Search results for: unmanned surface vehicle
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8004

Search results for: unmanned surface vehicle

7674 Two-Stage Launch Vehicle Trajectory Modeling for Low Earth Orbit Applications

Authors: Assem M. F. Sallam, Ah. El-S. Makled

Abstract:

This paper presents a study on the trajectory of a two stage launch vehicle. The study includes dynamic responses of motion parameters as well as the variation of angles affecting the orientation of the launch vehicle (LV). LV dynamic characteristics including state vector variation with corresponding altitude and velocity for the different LV stages separation, as well as the angle of attack and flight path angles are also discussed. A flight trajectory study for the drop zone of first stage and the jettisoning of fairing are introduced in the mathematical modeling to study their effect. To increase the accuracy of the LV model, atmospheric model is used taking into consideration geographical location and the values of solar flux related to the date and time of launch, accurate atmospheric model leads to enhancement of the calculation of Mach number, which affects the drag force over the LV. The mathematical model is implemented on MATLAB based software (Simulink). The real available experimental data are compared with results obtained from the theoretical computation model. The comparison shows good agreement, which proves the validity of the developed simulation model; the maximum error noticed was generally less than 10%, which is a result that can lead to future works and enhancement to decrease this level of error.

Keywords: launch vehicle modeling, launch vehicle trajectory, mathematical modeling, Matlab- Simulink

Procedia PDF Downloads 276
7673 Design and Implementation of a Counting and Differentiation System for Vehicles through Video Processing

Authors: Derlis Gregor, Kevin Cikel, Mario Arzamendia, Raúl Gregor

Abstract:

This paper presents a self-sustaining mobile system for counting and classification of vehicles through processing video. It proposes a counting and classification algorithm divided in four steps that can be executed multiple times in parallel in a SBC (Single Board Computer), like the Raspberry Pi 2, in such a way that it can be implemented in real time. The first step of the proposed algorithm limits the zone of the image that it will be processed. The second step performs the detection of the mobile objects using a BGS (Background Subtraction) algorithm based on the GMM (Gaussian Mixture Model), as well as a shadow removal algorithm using physical-based features, followed by morphological operations. In the first step the vehicle detection will be performed by using edge detection algorithms and the vehicle following through Kalman filters. The last step of the proposed algorithm registers the vehicle passing and performs their classification according to their areas. An auto-sustainable system is proposed, powered by batteries and photovoltaic solar panels, and the data transmission is done through GPRS (General Packet Radio Service)eliminating the need of using external cable, which will facilitate it deployment and translation to any location where it could operate. The self-sustaining trailer will allow the counting and classification of vehicles in specific zones with difficult access.

Keywords: intelligent transportation system, object detection, vehicle couting, vehicle classification, video processing

Procedia PDF Downloads 322
7672 Surface Coatings of Boards Made from Alternative Materials

Authors: Stepan Hysek, Petra Gajdacova

Abstract:

In recent years, alternative materials, such as annual plants or recycled and waste materials are becoming more and more popular input material for the production of composite materials. They can be used for the production of insulation boards, construction boards or furniture boards. Surface finishing of those boards is essential for utilization in furniture. However, some difficulties could occur during coating of boards from alternative materials; physical and chemical differences from conventional particleboards need to be considered. From the physical aspects, surface soundness and surface roughness mainly determine the quality of the surface. Since surface layers of boards from alternative materials have often lower density, these characteristics could be deteriorated and thus the production process needs to be optimized. Also, chemical reactions of board’s material with coating could be undesirable. The objective of this study is to evaluate the parameters affecting the surface quality of boards made form alternative materials and to find possibilities of the coating of these boards. In this study, boards of particles from rapeseed stems were produced using a laboratory press. Surface soundness, as representatives of mechanical properties and surface roughness, as representative of physical properties, were measured on boards from rapeseed stems. Results clearly indicated that produced boards had lower surface quality than commercially produced particle boards from wood. Therefore, higher thickness of surface coating on rapeseed based boards is needed.

