. Majority of the failures during transportation is due to these external short circuit. Finally, a mitigation approach is proposed to impede the thermal runaway hazard. Transporting lithium-ion batteries under low states of charge is proposed as a way forward. Batteries at low states of charge have demonstrated minimal heat release under thermal runaway reducing the risk of secondary hazards such as thermal runaway propagation.

Keywords: battery reliability, lithium-ion batteries, thermal runaway characterisation, tomography

Procedia PDF Downloads 122
2473 Simulation on Fuel Metering Unit Used for TurboShaft Engine Model

Authors: Bin Wang, Hengyu Ji, Zhifeng Ye

Abstract:

Fuel Metering Unit (FMU) in fuel system of an aeroengine sometimes has direct influence on the engine performance, which is neglected for the sake of easy access to mathematical model of the engine in most cases. In order to verify the influence of FMU on an engine model, this paper presents a co-simulation of a stepping motor driven FMU (digital FMU) in a turboshaft aeroengine, using AMESim and MATLAB to obtain the steady and dynamic characteristics of the FMU. For this method, mechanical and hydraulic section of the unit is modeled through AMESim, while the stepping motor is mathematically modeled through MATLAB/Simulink. Combining these two sub-models yields an AMESim/MATLAB co-model of the FMU. A simplified component level model for the turboshaft engine is established and connected with the FMU model. Simulation results on the full model show that the engine model considering FMU characteristics describes the engine more precisely especially in its transition state. An FMU dynamics will cut down the rotation speed of the high pressure shaft and the inlet pressure of the combustor during the step response. The work in this paper reveals the impact of FMU on engine operation characteristics and provides a reference to an engine model for ground tests.

Keywords: fuel metering unit, stepping motor, AMESim/Matlab, full digital simulation

Procedia PDF Downloads 249
2472 Non Enzymatic Electrochemical Sensing of Glucose Using Manganese Doped Nickel Oxide Nanoparticles Decorated Carbon Nanotubes

Authors: Anju Joshi, C. N. Tharamani

Abstract:

Diabetes is one of the leading cause of death at present and remains an important concern as the prevalence of the disease is increasing at an alarming rate. Therefore, it is crucial to diagnose the accurate levels of glucose for developing an efficient therapeutic for diabetes. Due to the availability of convenient and compact self-testing, continuous monitoring of glucose is feasible nowadays. Enzyme based electrochemical sensing of glucose is quite popular because of its high selectivity but suffers from drawbacks like complicated purification and immobilization procedures, denaturation, high cost, and low sensitivity due to indirect electron transfer. Hence, designing a robust enzyme free platform using transition metal oxides remains crucial for the efficient and sensitive determination of glucose. In the present work, manganese doped nickel oxide nanoparticles (Mn-NiO) has been synthesized onto the surface of multiwalled carbon nanotubes using a simple microwave assisted approach for non-enzymatic electrochemical sensing of glucose. The morphology and structure of the synthesized nanostructures were characterized using scanning electron microscopy (SEM) and X-Ray diffraction (XRD). We demonstrate that the synthesized nanostructures show enormous potential for electrocatalytic oxidation of glucose with high sensitivity and selectivity. Cyclic voltammetry and square wave voltammetry studies suggest superior sensitivity and selectivity of Mn-NiO decorated carbon nanotubes towards the non-enzymatic determination of glucose. A linear response between the peak current and the concentration of glucose has been found to be in the concentration range of 0.01 μM- 10000 μM which suggests the potential efficacy of Mn-NiO decorated carbon nanotubes for sensitive determination of glucose.

Keywords: diabetes, glucose, Mn-NiO decorated carbon nanotubes, non-enzymatic

Procedia PDF Downloads 235
2471 Self-Regulated Learning: A Required Skill for Web 2.0 Internet-Based Learning

Authors: Pieter Conradie, M. Marina Moller

Abstract:

Web 2.0 Internet-based technologies have intruded all aspects of human life. Presently, this phenomenon is especially evident in the educational context, with increased disruptive Web 2.0 technology infusions dramatically changing educational practice. The most prominent of these Web 2.0 intrusions can be identified as Massive Open Online Courses (Coursera, EdX), video and photo sharing sites (Youtube, Flickr, Instagram), and Web 2.0 online tools utilize to create Personal Learning Environments (PLEs) (Symbaloo (aggregator), Delicious (social bookmarking), PBWorks (collaboration), Google+ (social networks), Wordspress (blogs), Wikispaces (wiki)). These Web 2.0 technologies have supported the realignment from a teacher-based pedagogy (didactic presentation) to a learner-based pedagogy (problem-based learning, project-based learning, blended learning), allowing greater learner autonomy. No longer is the educator the source of knowledge. Instead the educator has become the facilitator and mediator of the learner, involved in developing learner competencies to support life-long learning (continuous learning) in the 21st century. In this study, the self-regulated learning skills of thirty first-year university learners were explored by utilizing the Online Self-regulated Learning Questionnaire. Implementing an action research method, an intervention was affected towards improving the self-regulation skill set of the participants. Statistical significant results were obtained with increased self-regulated learning proficiency, positively impacting learner performance. Goal setting, time management, environment structuring, help seeking, task (learning) strategies and self-evaluation skills were confirmed as determinants of improved learner success.

