Search results for: brain computer interface
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4686

Search results for: brain computer interface

1116 Seismic Behavior of Concrete Filled Steel Tube Reinforced Concrete Column

Authors: Raghabendra Yadav, Baochun Chen, Huihui Yuan, Zhibin Lian

Abstract:

Pseudo-dynamic test (PDT) method is an advanced seismic test method that combines loading technology with computer technology. Large-scale models or full scale seismic tests can be carried out by using this method. CFST-RC columns are used in civil engineering structures because of their better seismic performance. A CFST-RC column is composed of four CFST limbs which are connected with RC web in longitudinal direction and with steel tube in transverse direction. For this study, a CFST-RC pier is tested under Four different earthquake time histories having scaled PGA of 0.05g. From the experiment acceleration, velocity, displacement and load time histories are observed. The dynamic magnification factors for acceleration due to Elcentro, Chi-Chi, Imperial Valley and Kobe ground motions are observed as 15, 12, 17 and 14 respectively. The natural frequency of the pier is found to be 1.40 Hz. The result shows that this type of pier has excellent static and earthquake resistant properties.

Keywords: bridge pier, CFST-RC pier, pseudo dynamic test, seismic performance, time history

Procedia PDF Downloads 184
1115 Prediction of Structural Response of Reinforced Concrete Buildings Using Artificial Intelligence

Authors: Juan Bojórquez, Henry E. Reyes, Edén Bojórquez, Alfredo Reyes-Salazar

Abstract:

This paper addressed the use of Artificial Intelligence to obtain the structural reliability of reinforced concrete buildings. For this purpose, artificial neuronal networks (ANN) are developed to predict seismic demand hazard curves. In order to have enough input-output data to train the ANN, a set of reinforced concrete buildings (low, mid, and high rise) are designed, then a probabilistic seismic hazard analysis is made to obtain the seismic demand hazard curves. The results are then used as input-output data to train the ANN in a feedforward backpropagation model. The predicted values of the seismic demand hazard curves found by the ANN are then compared. Finally, it is concluded that the computer time analysis is significantly lower and the predictions obtained from the ANN were accurate in comparison to the values obtained from the conventional methods.

Keywords: structural reliability, seismic design, machine learning, artificial neural network, probabilistic seismic hazard analysis, seismic demand hazard curves

Procedia PDF Downloads 195
1114 Thermodynamic Modeling of Cryogenic Fuel Tanks with a Model-Based Inverse Method

Authors: Pedro A. Marques, Francisco Monteiro, Alessandra Zumbo, Alessia Simonini, Miguel A. Mendez

Abstract:

Cryogenic fuels such as Liquid Hydrogen (LH₂) must be transported and stored at extremely low temperatures. Without expensive active cooling solutions, preventing fuel boil-off over time is impossible. Hence, one must resort to venting systems at the cost of significant energy and fuel mass loss. These losses increase significantly in propellant tanks installed on vehicles, as the presence of external accelerations induces sloshing. Sloshing increases heat and mass transfer rates and leads to significant pressure oscillations, which might further trigger propellant venting. To make LH₂ economically viable, it is essential to minimize these factors by using advanced control techniques. However, these require accurate modelling and a full understanding of the tank's thermodynamics. The present research aims to implement a simple thermodynamic model capable of predicting the state of a cryogenic fuel tank under different operating conditions (i.e., filling, pressurization, fuel extraction, long-term storage, and sloshing). Since this model relies on a set of closure parameters to drive the system's transient response, it must be calibrated using experimental or numerical data. This work focuses on the former approach, wherein the model is calibrated through an experimental campaign carried out on a reduced-scale model of a cryogenic tank. The thermodynamic model of the system is composed of three control volumes: the ullage, the liquid, and the insulating walls. Under this lumped formulation, the governing equations are derived from energy and mass balances in each region, with mass-averaged properties assigned to each of them. The gas-liquid interface is treated as an infinitesimally thin region across which both phases can exchange mass and heat. This results in a coupled system of ordinary differential equations, which must be closed with heat and mass transfer coefficients between each control volume. These parameters are linked to the system evolution via empirical relations derived from different operating regimes of the tank. The derivation of these relations is carried out using an inverse method to find the optimal relations that allow the model to reproduce the available data. This approach extends classic system identification methods beyond linear dynamical systems via a nonlinear optimization step. Thanks to the data-driven assimilation of the closure problem, the resulting model accurately predicts the evolution of the tank's thermodynamics at a negligible computational cost. The lumped model can thus be easily integrated with other submodels to perform complete system simulations in real time. Moreover, by setting the model in a dimensionless form, a scaling analysis allowed us to relate the tested configurations to a representative full-size tank for naval applications. It was thus possible to compare the relative importance of different transport phenomena between the laboratory model and the full-size prototype among the different operating regimes.

Keywords: destratification, hydrogen, modeling, pressure-drop, pressurization, sloshing, thermodynamics

Procedia PDF Downloads 92
1113 Quantitative Structure Activity Relationship and Insilco Docking of Substituted 1,3,4-Oxadiazole Derivatives as Potential Glucosamine-6-Phosphate Synthase Inhibitors

Authors: Suman Bala, Sunil Kamboj, Vipin Saini

Abstract:

Quantitative Structure Activity Relationship (QSAR) analysis has been developed to relate antifungal activity of novel substituted 1,3,4-oxadiazole against Candida albicans and Aspergillus niger using computer assisted multiple regression analysis. The study has shown the better relationship between antifungal activities with respect to various descriptors established by multiple regression analysis. The analysis has shown statistically significant correlation with R2 values 0.932 and 0.782 against Candida albicans and Aspergillus niger respectively. These derivatives were further subjected to molecular docking studies to investigate the interactions between the target compounds and amino acid residues present in the active site of glucosamine-6-phosphate synthase. All the synthesized compounds have better docking score as compared to standard fluconazole. Our results could be used for the further design as well as development of optimal and potential antifungal agents.