Keywords: coating, surface, annual plant, composites, particleboard

Procedia PDF Downloads 264
7671 Comparative Study of the Earth Land Surface Temperature Signatures over Ota, South-West Nigeria

Authors: Moses E. Emetere, M. L. Akinyemi

Abstract:

Agricultural activities in the South–West Nigeria are mitigated by the global increase in temperature. The unpredictive surface temperature of the area had increased health challenges amongst other social influence. The satellite data of surface temperatures were compared with the ground station Davis weather station. The differential heating of the lower atmosphere were represented mathematically. A numerical predictive model was propounded to forecast future surface temperature.

Keywords: numerical predictive model, surface temperature, satellite date, ground data

Procedia PDF Downloads 472
7670 LanE-change Path Planning of Autonomous Driving Using Model-Based Optimization, Deep Reinforcement Learning and 5G Vehicle-to-Vehicle Communications

Authors: William Li

Abstract:

Lane-change path planning is a crucial and yet complex task in autonomous driving. The traditional path planning approach based on a system of carefully-crafted rules to cover various driving scenarios becomes unwieldy as more and more rules are added to deal with exceptions and corner cases. This paper proposes to divide the entire path planning to two stages. In the first stage the ego vehicle travels longitudinally in the source lane to reach a safe state. In the second stage the ego vehicle makes lateral lane-change maneuver to the target lane. The paper derives the safe state conditions based on lateral lane-change maneuver calculation to ensure collision free in the second stage. To determine the acceleration sequence that minimizes the time to reach a safe state in the first stage, the paper proposes three schemes, namely, kinetic model based optimization, deep reinforcement learning, and 5G vehicle-to-vehicle (V2V) communications. The paper investigates these schemes via simulation. The model-based optimization is sensitive to the model assumptions. The deep reinforcement learning is more flexible in handling scenarios beyond the model assumed by the optimization. The 5G V2V eliminates uncertainty in predicting future behaviors of surrounding vehicles by sharing driving intents and enabling cooperative driving.

Keywords: lane change, path planning, autonomous driving, deep reinforcement learning, 5G, V2V communications, connected vehicles

Procedia PDF Downloads 252
7669 Voltage Polarity in Electrospinning: Way to Control Surface Properties of Polymer Fibers

Authors: Urszula Stachewicz

Abstract:

Surface properties of materials are the key parameter in many applications, especially in the biomedical field, to control cell-material interactions. In our work, we want to achieve the controllability of surface properties of polymer fibers via a single-step electrospinning process by alternating voltage polarities. Voltage polarity defines the charge accumulated on the surface of the liquid jet and the surface of the fibers. Positive polarity attracts negatively charged groups to fibers’ surface, whereas negative polarity moves the negatively charged functional groups away from the surface. This way, we can control the surface chemistry, wettability, and additionally surface potential of electrospun fibers. Within our research, we characterized surface chemistry using X-ray photoelectron microscopy (XPS) and surface potential with Kelvin probe force microscopy (KPFM) on electrospun fibers of commonly used polymers such as PCL, PVDF, and PMMA, often used as biomaterials. We proved the significant effect of fibers' surface potential on cell integration with the scaffolds and further cells development for the regeneration processes based on the osteoblast and fibroblast culture studies. Acknowledgments: The study was conducted within ‘Nanofiber-based sponges for atopic skin treatment’ project, which is carried out within the First TEAM programme of the Foundation for Polish Science co-financed by the European Union under the European Regional Development Fund, project no POIR.04.04.00-00- 4571/18-00.