Keywords: andragogy, online self-regulated learning questionnaire, self-regulated learning, web 2.0

Procedia PDF Downloads 417
2470 COVID–19 Impact on Passenger and Cargo Traffic: A Case Study

Authors: Maja Čović, Josipa Bojčić, Bruna Bacalja, Gorana Jelić Mrčelić

Abstract:

The appearance of the COVID-19 disease and its fast-spreading brought global pandemic and health crisis. In order to prevent the further spreading of the virus, the governments had implemented mobility restriction rules which left a negative mark on the world’s economy. Although there is numerous research on the impact of COVID-19 on marine traffic around the world, the objective of this paper is to consider the impact of COVID-19 on passenger and cargo traffic in Port of Split, in the Republic of Croatia. Methods used to make the theoretical and research part of the paper are descriptive method, comparative method, compilation, inductive method, deductive method, and statistical method. Paper relies on data obtained via Port of Split Authority and analyses trends in passenger and cargo traffic, including the year 2020, when the pandemic broke. Significant reductions in income, disruptions in transportation and traffic, as well as other maritime services are shown in the paper. This article also observes a significant decline in passenger traffic, cruising traffic and also observes the dynamic of cargo traffic inside the port of Split.

Keywords: COVID-19, pandemic, passenger traffic, ports, trends, cargo traffic

Procedia PDF Downloads 216
2469 Influence Analysis of Macroeconomic Parameters on Real Estate Price Variation in Taipei, Taiwan

Authors: Li Li, Kai-Hsuan Chu

Abstract:

It is well known that the real estate price depends on a lot of factors. Each house current value is dependent on the location, room number, transportation, living convenience, year and surrounding environments. Although, there are different experienced models for housing agent to estimate the price, it is a case by case study without overall dynamic variation investigation. However, many economic parameters may more or less influence the real estate price variation. Here, the influences of most macroeconomic parameters on real estate price are investigated individually based on least-square scheme and grey correlation strategy. Then those parameters are classified into leading indices, simultaneous indices and laggard indices. In addition, the leading time period is evaluated based on least square method. The important leading and simultaneous indices can be used to establish an artificial intelligent neural network model for real estate price variation prediction. The real estate price variation of Taipei, Taiwan during 2005 ~ 2017 are chosen for this research data analysis and validation. The results show that the proposed method has reasonable prediction function for real estate business reference.

Keywords: real estate price, least-square, grey correlation, macroeconomics

Procedia PDF Downloads 198
2468 An Ensemble System of Classifiers for Computer-Aided Volcano Monitoring

Authors: Flavio Cannavo

Abstract:

Continuous evaluation of the status of potentially hazardous volcanos plays a key role for civil protection purposes. The importance of monitoring volcanic activity, especially for energetic paroxysms that usually come with tephra emissions, is crucial not only for exposures to the local population but also for airline traffic. Presently, real-time surveillance of most volcanoes worldwide is essentially delegated to one or more human experts in volcanology, who interpret data coming from different kind of monitoring networks. Unfavorably, the high nonlinearity of the complex and coupled volcanic dynamics leads to a large variety of different volcanic behaviors. Moreover, continuously measured parameters (e.g. seismic, deformation, infrasonic and geochemical signals) are often not able to fully explain the ongoing phenomenon, thus making the fast volcano state assessment a very puzzling task for the personnel on duty at the control rooms. With the aim of aiding the personnel on duty in volcano surveillance, here we introduce a system based on an ensemble of data-driven classifiers to infer automatically the ongoing volcano status from all the available different kind of measurements. The system consists of a heterogeneous set of independent classifiers, each one built with its own data and algorithm. Each classifier gives an output about the volcanic status. The ensemble technique allows weighting the single classifier output to combine all the classifications into a single status that maximizes the performance. We tested the model on the Mt. Etna (Italy) case study by considering a long record of multivariate data from 2011 to 2015 and cross-validated it. Results indicate that the proposed model is effective and of great power for decision-making purposes.