Keywords: 1, 3, 4-oxadiazole, QSAR, multiple linear regression, docking, glucosamine-6-phosphate synthase

Procedia PDF Downloads 339
1112 Malaria Parasite Detection Using Deep Learning Methods

Authors: Kaustubh Chakradeo, Michael Delves, Sofya Titarenko

Abstract:

Malaria is a serious disease which affects hundreds of millions of people around the world, each year. If not treated in time, it can be fatal. Despite recent developments in malaria diagnostics, the microscopy method to detect malaria remains the most common. Unfortunately, the accuracy of microscopic diagnostics is dependent on the skill of the microscopist and limits the throughput of malaria diagnosis. With the development of Artificial Intelligence tools and Deep Learning techniques in particular, it is possible to lower the cost, while achieving an overall higher accuracy. In this paper, we present a VGG-based model and compare it with previously developed models for identifying infected cells. Our model surpasses most previously developed models in a range of the accuracy metrics. The model has an advantage of being constructed from a relatively small number of layers. This reduces the computer resources and computational time. Moreover, we test our model on two types of datasets and argue that the currently developed deep-learning-based methods cannot efficiently distinguish between infected and contaminated cells. A more precise study of suspicious regions is required.

Keywords: convolution neural network, deep learning, malaria, thin blood smears

Procedia PDF Downloads 128
1111 From Avatars to Humans: A Hybrid World Theory and Human Computer Interaction Experimentations with Virtual Reality Technologies

Authors: Juan Pablo Bertuzzi, Mauro Chiarella

Abstract:

Employing a communication studies perspective and a socio-technological approach, this paper introduces a theoretical framework for understanding the concept of hybrid world; the avatarization phenomena; and the communicational archetype of co-hybridization. This analysis intends to make a contribution to future design of virtual reality experimental applications. Ultimately, this paper presents an ongoing research project that proposes the study of human-avatar interactions in digital educational environments, as well as an innovative reflection on inner digital communication. The aforementioned project presents the analysis of human-avatar interactions, through the development of an interactive experience in virtual reality. The goal is to generate an innovative communicational dimension that could reinforce the hypotheses presented throughout this paper. Being thought for its initial application in educational environments, the analysis and results of this research are dependent and have been prepared in regard of a meticulous planning of: the conception of a 3D digital platform; the interactive game objects; the AI or computer avatars; the human representation as hybrid avatars; and lastly, the potential of immersion, ergonomics and control diversity that can provide the virtual reality system and the game engine that were chosen. The project is divided in two main axes: The first part is the structural one, as it is mandatory for the construction of an original prototype. The 3D model is inspired by the physical space that belongs to an academic institution. The incorporation of smart objects, avatars, game mechanics, game objects, and a dialogue system will be part of the prototype. These elements have all the objective of gamifying the educational environment. To generate a continuous participation and a large amount of interactions, the digital world will be navigable both, in a conventional device and in a virtual reality system. This decision is made, practically, to facilitate the communication between students and teachers; and strategically, because it will help to a faster population of the digital environment. The second part is concentrated to content production and further data analysis. The challenge is to offer a scenario’s diversity that compels users to interact and to question their digital embodiment. The multipath narrative content that is being applied is focused on the subjects covered in this paper. Furthermore, the experience with virtual reality devices proposes users to experiment in a mixture of a seemingly infinite digital world and a small physical area of movement. This combination will lead the narrative content and it will be crucial in order to restrict user’s interactions. The main point is to stimulate and to grow in the user the need of his hybrid avatar’s help. By building an inner communication between user’s physicality and user’s digital extension, the interactions will serve as a self-guide through the gameworld. This is the first attempt to make explicit the avatarization phenomena and to further analyze the communicational archetype of co-hybridization. The challenge of the upcoming years will be to take advantage from these forms of generalized avatarization, in order to create awareness and establish innovative forms of hybridization.

Keywords: avatar, hybrid worlds, socio-technology, virtual reality

Procedia PDF Downloads 142
1110 An Industrial Workplace Alerting and Monitoring Platform to Prevent Workplace Injury and Accidents

Authors: Sanjay Adhikesaven

Abstract:

Workplace accidents are a critical problem that causes many deaths, injuries, and financial losses. Climate change has a severe impact on industrial workers, partially caused by global warming. To reduce such casualties, it is important to proactively find unsafe environments where injuries could occur by detecting the use of personal protective equipment (PPE) and identifying unsafe activities. Thus, we propose an industrial workplace alerting and monitoring platform to detect PPE use and classify unsafe activity in group settings involving multiple humans and objects over a long period of time. Our proposed method is the first to analyze prolonged actions involving multiple people or objects. It benefits from combining pose estimation with PPE detection in one platform. Additionally, we propose the first open-source annotated data set with video data from industrial workplaces annotated with the action classifications and detected PPE. The proposed system can be implemented within the surveillance cameras already present in industrial settings, making it a practical and effective solution.

Keywords: computer vision, deep learning, workplace safety, automation

Procedia PDF Downloads 101
1109 Quantifying Impairments in Whiplash-Associated Disorders and Association with Patient-Reported Outcomes

Authors: Harpa Ragnarsdóttir, Magnús Kjartan Gíslason, Kristín Briem, Guðný Lilja Oddsdóttir

Abstract:

Introduction: Whiplash-Associated Disorder (WAD) is a health problem characterized by motor, neurological and psychosocial symptoms, stressing the need for a multimodal treatment approach. To achieve individualized multimodal approach, prognostic factors need to be identified early using validated patient-reported and objective outcome measures. The aim of this study is to demonstrate the degree of association between patient-reported and clinical outcome measures of WAD patients in the subacute phase. Methods: Individuals (n=41) with subacute (≥1, ≤3 months) WAD (I-II), medium to high-risk symptoms, or neck pain rating ≥ 4/10 on the Visual Analog Scale (VAS) were examined. Outcome measures included measurements for movement control (Butterfly test) and cervical active range of motion (cAROM) using the NeckSmart system, a computer system using an inertial measurement unit (IMU) that connects to a computer. The IMU sensor is placed on the participant’s head, who receives visual feedback about the movement of the head. Patient-reported neck disability, pain intensity, general health, self-perceived handicap, central sensitization, and difficulties due to dizziness were measured using questionnaires. Excel and R statistical software were used for statistical analyses. Results: Forty-one participants, 15 males (37%), 26 females (63%), mean (SD) age 36.8 (±12.7), underwent data collection. Mean amplitude accuracy (AA) (SD) in the Butterfly test for easy, medium, and difficult paths were 2.4mm (0.9), 4.4mm (1.8), and 6.8mm (2.7), respectively. Mean cAROM (SD) for flexion, extension, left-, and right rotation were 46.3° (18.5), 48.8° (17.8), 58.2° (14.3), and 58.9° (15.0), respectively. Mean scores on the Neck Disability Index (NDI), VAS, Dizziness Handicap Inventory (DHI), Central Sensitization Inventory (CSI), and 36-Item Short Form Survey RAND version (RAND) were 43% (17.4), 7 (1.7), 37 (25.4), 51 (17.5), and 39.2 (17.7) respectively. Females showed significantly greater deviation for AA compared to males for easy and medium Butterfly paths (p<0.05). Statistically significant moderate to strong positive correlation was found between the DHI and easy (r=0.6, p=0.05), medium (r=0.5, p=0.05)) and difficult (r=0.5, p<0.05) Butterfly paths, between the total RAND score and all cAROMs (r between 0.4-0.7, p≤0.05) except flexion (r=0.4, p=0.7), and between the NDI score and CSI (r=0.7, p<0.01), VAS (r=0.5, p<0.01), and DHI (r=0.7, p<0.01) scores respectively. Discussion: All patient-reported and objective measures were found to be outside the reference range. Results suggest females have worse movement control in the neck in the subacute WAD phase. However, no statistical difference based on gender was found in patient-reported measures. Suggesting females might have worse movement control than males in general in this phase. The correlation found between DHI and the Butterfly test can be explained because the DHI measures proprioceptive symptoms like dizziness and eye movement disorders that can affect the outcome of movement control tests. A correlation was found between the total RAND score and cAROM, suggesting that a reduced range of motion affects the quality of life. Significance: The NeckSmart system can detect abnormalities in cAROM, fine movement control, and kinesthesia of the neck. Results suggest females have worse movement control than males. Results show a moderate to a high correlation between several patient-reported and objective measurements.

Keywords: whiplash associated disorders, car-collision, neck, trauma, subacute

Procedia PDF Downloads 69
1108 Data Mining Meets Educational Analysis: Opportunities and Challenges for Research

Authors: Carla Silva

Abstract:

Recent development of information and communication technology enables us to acquire, collect, analyse data in various fields of socioeconomic – technological systems. Along with the increase of economic globalization and the evolution of information technology, data mining has become an important approach for economic data analysis. As a result, there has been a critical need for automated approaches to effective and efficient usage of massive amount of educational data, in order to support institutions to a strategic planning and investment decision-making. In this article, we will address data from several different perspectives and define the applied data to sciences. Many believe that 'big data' will transform business, government, and other aspects of the economy. We discuss how new data may impact educational policy and educational research. Large scale administrative data sets and proprietary private sector data can greatly improve the way we measure, track, and describe educational activity and educational impact. We also consider whether the big data predictive modeling tools that have emerged in statistics and computer science may prove useful in educational and furthermore in economics. Finally, we highlight a number of challenges and opportunities for future research.

Keywords: data mining, research analysis, investment decision-making, educational research

Procedia PDF Downloads 356
1107 Half Mode Substrate Integrated Wave Guide of Band Pass Filter Based to Defected Ground Structure Cells

Authors: Damou Mehdi, Nouri Keltoum, Feham Mohammed, Khazini Mohammed, Bouazza Tayb Habibi Chawki

Abstract:

The Half mode SIW filter is treated by two softwares (HFSS (High Frequency Structure Simulator) and CST (Computer Simulation Technology)). The filter HMSIW has a very simple structure and a very compact size. The simulated results by CST are presented and compared with the results simulated by a high-frequency structure simulator. Good agreement between the simulated CST and simulated results by HFSS is observed. By cascading two of them according to design requirement, a X-band bandpass filter is designed and simulated to meet compact size, low insertion loss, good return loss as well as second harmonic suppression. As an example, we designed the proposed HMSIW filter at X band by HFSS. The filter has a pass-band from 7.3 GHz to 9.8 GHz, and its relative operating fraction bandwidth is 29.5 %. There are one transmission zeros are located at 14.4 GHz.

Keywords: substrate integrated waveguide, filter, HMSIW, defected ground structures (DGS), simulation BPF

Procedia PDF Downloads 585
1106 Availability Strategy of Medical Information for Telemedicine Services

Authors: Rozo D. Juan Felipe, Ramírez L. Leonardo Juan, Puerta A. Gabriel Alberto

Abstract:

The telemedicine services require correct computing resource management to guarantee productivity and efficiency for medical and non-medical staff. The aim of this study was to examine web management strategies to ensure the availability of resources and services in telemedicine so as to provide medical information management with an accessible strategy. In addition, to evaluate the quality-of-service parameters, the followings were measured: delays, throughput, jitter, latency, available bandwidth, percent of access and denial of services based of web management performance map with profiles permissions and database management. Through 24 different test scenarios, the results show 100% in availability of medical information, in relation to access of medical staff to web services, and quality of service (QoS) of 99% because of network delay and performance of computer network. The findings of this study suggest that the proposed strategy of web management is an ideal solution to guarantee the availability, reliability, and accessibility of medical information. Finally, this strategy offers seven user profile used at telemedicine center of Bogota-Colombia keeping QoS parameters suitable to telemedicine services.