Keywords: cell attachment, fibers, fibroblasts, osteoblast, proliferation, surface potential

Procedia PDF Downloads 116
7668 Enhancing Tower Crane Safety: A UAV-based Intelligent Inspection Approach

Authors: Xin Jiao, Xin Zhang, Jian Fan, Zhenwei Cai, Yiming Xu

Abstract:

Tower cranes play a crucial role in the construction industry, facilitating the vertical and horizontal movement of materials and aiding in building construction, especially for high-rise structures. However, tower crane accidents can lead to severe consequences, highlighting the importance of effective safety management and inspection. This paper presents an innovative approach to tower crane inspection utilizing Unmanned Aerial Vehicles (UAVs) and an Intelligent Inspection APP System. The system leverages UAVs equipped with high-definition cameras to conduct efficient and comprehensive inspections, reducing manual labor, inspection time, and risk. By integrating advanced technologies such as Real-Time Kinematic (RTK) positioning and digital image processing, the system enables precise route planning and collection of safety hazards images. A case study conducted on a construction site demonstrates the practicality and effectiveness of the proposed method, showcasing its potential to enhance tower crane safety. On-site testing of UAV intelligent inspections reveals key findings: efficient tower crane hazard inspection within 30 minutes, with a full-identification capability coverage rates of 76.3%, 64.8%, and 76.2% for major, significant, and general hazards respectively and a preliminary-identification capability coverage rates of 18.5%, 27.2%, and 19%, respectively. Notably, UAVs effectively identify various tower crane hazards, except for those requiring auditory detection. The limitations of this study primarily involve two aspects: Firstly, during the initial inspection, manual drone piloting is required for marking tower crane points, followed by automated flight inspections and reuse based on the marked route. Secondly, images captured by the drone necessitate manual identification and review, which can be time-consuming for equipment management personnel, particularly when dealing with a large volume of images. Subsequent research efforts will focus on AI training and recognition of safety hazard images, as well as the automatic generation of inspection reports and corrective management based on recognition results. The ongoing development in this area is currently in progress, and outcomes will be released at an appropriate time.

Keywords: tower crane, inspection, unmanned aerial vehicle (UAV), intelligent inspection app system, safety management

Procedia PDF Downloads 42
7667 CyberSteer: Cyber-Human Approach for Safely Shaping Autonomous Robotic Behavior to Comply with Human Intention

Authors: Vinicius G. Goecks, Gregory M. Gremillion, William D. Nothwang

Abstract:

Modern approaches to train intelligent agents rely on prolonged training sessions, high amounts of input data, and multiple interactions with the environment. This restricts the application of these learning algorithms in robotics and real-world applications, in which there is low tolerance to inadequate actions, interactions are expensive, and real-time processing and action are required. This paper addresses this issue introducing CyberSteer, a novel approach to efficiently design intrinsic reward functions based on human intention to guide deep reinforcement learning agents with no environment-dependent rewards. CyberSteer uses non-expert human operators for initial demonstration of a given task or desired behavior. The trajectories collected are used to train a behavior cloning deep neural network that asynchronously runs in the background and suggests actions to the deep reinforcement learning module. An intrinsic reward is computed based on the similarity between actions suggested and taken by the deep reinforcement learning algorithm commanding the agent. This intrinsic reward can also be reshaped through additional human demonstration or critique. This approach removes the need for environment-dependent or hand-engineered rewards while still being able to safely shape the behavior of autonomous robotic agents, in this case, based on human intention. CyberSteer is tested in a high-fidelity unmanned aerial vehicle simulation environment, the Microsoft AirSim. The simulated aerial robot performs collision avoidance through a clustered forest environment using forward-looking depth sensing and roll, pitch, and yaw references angle commands to the flight controller. This approach shows that the behavior of robotic systems can be shaped in a reduced amount of time when guided by a non-expert human, who is only aware of the high-level goals of the task. Decreasing the amount of training time required and increasing safety during training maneuvers will allow for faster deployment of intelligent robotic agents in dynamic real-world applications.

Keywords: human-robot interaction, intelligent robots, robot learning, semisupervised learning, unmanned aerial vehicles

Procedia PDF Downloads 259
7666 Surface Roughness Effects in Pure Sliding EHL Line Contacts with Carreau-Type Shear-Thinning Lubricants

Authors: Punit Kumar, Niraj Kumar

Abstract:

The influence of transverse surface roughness on EHL characteristics has been investigated numerically using an extensive set of full EHL line contact simulations for shear-thinning lubricants under pure sliding condition. The shear-thinning behavior of lubricant is modeled using Carreau viscosity equation along with Doolittle-Tait equation for lubricant compressibility. The surface roughness is assumed to be sinusoidal and it is present on the stationary surface. It is found that surface roughness causes sharp pressure peaks along with reduction in central and minimum film thickness. With increasing amplitude of surface roughness, the minimum film thickness decreases much more rapidly as compared to the central film thickness.