Keywords: Bayesian networks, expert system, mount Etna, volcano monitoring

Procedia PDF Downloads 246
2467 Uncertainty and Volatility in Middle East and North Africa Stock Market during the Arab Spring

Authors: Ameen Alshugaa, Abul Mansur Masih

Abstract:

This paper sheds light on the economic impacts of political uncertainty caused by the civil uprisings that swept the Arab World and have been collectively known as the Arab Spring. Measuring documented effects of political uncertainty on regional stock market indices, we examine the impact of the Arab Spring on the volatility of stock markets in eight countries in the Middle East and North Africa (MENA) region: Egypt, Lebanon, Jordon, United Arab Emirate, Qatar, Bahrain, Oman and Kuwait. This analysis also permits testing the existence of financial contagion among equity markets in the MENA region during the Arab Spring. To capture the time-varying and multi-horizon nature of the evidence of volatility and contagion in the eight MENA stock markets, we apply two robust methodologies on consecutive data from November 2008 to March 2014: MGARCH-DCC, Continuous Wavelet Transforms (CWT). Our results indicate two key findings. First, the discrepancies between volatile stock markets of countries directly impacted by the Arab Spring and countries that were not directly impacted indicate that international investors may still enjoy portfolio diversification and investment in MENA markets. Second, the lack of financial contagion during the Arab Spring suggests that there is little evidence of cointegration among MENA markets. Providing a general analysis of the economic situation and the investment climate in the MENA region during and after the Arab Spring, this study bear significant importance for policy makers, local and international investors, and market regulators.

Keywords: Portfolio Diversification , MENA Region , Stock Market Indices, MGARCH-DCC, Wavelet Analysis, CWT

Procedia PDF Downloads 292
2466 Review of Numerical Models for Granular Beds in Solar Rotary Kilns for Thermal Applications

Authors: Edgar Willy Rimarachin Valderrama, Eduardo Rojas Parra

Abstract:

Thermal energy from solar radiation is widely present in power plants, food drying, chemical reactors, heating and cooling systems, water treatment processes, hydrogen production, and others. In the case of power plants, one of the technologies available to transform solar energy into thermal energy is by solar rotary kilns where a bed of granular matter is heated through concentrated radiation obtained from an arrangement of heliostats. Numerical modeling is a useful approach to study the behavior of granular beds in solar rotary kilns. This technique, once validated with small-scale experiments, can be used to simulate large-scale processes for industrial applications. This study gives a comprehensive classification of numerical models used to simulate the movement and heat transfer for beds of granular media within solar rotary furnaces. In general, there exist three categories of models: 1) continuum, 2) discrete, and 3) multiphysics modeling. The continuum modeling considers zero-dimensional, one-dimensional and fluid-like models. On the other hand, the discrete element models compute the movement of each particle of the bed individually. In this kind of modeling, the heat transfer acts during contacts, which can occur by solid-solid and solid-gas-solid conduction. Finally, the multiphysics approach considers discrete elements to simulate grains and a continuous modeling to simulate the fluid around particles. This classification allows to compare the advantages and disadvantages for each kind of model in terms of accuracy, computational cost and implementation.

Keywords: granular beds, numerical models, rotary kilns, solar thermal applications

Procedia PDF Downloads 34
2465 Product Feature Modelling for Integrating Product Design and Assembly Process Planning

Authors: Baha Hasan, Jan Wikander

Abstract:

This paper describes a part of the integrating work between assembly design and assembly process planning domains (APP). The work is based, in its first stage, on modelling assembly features to support APP. A multi-layer architecture, based on feature-based modelling, is proposed to establish a dynamic and adaptable link between product design using CAD tools and APP. The proposed approach is based on deriving “specific function” features from the “generic” assembly and form features extracted from the CAD tools. A hierarchal structure from “generic” to “specific” and from “high level geometrical entities” to “low level geometrical entities” is proposed in order to integrate geometrical and assembly data extracted from geometrical and assembly modelers to the required processes and resources in APP. The feature concept, feature-based modelling, and feature recognition techniques are reviewed.