Keywords: availability, medical information, QoS, strategy, telemedicine

Procedia PDF Downloads 203
1105 Topology Optimisation for Reduction in Material Use for Precast Concrete Elements: A Case Study of a 3D-Printed Staircase

Authors: Dengyu You, Alireza Kashani

Abstract:

This study explores the potential of 3D concrete printing in manufacturing prefabricated staircases. The applications of 3D concrete printing in large-scale construction could enhance the industry’s implementation of the Industry 4.0 concept. In addition, the current global challenge is to achieve Net Zero Emissions by 2050. Innovation in the construction industry could potentially speed up achieving this target. The 3D printing technology offers a possible solution that reduces cement usage, minimises framework wastes, and is capable of manufacturing complex structures. The performance of the 3D concrete printed lightweight staircase needs to be evaluated. In this study, the staircase is designed using computer-aided technologies, fabricated by 3D concrete printing technologies, and tested with Australian Standard (AS 1657-2018 Fixed platforms, walkways, stairways, and ladders – design, construction, and installation) under a laboratory environment. The experiment results will be further compared with the FEM analysis. The results indicate that 3D concrete printing is capable of fast production, reducing material usage, and is highly automotive, which meets the industry’s future development goal.

Keywords: concrete 3D printing, staircase, sustainability, automation

Procedia PDF Downloads 102
1104 Inadequate Requirements Engineering Process: A Key Factor for Poor Software Development in Developing Nations: A Case Study

Authors: K. Adu Michael, K. Alese Boniface

Abstract:

Developing a reliable and sustainable software products is today a big challenge among up–coming software developers in Nigeria. The inability to develop a comprehensive problem statement needed to execute proper requirements engineering process is missing. The need to describe the ‘what’ of a system in one document, written in a natural language is a major step in the overall process of Software Engineering. Requirements Engineering is a process use to discover, analyze and validate system requirements. This process is needed in reducing software errors at the early stage of the development of software. The importance of each of the steps in Requirements Engineering is clearly explained in the context of using detailed problem statement from client/customer to get an overview of an existing system along with expectations from the new system. This paper elicits inadequate Requirements Engineering principle as the major cause of poor software development in developing nations using a case study of final year computer science students of a tertiary-education institution in Nigeria.

Keywords: client/customer, problem statement, requirements engineering, software developers

Procedia PDF Downloads 404
1103 Incorporating Multiple Supervised Learning Algorithms for Effective Intrusion Detection

Authors: Umar Albalawi, Sang C. Suh, Jinoh Kim

Abstract:

As internet continues to expand its usage with an enormous number of applications, cyber-threats have significantly increased accordingly. Thus, accurate detection of malicious traffic in a timely manner is a critical concern in today’s Internet for security. One approach for intrusion detection is to use Machine Learning (ML) techniques. Several methods based on ML algorithms have been introduced over the past years, but they are largely limited in terms of detection accuracy and/or time and space complexity to run. In this work, we present a novel method for intrusion detection that incorporates a set of supervised learning algorithms. The proposed technique provides high accuracy and outperforms existing techniques that simply utilizes a single learning method. In addition, our technique relies on partial flow information (rather than full information) for detection, and thus, it is light-weight and desirable for online operations with the property of early identification. With the mid-Atlantic CCDC intrusion dataset publicly available, we show that our proposed technique yields a high degree of detection rate over 99% with a very low false alarm rate (0.4%).

Keywords: intrusion detection, supervised learning, traffic classification, computer networks

Procedia PDF Downloads 348
1102 Trusting Smart Speakers: Analysing the Different Levels of Trust between Technologies

Authors: Alec Wells, Aminu Bello Usman, Justin McKeown

Abstract:

The growing usage of smart speakers raises many privacy and trust concerns compared to other technologies such as smart phones and computers. In this study, a proxy measure of trust is used to gauge users’ opinions on three different technologies based on an empirical study, and to understand which technology most people are most likely to trust. The collected data were analysed using the Kruskal-Wallis H test to determine the statistical differences between the users’ trust level of the three technologies: smart speaker, computer and smart phone. The findings of the study revealed that despite the wide acceptance, ease of use and reputation of smart speakers, people find it difficult to trust smart speakers with their sensitive information via the Direct Voice Input (DVI) and would prefer to use a keyboard or touchscreen offered by computers and smart phones. Findings from this study can inform future work on users’ trust in technology based on perceived ease of use, reputation, perceived credibility and risk of using technologies via DVI.

Keywords: direct voice input, risk, security, technology, trust

Procedia PDF Downloads 190
1101 Chronic Progressive External Ophthalmoplegia (CPEO)

Authors: Gagandeep Singh Digra, Pawan Kumar, Mandeep Kaur Sidhu

Abstract:

INTRODUCTION: Chronic Progressive External Ophthalmoplegia (CPEO), also known as Progressive External Ophthalmoplegia (PEO), is a type of eye disorder characterized by a loss of the muscle functions involved in eye and eyelid movement. CPEO can be caused by mutations in mitochondrial DNA. It typically manifests in young adults with bilateral and progressive ptosis as the most common presentation but can also present with difficulty swallowing (dysphagia) and general weakness of the skeletal muscles (myopathy), particularly in the neck, arms, or legs. CASE PRESENTATION: This is a case discussion of 3 cousins who presented to our clinic. A 23-year-old male with past surgical history (PSH) of ptosis repair 2 years ago presented with a chief complaint of nasal intonation for 1.5 years associated with difficulty swallowing. The patient also complained of nasal regurgitation of liquids. He denied any headaches, fever, seizures, weakness of arms or legs, urinary complaints or changes in bowel habits. Physical Examination was positive for facial muscle weakness, including an inability to lift eyebrows (Frontalis), inability to close eyes tightly (Orbicularis Oculi), corneal reflex absent bilaterally, difficulty clenching jaw (Masseter muscle), difficulty smiling (Zygomaticus major), inability to elevate upper lip (Zygomaticus minor). Another cousin of the first patient, a 25-year-old male with no past medical history, presented with complaints of nasal intonation for 2 years associated with difficulty swallowing. He denied a history of nasal regurgitation, headaches, fever, seizures, weakness, urinary complaints or changes in bowel habits. Physical Examination showed facial muscle weakness of the Frontalis muscle, Orbicularis Oculi muscle, Masseter Muscle, Zygomaticus Major, Zygomaticus Minor and absent corneal reflexes. A 28-year-old male, a cousin of the first two patients, presented with chief complaints of ptosis and nasal intonation for the last 8 years. He also complained of difficulty swallowing and nasal regurgitation of liquids. His physical examination showed facial muscle weakness, including frontalis muscle (inability to lift eyebrows), Orbicularis Oculi (inability to close eyes tightly), absent corneal reflexes bilaterally, Zygomaticus Major (difficulty smiling), and Zygomaticus Minor (inability to elevate upper lip). MRI brain and visual field of all the patients were normal. Differential diagnoses, including Grave’s disease, Myasthenia Gravis and Glioma, were ruled out. Due to financial reasons, muscle biopsy could not be pursued. Pedigree analysis revealed only males were affected, likely due to maternal inheritance, so the clinical diagnosis of CPEO was made. The patients underwent symptomatic management, including ptosis surgical correction for the third patient. CONCLUSION: Chronic Progressive External Ophthalmoplegia (CPEO), a rare case entity, occurs in young adults as a manifestation of mitochondrial myopathy. There are three modes of transmission- maternal transmission associated with mitochondrial point mutations, autosomal recessive, and autosomal dominant. CPEO can sometimes be difficult to diagnose, especially in asymmetric presentation. Therefore, it is crucial to keep it in differential diagnosis to avoid delay in diagnosis.

Keywords: neurology, chronic, progressive, ophthalmoplegia

Procedia PDF Downloads 109
1100 ANN Based Simulation of PWM Scheme for Seven Phase Voltage Source Inverter Using MATLAB/Simulink

Authors: Mohammad Arif Khan

Abstract:

This paper analyzes and presents the development of Artificial Neural Network based controller of space vector modulation (ANN-SVPWM) for a seven-phase voltage source inverter. At first, the conventional method of producing sinusoidal output voltage by utilizing six active and one zero space vectors are used to synthesize the input reference, is elaborated and then new PWM scheme called Artificial Neural Network Based PWM is presented. The ANN based controller has the advantage of the very fast implementation and analyzing the algorithms and avoids the direct computation of trigonometric and non-linear functions. The ANN controller uses the individual training strategy with the fixed weight and supervised models. A computer simulation program has been developed using Matlab/Simulink together with the neural network toolbox for training the ANN-controller. A comparison of the proposed scheme with the conventional scheme is presented based on various performance indices. Extensive Simulation results are provided to validate the findings.

Keywords: space vector PWM, total harmonic distortion, seven-phase, voltage source inverter, multi-phase, artificial neural network

Procedia PDF Downloads 450
1099 Construction of a Desktop Arduino Controlled Propeller Test Stand

Authors: Brian Kozak, Ryan Ferguson, Evan Hockeridge

Abstract:

Aerospace engineering and aeronautical engineering students studying propulsion often learn about propellers and their importance in aviation propulsion. In order to reinforce concepts introduced in the classroom, laboratory projects are used. However, to test a full scale propeller, an engine mounted on a test stand must be used. This engine needs to be enclosed in a test cell for appropriated safety requirements, is expensive to operate, and requires a significant amount of time to change propellers. In order to decrease costs and time requirements, the authors designed and built an electric motor powered desktop Arduino controlled test stand. This test stand is used to enhance student understanding of propeller size and pitch on thrust. The test stand can accommodate propellers up to 25 centimeters in diameter. The code computer allowed for the motor speed to be increased or decreased by 1% per second. Outputs that are measured are thrust, motor rpm, amperes, voltage, and motor temperature. These data are exported as a .CVS file and can be imported into a graphing program for data analysis.

Keywords: Arduino, Laboratory Project, Test stand, Propeller

Procedia PDF Downloads 218
1098 Keyloggers Prevention with Time-Sensitive Obfuscation

Authors: Chien-Wei Hung, Fu-Hau Hsu, Chuan-Sheng Wang, Chia-Hao Lee

Abstract:

Nowadays, the abuse of keyloggers is one of the most widespread approaches to steal sensitive information. In this paper, we propose an On-Screen Prompts Approach to Keyloggers (OSPAK) and its analysis, which is installed in public computers. OSPAK utilizes a canvas to cue users when their keystrokes are going to be logged or ignored by OSPAK. This approach can protect computers against recoding sensitive inputs, which obfuscates keyloggers with letters inserted among users' keystrokes. It adds a canvas below each password field in a webpage and consists of three parts: two background areas, a hit area and a moving foreground object. Letters at different valid time intervals are combined in accordance with their time interval orders, and valid time intervals are interleaved with invalid time intervals. It utilizes animation to visualize valid time intervals and invalid time intervals, which can be integrated in a webpage as a browser extension. We have tested it against a series of known keyloggers and also performed a study with 95 users to evaluate how easily the tool is used. Experimental results made by volunteers show that OSPAK is a simple approach.