Keywords: EHL, Carreau, shear-thinning, surface roughness, amplitude, wavelength

Procedia PDF Downloads 731
7665 Design, Control and Autonomous Trajectory Tracking of an Octorotor Rotorcraft

Authors: Seyed Jamal Haddadi, M. Reza Mehranpour, Roya Sadat Mortazavi, Zahra Sadat Mortazavi

Abstract:

Principal aim of this research is trajectory tracking, attitude and position control scheme in real flight mode by an Octorotor helicopter. For more stability, in this Unmanned Aerial Vehicle (UAV), number of motors is increased to eight motors which end of each arm installed two coaxial counter rotating motors. Dynamic model of this Octorotor includes of motion equation for translation and rotation. Utilized controller is proportional-integral-derivative (PID) control loop. The proposed controller is designed such that to be able to attenuate an effect of external wind disturbance and guarantee stability in this condition. The trajectory is determined by a Global Positioning System (GPS). Also an ARM CortexM4 is used as microprocessor. Electronic board of this UAV designed as able to records all of the sensors data, similar to an aircraft black box in external memory. Finally after auto landing of Octorotor, flight data is shown in MATLAB software and Experimental results of the proposed controller show the effectiveness of our approach on the Autonomous Quadrotor in real conditions.

Keywords: octorotor, design, PID controller, autonomous, trajectory tracking

Procedia PDF Downloads 304
7664 Optimization of Electric Vehicle (EV) Charging Station Allocation Based on Multiple Data - Taking Nanjing (China) as an Example

Authors: Yue Huang, Yiheng Feng

Abstract:

Due to the global pressure on climate and energy, many countries are vigorously promoting electric vehicles and building charging (public) charging facilities. Faced with the supply-demand gap of existing electric vehicle charging stations and unreasonable space usage in China, this paper takes the central city of Nanjing as an example, establishes a site selection model through multivariate data integration, conducts multiple linear regression SPSS analysis, gives quantitative site selection results, and provides optimization models and suggestions for charging station layout planning.

Keywords: electric vehicle, charging station, allocation optimization, urban mobility, urban infrastructure, nanjing

Procedia PDF Downloads 92
7663 Analysis of Surface Hardness, Surface Roughness and near Surface Microstructure of AISI 4140 Steel Worked with Turn-Assisted Deep Cold Rolling Process

Authors: P. R. Prabhu, S. M. Kulkarni, S. S. Sharma, K. Jagannath, Achutha Kini U.

Abstract:

In the present study, response surface methodology has been used to optimize turn-assisted deep cold rolling process of AISI 4140 steel. A regression model is developed to predict surface hardness and surface roughness using response surface methodology and central composite design. In the development of predictive model, deep cold rolling force, ball diameter, initial roughness of the workpiece, and number of tool passes are considered as model variables. The rolling force and the ball diameter are the significant factors on the surface hardness and ball diameter and numbers of tool passes are found to be significant for surface roughness. The predicted surface hardness and surface roughness values and the subsequent verification experiments under the optimal operating conditions confirmed the validity of the predicted model. The absolute average error between the experimental and predicted values at the optimal combination of parameter settings for surface hardness and surface roughness is calculated as 0.16% and 1.58% respectively. Using the optimal processing parameters, the hardness is improved from 225 to 306 HV, which resulted in an increase in the near surface hardness by about 36% and the surface roughness is improved from 4.84µm to 0.252 µm, which resulted in decrease in the surface roughness by about 95%. The depth of compression is found to be more than 300µm from the microstructure analysis and this is in correlation with the results obtained from the microhardness measurements. Taylor Hobson Talysurf tester, micro Vickers hardness tester, optical microscopy and X-ray diffractometer are used to characterize the modified surface layer.