Keywords: assembly feature, assembly process planning, feature, feature-based modelling, form feature, ontology

Procedia PDF Downloads 309
2464 Efficient Pre-Concentration of As (III) Using Guanidine-Modified Magnetic Mesoporous Silica in the Food Sample

Authors: Majede Modheji, Hamid Emadi, Hossein Vojoudi

Abstract:

An efficient magnetic mesoporous structure was designed and prepared for the facile pre-concentration of As(III) ions. To prepare the sorbent, a core-shell magnetic silica nanoparticle was covered by MCM-41 like structure, and then the surface was modified by guanidine via an amine linker. The prepared adsorbent was investigated as an effective and sensitive material for the adsorption of arsenic ions from the aqueous solution applying a normal batch method. The imperative variables of the adsorption were studied to increase efficiency. The dynamic and static processes were tested that matched a pseudo-second order of kinetic model and the Langmuir isotherm model, respectively. The sorbent reusability was investigated, and it was confirmed that the designed product could be applied at best for six cycles successively without any significant efficiency loss. The synthesized product was tested to determine and pre-concentrate trace amounts of arsenic ions in rice and natural waters as a real sample. A desorption process applying 5 mL of hydrochloric acid (0.5 mol L⁻¹) as an eluent exhibited about 98% recovery of the As(III) ions adsorbed on the GA-MSMP sorbent.

Keywords: arsenic, adsorption, mesoporous, surface modification, MCM-41

Procedia PDF Downloads 150
2463 Networking the Biggest Challenge in Hybrid Cloud Deployment

Authors: Aishwarya Shekhar, Devesh Kumar Srivastava

Abstract:

Cloud computing has emerged as a promising direction for cost efficient and reliable service delivery across data communication networks. The dynamic location of service facilities and the virtualization of hardware and software elements are stressing the communication networks and protocols, especially when data centres are interconnected through the internet. Although the computing aspects of cloud technologies have been largely investigated, lower attention has been devoted to the networking services without involving IT operating overhead. Cloud computing has enabled elastic and transparent access to infrastructure services without involving IT operating overhead. Virtualization has been a key enabler for cloud computing. While resource virtualization and service abstraction have been widely investigated, networking in cloud remains a difficult puzzle. Even though network has significant role in facilitating hybrid cloud scenarios, it hasn't received much attention in research community until recently. We propose Network as a Service (NaaS), which forms the basis of unifying public and private clouds. In this paper, we identify various challenges in adoption of hybrid cloud. We discuss the design and implementation of a cloud platform.

Keywords: cloud computing, networking, infrastructure, hybrid cloud, open stack, naas

Procedia PDF Downloads 427
2462 A Primary Care Diagnosis of Middle-Aged Men with Oral Cancer Who Underwent Extensive Resection and Flap Repair: A Case Report

Authors: Ching-Yi Huang, Pi-Fen Cheng, Hui-Zhu Chen, Shi Ting Huang, Heng-Hua Wang

Abstract:

This is a case of oral cancer after extensive resection and modified right lateral neck lymph node dissection followed by reconstruction with a skin flap. The nursing period lasted From September 25 to October 3, 2017, through observation, interview, physical assessment, and medical record review, the author identified the following nursing problems: acute pain, impaired oral mucous membrane, and body image change. During the nursing period, the author provided individual and overall nursing care and established mutual trust through the use of empathy. Author listened and eased the patient's physical indisposition, such as wound pain, we use medications and acupuncture massage to relieve pain. However, for oral mucosa change caused by surgery, provide continuous and complete oral care and oral exercise training to improve oral mucosal healing and restore swallowing function. In the body-image changes, guided him to express his feeling after the body-image change, and enhanced support and from the family, and encouraged him to attend head and neck cancer survivor alliance which allowed the patient to accept the altered body image and reaffirm self-worth. Hopefully, through sharing this nursing experience will help to the nursing care quality of nursing care for oral cancer patients after extensive resection and modified right lateral neck lymph node dissection followed by reconstruction with a skin flap.

Keywords: oral cancer, acute pain, impaired oral mucous membrane, body image change

Procedia PDF Downloads 187
2461 Flexible and Color Tunable Inorganic Light Emitting Diode Array for High Resolution Optogenetic Devices

Authors: Keundong Lee, Dongha Yoo, Youngbin Tchoe, Gyu-Chul Yi

Abstract:

Light emitting diode (LED) array is an ideal optical stimulation tool for optogenetics, which controls inhibition and excitation of specific neurons with light-sensitive ion channels or pumps. Although a fiber-optic cable with an external light source, either a laser or LED mechanically connected to the end of the fiber-optic cable has widely been used for illumination on neural tissue, a new approach to use micro LEDs (µLEDs) has recently been demonstrated. The LEDs can be placed directly either on the cortical surface or within the deep brain using a penetrating depth probe. Accordingly, this method would not need a permanent opening in the skull if the LEDs are integrated with miniature electrical power source and wireless communication. In addition, multiple color generation from single µLED cell would enable to excite and/or inhibit neurons in localized regions. Here, we demonstrate flexible and color tunable µLEDs for the optogenetic device applications. The flexible and color tunable LEDs was fabricated using multifaceted gallium nitride (GaN) nanorod arrays with GaN nanorods grown on InxGa1−xN/GaN single quantum well structures (SQW) anisotropically formed on the nanorod tips and sidewalls. For various electroluminescence (EL) colors, current injection paths were controlled through a continuous p-GaN layer depending on the applied bias voltage. The electric current was injected through different thickness and composition, thus changing the color of light from red to blue that the LED emits. We believe that the flexible and color tunable µLEDs enable us to control activities of the neuron by emitting various colors from the single µLED cell.

Keywords: light emitting diode, optogenetics, graphene, flexible optoelectronics

Procedia PDF Downloads 211
2460 Optimal Investment and Consumption Decision for an Investor with Ornstein-Uhlenbeck Stochastic Interest Rate Model through Utility Maximization

Authors: Silas A. Ihedioha

Abstract:

In this work; it is considered that an investor’s portfolio is comprised of two assets; a risky stock which price process is driven by the geometric Brownian motion and a risk-free asset with Ornstein-Uhlenbeck Stochastic interest rate of return, where consumption, taxes, transaction costs and dividends are involved. This paper aimed at the optimization of the investor’s expected utility of consumption and terminal return on his investment at the terminal time having power utility preference. Using dynamic optimization procedure of maximum principle, a second order nonlinear partial differential equation (PDE) (the Hamilton-Jacobi-Bellman equation HJB) was obtained from which an ordinary differential equation (ODE) obtained via elimination of variables. The solution to the ODE gave the closed form solution of the investor’s problem. It was found the optimal investment in the risky asset is horizon dependent and a ratio of the total amount available for investment and the relative risk aversion coefficient.

Keywords: optimal, investment, Ornstein-Uhlenbeck, utility maximization, stochastic interest rate, maximum principle

Procedia PDF Downloads 225
2459 Navigating the Assessment Landscape in English Language Teaching: Strategies, Challengies and Best Practices

Authors: Saman Khairani

Abstract:

Assessment is a pivotal component of the teaching and learning process, serving as a critical tool for evaluating student progress, diagnosing learning needs, and informing instructional decisions. In the context of English Language Teaching (ELT), effective assessment practices are essential to promote meaningful learning experiences and foster continuous improvement in language proficiency. This paper delves into various assessment strategies, explores associated challenges, and highlights best practices for assessing student learning in ELT. The paper begins by examining the diverse forms of assessment, including formative assessments that provide timely feedback during the learning process and summative assessments that evaluate overall achievement. Additionally, alternative methods such as portfolios, self-assessment, and peer assessment play a significant role in capturing various aspects of language learning. Aligning assessments with learning objectives is crucial. Educators must ensure that assessment tasks reflect the desired language skills, communicative competence, and cultural awareness. Validity, reliability, and fairness are essential considerations in assessment design. Challenges in assessing language skills—such as speaking, listening, reading, and writing—are discussed, along with practical solutions. Constructive feedback, tailored to individual learners, guides their language development. In conclusion, this paper synthesizes research findings and practical insights, equipping ELT practitioners with the knowledge and tools necessary to design, implement, and evaluate effective assessment practices. By fostering meaningful learning experiences, educators contribute significantly to learners’ language proficiency and overall success.

Keywords: ELT, formative, summative, fairness, validity, reliability

Procedia PDF Downloads 56
2458 Design and Fabrication of AI-Driven Kinetic Facades with Soft Robotics for Optimized Building Energy Performance

Authors: Mohammadreza Kashizadeh, Mohammadamin Hashemi

Abstract:

This paper explores a kinetic building facade designed for optimal energy capture and architectural expression. The system integrates photovoltaic panels with soft robotic actuators for precise solar tracking, resulting in enhanced electricity generation compared to static facades. Driven by the growing interest in dynamic building envelopes, the exploration of facade systems are necessitated. Increased energy generation and regulation of energy flow within buildings are potential benefits offered by integrating photovoltaic (PV) panels as kinetic elements. However, incorporating these technologies into mainstream architecture presents challenges due to the complexity of coordinating multiple systems. To address this, the design leverages soft robotic actuators, known for their compliance, resilience, and ease of integration. Additionally, the project investigates the potential for employing Large Language Models (LLMs) to streamline the design process. The research methodology involved design development, material selection, component fabrication, and system assembly. Grasshopper (GH) was employed within the digital design environment for parametric modeling and scripting logic, and an LLM was experimented with to generate Python code for the creation of a random surface with user-defined parameters. Various techniques, including casting, Three-dimensional 3D printing, and laser cutting, were utilized to fabricate physical components. A modular assembly approach was adopted to facilitate installation and maintenance. A case study focusing on the application of this facade system to an existing library building at Polytechnic University of Milan is presented. The system is divided into sub-frames to optimize solar exposure while maintaining a visually appealing aesthetic. Preliminary structural analyses were conducted using Karamba3D to assess deflection behavior and axial loads within the cable net structure. Additionally, Finite Element (FE) simulations were performed in Abaqus to evaluate the mechanical response of the soft robotic actuators under pneumatic pressure. To validate the design, a physical prototype was created using a mold adapted for a 3D printer's limitations. Casting Silicone Rubber Sil 15 was used for its flexibility and durability. The 3D-printed mold components were assembled, filled with the silicone mixture, and cured. After demolding, nodes and cables were 3D-printed and connected to form the structure, demonstrating the feasibility of the design. This work demonstrates the potential of soft robotics and Artificial Intelligence (AI) for advancements in sustainable building design and construction. The project successfully integrates these technologies to create a dynamic facade system that optimizes energy generation and architectural expression. While limitations exist, this approach paves the way for future advancements in energy-efficient facade design. Continued research efforts will focus on cost reduction, improved system performance, and broader applicability.

Keywords: artificial intelligence, energy efficiency, kinetic photovoltaics, pneumatic control, soft robotics, sustainable building

Procedia PDF Downloads 32
2457 A Study of the Trade-off Energy Consumption-Performance-Schedulability for DVFS Multicore Systems

Authors: Jalil Boudjadar

Abstract:

Dynamic Voltage and Frequency Scaling (DVFS) multicore platforms are promising execution platforms that enable high computational performance, less energy consumption and flexibility in scheduling the system processes. However, the resulting interleaving and memory interference together with per-core frequency tuning make real-time guarantees hard to be delivered. Besides, energy consumption represents a strong constraint for the deployment of such systems on energy-limited settings. Identifying the system configurations that would achieve a high performance and consume less energy while guaranteeing the system schedulability is a complex task in the design of modern embedded systems. This work studies the trade-off between energy consumption, cores utilization and memory bottleneck and their impact on the schedulability of DVFS multicore time-critical systems with a hierarchy of shared memories. We build a model-based framework using Parametrized Timed Automata of UPPAAL to analyze the mutual impact of performance, energy consumption and schedulability of DVFS multicore systems, and demonstrate the trade-off on an actual case study.

Keywords: time-critical systems, multicore systems, schedulability analysis, energy consumption, performance analysis

Procedia PDF Downloads 107
2456 Optimization of Oxygen Plant Parameters Simulating with MATLAB

Authors: B. J. Sonani, J. K. Ratnadhariya, Srinivas Palanki

Abstract:

Cryogenic engineering is the fast growing branch of the modern technology. There are various applications of the cryogenic engineering such as liquefaction in gas industries, metal industries, medical science, space technology, and transportation. The low-temperature technology developed superconducting materials which lead to reduce the friction and wear in various components of the systems. The liquid oxygen, hydrogen and helium play vital role in space application. The liquefaction process is produced very low temperature liquid for various application in research and modern application. The air liquefaction system for oxygen plants in gas industries is based on the Claude cycle. The effect of process parameters on the overall system is difficult to be analysed by manual calculations, and this provides the motivation to use process simulators for understanding the steady state and dynamic behaviour of such systems. The parametric study of this system via MATLAB simulations provide useful guidelines for preliminary design of air liquefaction system based on the Claude cycle. Every organization is always trying for reduce the cost and using the optimum performance of the plant for the staying in the competitive market.

Keywords: cryogenic, liquefaction, low -temperature, oxygen, claude cycle, optimization, MATLAB

Procedia PDF Downloads 322
2455 Nexus between Energy, Environment and Economic Growth: Sectoral Analysis from Pakistan

Authors: Muhammad Afzal, Muhammad Sajjad

Abstract:

Climate change has become a global environmental challenge and it has affected the world’s economy. Its impact is widespread across all major sectors of the economy i.e. agriculture, industry, and services sectors. This study attempts to measure the long run as well as the short-run dynamic between energy; environment and economic growth by using Autoregressive Distributed Lag (ARDL) bound testing approach at aggregate as well as sectoral level. We measured the causal relationship between electricity consumption, fuel consumption, CO₂ emission, and real Gross Domestic Product (GDP) for the period of 1980 to 2016 for Pakistan. Our co-integration results reveal that all the variables are co-integrated at aggregate as well as at sectoral level. Electricity consumption shows two-way casual relation at for industry, services and aggregate level. The inverted U-Curve hypothesis tested the relationship between greenhouse gas emissions and per capita GDP and results supported the Environment Kuznet Curve (EKC) hypothesis. This study cannot ignore the importance of energy for economic growth but prefers to focus on renewable and green energy to pave on the trajectory of development.