Keywords: authentication, computer security, keylogger, privacy, information leakage

Procedia PDF Downloads 121
1097 A Bioinspired Anti-Fouling Coating for Implantable Medical Devices

Authors: Natalie Riley, Anita Quigley, Robert M. I. Kapsa, George W. Greene

Abstract:

As the fields of medicine and bionics grow rapidly in technological advancement, the future and success of it depends on the ability to effectively interface between the artificial and the biological worlds. The biggest obstacle when it comes to implantable, electronic medical devices, is maintaining a ‘clean’, low noise electrical connection that allows for efficient sharing of electrical information between the artificial and biological systems. Implant fouling occurs with the adhesion and accumulation of proteins and various cell types as a result of the immune response to protect itself from the foreign object, essentially forming an electrical insulation barrier that often leads to implant failure over time. Lubricin (LUB) functions as a major boundary lubricant in articular joints, a unique glycoprotein with impressive anti-adhesive properties that self-assembles to virtually any substrate to form a highly ordered, ‘telechelic’ polymer brush. LUB does not passivate electroactive surfaces which makes it ideal, along with its innate biocompatibility, as a coating for implantable bionic electrodes. It is the aim of the study to investigate LUB’s anti-fouling properties and its potential as a safe, bioinspired material for coating applications to enhance the performance and longevity of implantable medical devices as well as reducing the frequency of implant replacement surgeries. Native, bovine-derived LUB (N-LUB) and recombinant LUB (R-LUB) were applied to gold-coated mylar surfaces. Fibroblast, chondrocyte and neural cell types were cultured and grown on the coatings under both passive and electrically stimulated conditions to test the stability and anti-adhesive property of the LUB coating in the presence of an electric field. Lactate dehydrogenase (LDH) assays were conducted as a directly proportional cell population count on each surface along with immunofluorescent microscopy to visualize cells. One-way analysis of variance (ANOVA) with post-hoc Tukey’s test was used to test for statistical significance. Under both passive and electrically stimulated conditions, LUB significantly reduced cell attachment compared to bare gold. Comparing the two coating types, R-LUB reduced cell attachment significantly compared to its native counterpart. Immunofluorescent micrographs visually confirmed LUB’s antiadhesive property, R-LUB consistently demonstrating significantly less attached cells for both fibroblasts and chondrocytes. Preliminary results investigating neural cells have so far demonstrated that R-LUB has little effect on reducing neural cell attachment; the study is ongoing. Recombinant LUB coatings demonstrated impressive anti-adhesive properties, reducing cell attachment in fibroblasts and chondrocytes. These findings and the availability of recombinant LUB brings into question the results of previous experiments conducted using native-derived LUB, its potential not adequately represented nor realized due to unknown factors and impurities that warrant further study. R-LUB is stable and maintains its anti-fouling property under electrical stimulation, making it suitable for electroactive surfaces.

Keywords: anti-fouling, bioinspired, cell attachment, lubricin

Procedia PDF Downloads 123
1096 A Software Tool for Computer Forensic Investigation Using Client-Side Web History Visualization

Authors: Francisca Onaolapo Oladipo, Peter Afam Ugwu

Abstract:

Records of user activities which are valuable for forensic investigation purposes are provided by web browsers -these records in most cases are not in visual formats that are easily understood, thereby requiring some extra processes. This paper describes the implementation of a software tool for client-side web history visualization providing suitable forensic evidence for investigative purposes. Visual C#, Perl and gnuplot were deployed on Windows Operating System (OS) environment to implement the system and the resulting tool parses and transforms a web browser history into a visual format that enables an investigator to quickly and efficiently explore, understand, and interpret the user online activities in the context of a specific investigation. The system was tested using two forensic cases: the client-side web history files generated by Mozilla Firefox browser was extracted using MozillaHistoryView utility, then parsed and visualized using bar and stacked column charts. From the visual representation, results of user web activities across various productive and non-productive websites were obtained.

Keywords: history, forensics, visualization, web activities

Procedia PDF Downloads 294
1095 Multimodal Convolutional Neural Network for Musical Instrument Recognition

Authors: Yagya Raj Pandeya, Joonwhoan Lee

Abstract:

The dynamic behavior of music and video makes it difficult to evaluate musical instrument playing in a video by computer system. Any television or film video clip with music information are rich sources for analyzing musical instruments using modern machine learning technologies. In this research, we integrate the audio and video information sources using convolutional neural network (CNN) and pass network learned features through recurrent neural network (RNN) to preserve the dynamic behaviors of audio and video. We use different pre-trained CNN for music and video feature extraction and then fine tune each model. The music network use 2D convolutional network and video network use 3D convolution (C3D). Finally, we concatenate each music and video feature by preserving the time varying features. The long short term memory (LSTM) network is used for long-term dynamic feature characterization and then use late fusion with generalized mean. The proposed network performs better performance to recognize the musical instrument using audio-video multimodal neural network.

Keywords: multimodal, 3D convolution, music-video feature extraction, generalized mean

Procedia PDF Downloads 213
1094 The Effect of Computerized Systems of Office Automation on Employees' Productivity Efficiency

Authors: Mohammad Hemmati, Mohammad Taban, Ali Yasini

Abstract:

One of the factors that can play an important role in increasing productivity is the optimal use of information technology, which in this area today has a significant role to play in computer systems of office automation in organizations and companies. Therefore, this research has been conducted with the aim of investigating the effect of the relationship between computerized systems of office automation and the productivity of employees in the municipality of Ilam city. The statistical population of this study was 110 people. Using Cochran formula, the minimum sample size is 78 people. The present research is a descriptive-looking research in terms of the type of objective view. A questionnaire was used to collect data. To assess the reliability of variables, Cornbrash’s alpha coefficient was used, which was equal to 0.85; SPSS19 and Pearson test were used to analyze the data and test the hypothesis of the research. In this research, three hypotheses of the relationship between office automation with efficiency, performance, and effectiveness were investigated. The results showed a direct and positive relationship between the office automation system and the increase in the efficiency, effectiveness, and efficiency of employees, and there was no reason to reject these hypotheses.

Keywords: efficiency, performance, effectiveness, automation

Procedia PDF Downloads 214
1093 Vehicle Detection and Tracking Using Deep Learning Techniques in Surveillance Image

Authors: Abe D. Desta

Abstract:

This study suggests a deep learning-based method for identifying and following moving objects in surveillance video. The proposed method uses a fast regional convolution neural network (F-RCNN) trained on a substantial dataset of vehicle images to first detect vehicles. A Kalman filter and a data association technique based on a Hungarian algorithm are then used to monitor the observed vehicles throughout time. However, in general, F-RCNN algorithms have been shown to be effective in achieving high detection accuracy and robustness in this research study. For example, in one study The study has shown that the vehicle detection and tracking, the system was able to achieve an accuracy of 97.4%. In this study, the F-RCNN algorithm was compared to other popular object detection algorithms and was found to outperform them in terms of both detection accuracy and speed. The presented system, which has application potential in actual surveillance systems, shows the usefulness of deep learning approaches in vehicle detection and tracking.