Keywords: hardness, response surface methodology, microstructure, central composite design, deep cold rolling, surface roughness

Procedia PDF Downloads 420
7662 A Study on the Korean Connected Industrial Parks Smart Logistics It Financial Enterprise Architecture

Authors: Ilgoun Kim, Jongpil Jeong

Abstract:

Recently, a connected industrial parks (CIPs) architecture using new technologies such as RFID, cloud computing, CPS, Big Data, 5G 5G, IIOT, VR-AR, and ventral AI algorithms based on IoT has been proposed. This researcher noted the vehicle junction problem (VJP) as a more specific detail of the CIPs architectural models. The VJP noted by this researcher includes 'efficient AI physical connection challenges for vehicles' through ventilation, 'financial and financial issues with complex vehicle physical connections,' and 'welfare and working conditions of the performing personnel involved in complex vehicle physical connections.' In this paper, we propose a public solution architecture for the 'electronic financial problem of complex vehicle physical connections' as a detailed task during the vehicle junction problem (VJP). The researcher sought solutions to businesses, consumers, and Korean social problems through technological advancement. We studied how the beneficiaries of technological development can benefit from technological development with many consumers in Korean society and many small and small Korean company managers, not some specific companies. In order to more specifically implement the connected industrial parks (CIPs) architecture using the new technology, we noted the vehicle junction problem (VJP) within the smart factory industrial complex and noted the process of achieving the vehicle junction problem performance among several electronic processes. This researcher proposes a more detailed, integrated public finance enterprise architecture among the overall CIPs architectures. The main details of the public integrated financial enterprise architecture were largely organized into four main categories: 'business', 'data', 'technique', and 'finance'.

Keywords: enterprise architecture, IT Finance, smart logistics, CIPs

Procedia PDF Downloads 166
7661 Autonomous Vehicle Detection and Classification in High Resolution Satellite Imagery

Authors: Ali J. Ghandour, Houssam A. Krayem, Abedelkarim A. Jezzini

Abstract:

High-resolution satellite images and remote sensing can provide global information in a fast way compared to traditional methods of data collection. Under such high resolution, a road is not a thin line anymore. Objects such as cars and trees are easily identifiable. Automatic vehicles enumeration can be considered one of the most important applications in traffic management. In this paper, autonomous vehicle detection and classification approach in highway environment is proposed. This approach consists mainly of three stages: (i) first, a set of preprocessing operations are applied including soil, vegetation, water suppression. (ii) Then, road networks detection and delineation is implemented using built-up area index, followed by several morphological operations. This step plays an important role in increasing the overall detection accuracy since vehicles candidates are objects contained within the road networks only. (iii) Multi-level Otsu segmentation is implemented in the last stage, resulting in vehicle detection and classification, where detected vehicles are classified into cars and trucks. Accuracy assessment analysis is conducted over different study areas to show the great efficiency of the proposed method, especially in highway environment.

Keywords: remote sensing, object identification, vehicle and road extraction, vehicle and road features-based classification

Procedia PDF Downloads 231
7660 Joint Replenishment and Heterogeneous Vehicle Routing Problem with Cyclical Schedule

Authors: Ming-Jong Yao, Chin-Sum Shui, Chih-Han Wang

Abstract:

This paper is developed based on a real-world decision scenario that an industrial gas company that applies the Vendor Managed Inventory model and supplies liquid oxygen with a self-operated heterogeneous vehicle fleet to hospitals in nearby cities. We name it as a Joint Replenishment and Heterogeneous Vehicle Routing Problem with Cyclical Schedule and formulate it as a non-linear mixed-integer linear programming problem which simultaneously determines the length of the planning cycle (PC), the length of the replenishment cycle and the dates of replenishment for each customer and the vehicle routes of each day within PC, such that the average daily operation cost within PC, including inventory holding cost, setup cost, transportation cost, and overtime labor cost, is minimized. A solution method based on genetic algorithm, embedded with an encoding and decoding mechanism and local search operators, is then proposed, and the hash function is adopted to avoid repetitive fitness evaluation for identical solutions. Numerical experiments demonstrate that the proposed solution method can effectively solve the problem under different lengths of PC and number of customers. The method is also shown to be effective in determining whether the company should expand the storage capacity of a customer whose demand increases. Sensitivity analysis of the vehicle fleet composition shows that deploying a mixed fleet can reduce the daily operating cost.