Keywords: climate change, economic growth, energy, environment

Procedia PDF Downloads 164
2454 Functional Analysis of Barriers in Disability Care Research: An Integrated Developmental Approach

Authors: Asma Batool

Abstract:

Immigrant families raising a child with developmental disabilities in Canada encounter many challenges during the process of disability care. Starting from the early screening of their child for diagnosis followed by challenges associated with treatment, access and service utilization. A substantial amount of research focuses on identifying barriers. However, the functional aspects of barriers in terms of their potential influences on parents and children with disabilities are unexplored yet. This paper presents functional analysis of barriers in disability care research by adopting a method of integrated approach. Juxtaposition of two developmental approaches, Bronfenbrenner’s ecological model and parents ‘transformational process model is generating multiple hypotheses to be considered while empirically investigating causal relationships and mediating or moderating factors among various variables related with disability care research. This functional analysis suggests that barriers have negative impacts on the physical and emotional development of children with disabilities as well as on the overall quality of family life (QOFL). While, barriers have facilitating impacts on parents, alternatively, the process of transformation in parents expedite after experiencing barriers. Consequently, parents reconstruct their philosophy of life and experience irreversible but continuous developmental change in terms of transformations simultaneously with their developing child and may buffer the expected negative impacts of barriers on disabled child and QOFL. Overall, this paper is suggesting implications for future research and parents’ transformations are suggesting potential pathways to minimize the negative influences of barriers that parents experience during disability care, hence improving satisfaction in QOFL in general.

Keywords: barriers in disability care, developmental disabilities, parents’ transformations, quality of family life

Procedia PDF Downloads 405
2453 Geographic Information System for District Level Energy Performance Simulations

Authors: Avichal Malhotra, Jerome Frisch, Christoph van Treeck

Abstract:

The utilization of semantic, cadastral and topological data from geographic information systems (GIS) has exponentially increased for building and urban-scale energy performance simulations. Urban planners, simulation scientists, and researchers use virtual 3D city models for energy analysis, algorithms and simulation tools. For dynamic energy simulations at city and district level, this paper provides an overview of the available GIS data models and their levels of detail. Adhering to different norms and standards, these models also intend to describe building and construction industry data. For further investigations, CityGML data models are considered for simulations. Though geographical information modelling has considerably many different implementations, extensions of virtual city data can also be made for domain specific applications. Highlighting the use of the extended CityGML models for energy researches, a brief introduction to the Energy Application Domain Extension (ADE) along with its significance is made. Consequently, addressing specific input simulation data, a workflow using Modelica underlining the usage of GIS information and the quantification of its significance over annual heating energy demand is presented in this paper.

Keywords: CityGML, EnergyADE, energy performance simulation, GIS

Procedia PDF Downloads 168
2452 Rheological Characterization of Gels Based on Medicinal Plant Extracts Mixture (Zingibar Officinale and Cinnamomum Cassia)

Authors: Zahia Aliche, Fatiha Boudjema, Benyoucef Khelidj, Selma Mettai, Zohra Bouriahi, Saliha Mohammed Belkebir, Ridha Mazouz

Abstract:

The purpose of this work is the study of the viscoelastic behaviour formulating gels based plant extractions. The extracts of Zingibar officinale and Cinnamomum cassia were included in the gel at different concentrations of these plants in order to be applied in anti-inflammatory drugs. The yield of ethanolic extraction of Zingibar o. is 3.98% and for Cinnamomum c., essential oil by hydrodistillation is 1.67 %. The ethanolic extract of Zingibar.o, the essential oil of Cinnamomum c. and the mixture showed an anti-DPPH radicals’ activity, presented by EC50 values of 11.32, 13.48 and 14.39 mg/ml respectively. A gel based on different concentrations of these extracts was prepared. Microbiological tests conducted against Staphylococcus aureus and Escherichia colishowed moderate inhibition of Cinnamomum c. gel and less the gel based on Cinnamomum c./ Zingibar o. (20/80). The yeast Candida albicansis resistant to gels. The viscoelastic formulation property was carried out in dynamic and creep and modeled with the Kelvin-Voigt model. The influence of some parameters on the stability of the gel (time, temperature and applied stress) has been studied.