Keywords: artificial intelligence, computer vision, deep learning, fast-regional convolutional neural networks, feature extraction, vehicle tracking

Procedia PDF Downloads 124
1092 Thermohydraulic Performance of Double Flow Solar Air Heater with Corrugated Absorber

Authors: S. P. Sharma, Som Nath Saha

Abstract:

This paper deals with the analytical investigation of thermal and thermohydraulic performance of double flow solar air heaters with corrugated and flat plate absorber. A mathematical model of double flow solar air heater has been presented, and a computer program in C++ language is developed to estimate the outlet temperature of air for the evaluation of thermal and thermohydraulic efficiency by solving the governing equations numerically using relevant correlations for heat transfer coefficients. The results obtained from the mathematical model is compared with the available experimental results and it is found to be reasonably good. The results show that the double flow solar air heaters have higher efficiency than conventional solar air heater, although the double flow corrugated absorber is superior to that of flat plate double flow solar air heater. It is also observed that the thermal efficiency increases with increase in mass flow rate; however, thermohydraulic efficiency increases with increase in mass flow rate up to a certain limit, attains the maximum value, then thereafter decreases sharply.

Keywords: corrugated absorber, double flow, solar air heater, thermos-hydraulic efficiency

Procedia PDF Downloads 313
1091 Face Recognition Using Eigen Faces Algorithm

Authors: Shweta Pinjarkar, Shrutika Yawale, Mayuri Patil, Reshma Adagale

Abstract:

Face recognition is the technique which can be applied to the wide variety of problems like image and film processing, human computer interaction, criminal identification etc. This has motivated researchers to develop computational models to identify the faces, which are easy and simple to implement. In this, demonstrates the face recognition system in android device using eigenface. The system can be used as the base for the development of the recognition of human identity. Test images and training images are taken directly with the camera in android device.The test results showed that the system produces high accuracy. The goal is to implement model for particular face and distinguish it with large number of stored faces. face recognition system detects the faces in picture taken by web camera or digital camera and these images then checked with training images dataset based on descriptive features. Further this algorithm can be extended to recognize the facial expressions of a person.recognition could be carried out under widely varying conditions like frontal view,scaled frontal view subjects with spectacles. The algorithm models the real time varying lightning conditions. The implemented system is able to perform real-time face detection, face recognition and can give feedback giving a window with the subject's info from database and sending an e-mail notification to interested institutions using android application. Face recognition is the technique which can be applied to the wide variety of problems like image and film processing, human computer interaction, criminal identification etc. This has motivated researchers to develop computational models to identify the faces, which are easy and simple to implement. In this , demonstrates the face recognition system in android device using eigenface. The system can be used as the base for the development of the recognition of human identity. Test images and training images are taken directly with the camera in android device.The test results showed that the system produces high accuracy. The goal is to implement model for particular face and distinguish it with large number of stored faces. face recognition system detects the faces in picture taken by web camera or digital camera and these images then checked with training images dataset based on descriptive features. Further this algorithm can be extended to recognize the facial expressions of a person.recognition could be carried out under widely varying conditions like frontal view,scaled frontal view subjects with spectacles. The algorithm models the real time varying lightning conditions. The implemented system is able to perform real-time face detection, face recognition and can give feedback giving a window with the subject's info from database and sending an e-mail notification to interested institutions using android application.

Keywords: face detection, face recognition, eigen faces, algorithm

Procedia PDF Downloads 358
1090 Elevated Systemic Oxidative-Nitrosative Stress and Cerebrovascular Function in Professional Rugby Union Players: The Link to Impaired Cognition

Authors: Tom S. Owens, Tom A. Calverley, Benjamin S. Stacey, Christopher J. Marley, George Rose, Lewis Fall, Gareth L. Jones, Priscilla Williams, John P. R. Williams, Martin Steggall, Damian M. Bailey

Abstract:

Introduction and aims: Sports-related concussion (SRC) represents a significant and growing public health concern in rugby union, yet remains one of the least understood injuries facing the health community today. Alongside increasing SRC incidence rates, there is concern that prior recurrent concussion may contribute to long-term neurologic sequelae in later-life. This may be due to an accelerated decline in cerebral perfusion, a major risk factor for neurocognitive decline and neurodegeneration, though the underlying mechanisms remain to be established. The present study hypothesised that recurrent concussion in current professional rugby union players would result in elevated systemic oxidative-nitrosative stress, reflected by a free radical-mediated reduction in nitric oxide (NO) bioavailability and impaired cerebrovascular and cognitive function. Methodology: A longitudinal study design was adopted across the 2017-2018 rugby union season. Ethical approval was obtained from the University of South Wales Ethics Committee. Data collection is ongoing, and therefore the current report documents result from the pre-season and first half of the in-season data collection. Participants were initially divided into two subgroups; 23 professional rugby union players (aged 26 ± 5 years) and 22 non-concussed controls (27 ± 8 years). Pre-season measurements were performed for cerebrovascular function (Doppler ultrasound of middle cerebral artery velocity (MCAv) in response to hypocapnia/normocapnia/hypercapnia), cephalic venous concentrations of the ascorbate radical (A•-, electron paramagnetic resonance spectroscopy), NO (ozone-based chemiluminescence) and cognition (neuropsychometric tests). Notational analysis was performed to assess contact in the rugby group throughout each competitive game. Results: 1001 tackles and 62 injuries, including three concussions were observed across the first half of the season. However, no associations were apparent between number of tackles and any injury type (P > 0.05). The rugby group expressed greater oxidative stress as indicated by increased A•- (P < 0.05 vs. control) and a subsequent decrease in NO bioavailability (P < 0.05 vs. control). The rugby group performed worse in the Ray Auditory Verbal Learning Test B (RAVLT-B, learning, and memory) and the Grooved Pegboard test using both the dominant and non-dominant hands (visuomotor coordination, P < 0.05 vs. control). There were no between-group differences in cerebral perfusion at baseline (MCAv: 54 ± 13 vs. 59 ± 12, P > 0.05). Likewise, no between-group differences in CVRCO2Hypo (2.58 ± 1.01 vs. 2.58 ± 0.75, P > 0.05) or CVRCO2Hyper (2.69 ± 1.07 vs. 3.35 ± 1.28, P > 0.05) were observed. Conclusion: The present study identified that the rugby union players are characterized by impaired cognitive function subsequent to elevated systemic-oxidative-nitrosative stress. However, this appears to be independent of any functional impairment in cerebrovascular function. Given the potential long-term trajectory towards accelerated cognitive decline in populations exposed to SRC, prophylaxis to increase NO bioavailability warrants consideration.