Keywords: cyclic inventory routing problem, joint replenishment, heterogeneous vehicle, genetic algorithm

Procedia PDF Downloads 87
7659 Hydrodynamic Analysis on the Body of a Solar Autonomous Underwater Vehicle by Numerical Method

Authors: Mohammad Moonesun, Ehsan Asadi Asrami, Julia Bodnarchuk

Abstract:

In the case of Solar Autonomous Underwater Vehicle, which uses photovoltaic panels to provide its required power, due to limitation of energy, accurate estimation of resistance and energy has major sensitivity. In this work, hydrodynamic calculations by numerical method for a solar autonomous underwater vehicle equipped by two 50 W photovoltaic panels has been studied. To evaluate the required power and energy, hull hydrodynamic resistance in several velocities should be taken into account. To do this assessment, the ANSYS FLUENT 18 applied as Computational Fluid Dynamics (CFD) tool that solves Reynolds Average Navier Stokes (RANS) equations around AUV hull, and K-ω SST is used as turbulence model. To validate of solution method and modeling approach, the model of Myring submarine that it’s experimental data was available, is simulated. There is good agreement between numerical and experimental results. Also, these results showed that the K-ω SST Turbulence model is an ideal method to simulate the AUV motion in low velocities.

Keywords: underwater vehicle, hydrodynamic resistance, numerical modelling, CFD, RANS

Procedia PDF Downloads 205
7658 Aerodynamic Design and Optimization of Vertical Take-Off and Landing Type Unmanned Aerial Vehicles

Authors: Enes Gunaltili, Burak Dam

Abstract:

The airplane history started with the Wright brothers' aircraft and improved day by day. With the help of this advancements, big aircrafts replace with small and unmanned air vehicles, so in this study we design this type of air vehicles. First of all, aircrafts mainly divided into two main parts in our day as a rotary and fixed wing aircrafts. The fixed wing aircraft generally use for transport, cargo, military and etc. The rotary wing aircrafts use for same area but there are some superiorities from each other. The rotary wing aircraft can take off vertically from the ground, and it can use restricted area. On the other hand, rotary wing aircrafts generally can fly lower range than fixed wing aircraft. There are one kind of aircraft consist of this two types specifications. It is named as VTOL (vertical take-off and landing) type aircraft. VTOLs are able to takeoff and land vertically and fly horizontally. The VTOL aircrafts generally can fly higher range from the rotary wings but can fly lower range from the fixed wing aircraft but it gives beneficial range between them. There are many other advantages of VTOL aircraft from the rotary and fixed wing aircraft. Because of that, VTOLs began to use for generally military, cargo, search, rescue and mapping areas. Within this framework, this study answers the question that how can we design VTOL as a small unmanned aircraft systems for search and rescue application for benefiting the advantages of fixed wing and rotary wing aircrafts by eliminating the disadvantages of them. To answer that question and design VTOL aircraft, multidisciplinary design optimizations (MDO), some theoretical terminologies, formulations, simulations and modelling systems based on CFD (Computational Fluid Dynamics) is used in same time as design methodology to determine design parameters and steps. As a conclusion, based on tests and simulations depend on design steps, suggestions on how the VTOL aircraft designed and advantages, disadvantages, and observations for design parameters are listed, then VTOL is designed and presented with the design parameters, advantages, and usage areas.