Keywords: Cinnamomum cassia, Zingibar officinale, antioxidant activity, antimicrobien activity, gel, viscoelastic behaviour

Procedia PDF Downloads 89
2451 A Study in Optimization of FSI(Floor Space Index) in Kerala

Authors: Anjali Suresh

Abstract:

Kerala is well known for its unique settlement pattern; comprising the most part, a continuous spread of habitation. The notable urbanization trend in Kerala is urban spread rather than concentration which points out the increasing urbanization of peripheral areas of existing urban centers. This has thrown a challenge for the authorities to cater the needs of the urban population like to provide affordable housing and infrastructure facilities to sustain their livelihood; which is a matter of concern that needs policy attention in fixing the optimum FSI value. Based on recent reports (Post Disaster Need Analysis –PDNA) from the UN, addressing the unsafe situation of the carpet FAR/FSI practice in the state showcasing the varying geological & climatic conditions should also be the matter of concern. The FSI (Floor space index- the ratio of the built-up space on a plot to the area of the plot) value is certainly one of the key regulation factors in checking the land utilization for the varying occupancies desired for the overall development of a state with limitation in land availability when compared to its neighbors. The pattern of urbanization, physical conditions, topography, etc., varies within the state and can change remarkably over time which identifies that the practicing FSI norms in Kerala does not fulfils the intended function. Thus the FSI regulation is expected to change dynamically from location to location. So for determining the optimum value of FSI /FAR of a region in the state of Kerala, the government agencies should consider the optimum land utilization for the growing urbanization. On the other hand, shall keep in check the overutilization of the same in par with environmental and geographic nature. Therefore the study identifies parameters that should be considered for assigning FSI within the Kerala context, and through expert surveys; opinions arrive at a methodology for assigning an optimum FSI value of a region in the state of Kerala.

Keywords: floor space index, urbanization, density, civic pressure, optimization

Procedia PDF Downloads 100
2450 Investigation of Vibration in Diesel-Fueled Motoblocks in the Case of Supplying Different Types of Fuel Mixture

Authors: Merab Mamuladze, Mixeil Lejava, Fadiko Abuselidze

Abstract:

At present, where most of the soils of Georgia have a small contour, the demand for small-capacity technical means, in particular motoblocks, has increased. Motoblocks perform agricultural work for various purposes, where the work process is performed by the operator, who experiences various magnitudes of vibration, impact, noise, and in general, as a result of long-term work production, causes body damage, dynamic load, and respiratory diseases in people. In the scientific paper, the dependence on the vibration of different types of diesel fuel is investigated in the case of five different revolutions in the internal combustion engine. Studies have shown that fuel and engine speed are the only risk factors that contradict the ISO 5349-2(2004) international standard. The experience of four years of work studies showed that 10% of operators received various types of injuries as a result of working with motoblocks. Experiments also showed that the amount of vibration decreases when the number of revolutions of the engine increases, and in the case of using biodiesel fuel, the damage risk factor is 5-10%, and in the case of using conventional diesel, this indicator has gone up to 20%.

Keywords: engine, vibration, biodiesel, high risk factor, working conditions

Procedia PDF Downloads 80
2449 Collaborative Writing on Line with Apps During the Time of Pandemic: A Systematic Literature Review

Authors: Giuseppe Liverano

Abstract:

Today’s school iscalledupon to take the lead role in supporting students towards the formation of conscious identity and a sense of responsible citizenship, through the development of key competencies for lifelong learning A rolethatrequiresit to be ready for change and to respond to the ever new needs of students, by adopting new pedagogical and didactic models and new didactic devices. Information and Communication Technologies, in this sense, reveal themselves to be usefulresourcesthatpermit to focus attention on the learning of eachindividualstudentunderstoodas a dynamic and relational process of constructing shared and participatedmeanings. The use of collaborative writing apps represents a democratic and shared knowledge way of constructionthroughICTs. It promotes the learning of reading-writing, literacy, and the development of transversal competencies in an inclusive perspective peer-to-peer comparison and reflectionthatstimulates the transfer of thought into speech and writing, the transformation of knowledge through a trialogicalapproach to learning generates enthusiasm and strengthensmotivationItrepresents a “different” way of expressing the training needs which come from several disciplinary fields of subjects with different cultures. The contribution aims to reflect on the formative value of collaborative writing through apps and analyse some proposals on line at school during the time of pandemic in order to highlight their critical aspects and pedagogical perspectives.

Keywords: collaborative writing, formative value, online, apps, pandemic

Procedia PDF Downloads 157