Keywords: cognition, concussion, mild traumatic brain injury, rugby

Procedia PDF Downloads 176
1089 Embedded Test Framework: A Solution Accelerator for Embedded Hardware Testing

Authors: Arjun Kumar Rath, Titus Dhanasingh

Abstract:

Embedded product development requires software to test hardware functionality during development and finding issues during manufacturing in larger quantities. As the components are getting integrated, the devices are tested for their full functionality using advanced software tools. Benchmarking tools are used to measure and compare the performance of product features. At present, these tests are based on a variety of methods involving varying hardware and software platforms. Typically, these tests are custom built for every product and remain unusable for other variants. A majority of the tests goes undocumented, not updated, unusable when the product is released. To bridge this gap, a solution accelerator in the form of a framework can address these issues for running all these tests from one place, using an off-the-shelf tests library in a continuous integration environment. There are many open-source test frameworks or tools (fuego. LAVA, AutoTest, KernelCI, etc.) designed for testing embedded system devices, with each one having several unique good features, but one single tool and framework may not satisfy all of the testing needs for embedded systems, thus an extensible framework with the multitude of tools. Embedded product testing includes board bring-up testing, test during manufacturing, firmware testing, application testing, and assembly testing. Traditional test methods include developing test libraries and support components for every new hardware platform that belongs to the same domain with identical hardware architecture. This approach will have drawbacks like non-reusability where platform-specific libraries cannot be reused, need to maintain source infrastructure for individual hardware platforms, and most importantly, time is taken to re-develop test cases for new hardware platforms. These limitations create challenges like environment set up for testing, scalability, and maintenance. A desirable strategy is certainly one that is focused on maximizing reusability, continuous integration, and leveraging artifacts across the complete development cycle during phases of testing and across family of products. To get over the stated challenges with the conventional method and offers benefits of embedded testing, an embedded test framework (ETF), a solution accelerator, is designed, which can be deployed in embedded system-related products with minimal customizations and maintenance to accelerate the hardware testing. Embedded test framework supports testing different hardwares including microprocessor and microcontroller. It offers benefits such as (1) Time-to-Market: Accelerates board brings up time with prepacked test suites supporting all necessary peripherals which can speed up the design and development stage(board bring up, manufacturing and device driver) (2) Reusability-framework components isolated from the platform-specific HW initialization and configuration makes the adaptability of test cases across various platform quick and simple (3) Effective build and test infrastructure with multiple test interface options and preintegrated with FUEGO framework (4) Continuos integration - pre-integrated with Jenkins which enabled continuous testing and automated software update feature. Applying the embedded test framework accelerator throughout the design and development phase enables to development of the well-tested systems before functional verification and improves time to market to a large extent.

Keywords: board diagnostics software, embedded system, hardware testing, test frameworks

Procedia PDF Downloads 143
1088 Artificial Intelligence and Distributed System Computing: Application and Practice in Real Life

Authors: Lai Junzhe, Wang Lihao, Burra Venkata Durga Kumar

Abstract:

In recent years, due to today's global technological advances, big data and artificial intelligence technologies have been widely used in various industries and fields, playing an important role in reducing costs and increasing efficiency. Among them, artificial intelligence has derived another branch in its own continuous progress and the continuous development of computer personnel, namely distributed artificial intelligence computing systems. Distributed AI is a method for solving complex learning, decision-making, and planning problems, characterized by the ability to take advantage of large-scale computation and the spatial distribution of resources, and accordingly, it can handle problems with large data sets. Nowadays, distributed AI is widely used in military, medical, and human daily life and brings great convenience and efficient operation to life. In this paper, we will discuss three areas of distributed AI computing systems in vision processing, blockchain, and smart home to introduce the performance of distributed systems and the role of AI in distributed systems.

Keywords: distributed system, artificial intelligence, blockchain, IoT, visual information processing, smart home

Procedia PDF Downloads 111
1087 Integrating Computational Thinking into Classroom Practice – A Case Study

Authors: Diane Vassallo., Leonard Busuttil

Abstract:

Recent educational developments have seen increasing attention attributed to Computational Thinking (CT) and its integration into primary and secondary school curricula. CT is more than simply being able to use technology but encompasses fundamental Computer Science concepts which are deemed to be very important in developing the correct mindset for our future digital citizens. The case study presented in this article explores the journey of a Maltese secondary school teacher in his efforts to plan, develop and integrate CT within the context of a local classroom. The teacher participant was recruited from the Malta EU Code week summer school, a pilot initiative that stemmed from the EU Code week Team’s Train the Trainer program. The qualitative methodology involved interviews with the participant teacher as well as an analysis of the artefacts created by the students during the lessons. The results shed light on the numerous challenges and obstacles that the teacher encountered in his integration of CT, as well as portray some brilliant examples of good practices which can substantially inform further research and practice around the integration of CT in classroom practice.

Keywords: computational thinking, digital citizens, digital literacy, technology integration

Procedia PDF Downloads 152