Keywords: airplane, rotary, fixed, VTOL, CFD

Procedia PDF Downloads 282
7657 Integrated On-Board Diagnostic-II and Direct Controller Area Network Access for Vehicle Monitoring System

Authors: Kavian Khosravinia, Mohd Khair Hassan, Ribhan Zafira Abdul Rahman, Syed Abdul Rahman Al-Haddad

Abstract:

The CAN (controller area network) bus is introduced as a multi-master, message broadcast system. The messages sent on the CAN are used to communicate state information, referred as a signal between different ECUs, which provides data consistency in every node of the system. OBD-II Dongles that are based on request and response method is the wide-spread solution for extracting sensor data from cars among researchers. Unfortunately, most of the past researches do not consider resolution and quantity of their input data extracted through OBD-II technology. The maximum feasible scan rate is only 9 queries per second which provide 8 data points per second with using ELM327 as well-known OBD-II dongle. This study aims to develop and design a programmable, and latency-sensitive vehicle data acquisition system that improves the modularity and flexibility to extract exact, trustworthy, and fresh car sensor data with higher frequency rates. Furthermore, the researcher must break apart, thoroughly inspect, and observe the internal network of the vehicle, which may cause severe damages to the expensive ECUs of the vehicle due to intrinsic vulnerabilities of the CAN bus during initial research. Desired sensors data were collected from various vehicles utilizing Raspberry Pi3 as computing and processing unit with using OBD (request-response) and direct CAN method at the same time. Two types of data were collected for this study. The first, CAN bus frame data that illustrates data collected for each line of hex data sent from an ECU and the second type is the OBD data that represents some limited data that is requested from ECU under standard condition. The proposed system is reconfigurable, human-readable and multi-task telematics device that can be fitted into any vehicle with minimum effort and minimum time lag in the data extraction process. The standard operational procedure experimental vehicle network test bench is developed and can be used for future vehicle network testing experiment.

Keywords: CAN bus, OBD-II, vehicle data acquisition, connected cars, telemetry, Raspberry Pi3

Procedia PDF Downloads 201
7656 Robust Optimisation Model and Simulation-Particle Swarm Optimisation Approach for Vehicle Routing Problem with Stochastic Demands

Authors: Mohanad Al-Behadili, Djamila Ouelhadj

Abstract:

In this paper, a specific type of vehicle routing problem under stochastic demand (SVRP) is considered. This problem is of great importance because it models for many of the real world vehicle routing applications. This paper used a robust optimisation model to solve the problem along with the novel Simulation-Particle Swarm Optimisation (Sim-PSO) approach. The proposed Sim-PSO approach is based on the hybridization of the Monte Carlo simulation technique with the PSO algorithm. A comparative study between the proposed model and the Sim-PSO approach against other solution methods in the literature has been given in this paper. This comparison including the Analysis of Variance (ANOVA) to show the ability of the model and solution method in solving the complicated SVRP. The experimental results show that the proposed model and Sim-PSO approach has a significant impact on the obtained solution by providing better quality solutions comparing with well-known algorithms in the literature.

Keywords: stochastic vehicle routing problem, robust optimisation model, Monte Carlo simulation, particle swarm optimisation

Procedia PDF Downloads 277
7655 Optimization Based Obstacle Avoidance

Authors: R. Dariani, S. Schmidt, R. Kasper

Abstract:

Based on a non-linear single track model which describes the dynamics of vehicle, an optimal path planning strategy is developed. Real time optimization is used to generate reference control values to allow leading the vehicle alongside a calculated lane which is optimal for different objectives such as energy consumption, run time, safety or comfort characteristics. Strict mathematic formulation of the autonomous driving allows taking decision on undefined situation such as lane change or obstacle avoidance. Based on position of the vehicle, lane situation and obstacle position, the optimization problem is reformulated in real-time to avoid the obstacle and any car crash.

Keywords: autonomous driving, obstacle avoidance, optimal control, path planning

Procedia PDF Downloads 369
7654 Nozzle-to-Surface Distances Effect on Heat Transfer of Two-Phase Impinging Jets

Authors: Aspen W. Glaspell, Victoria J. Rouse, Brian K. Friedrich, Kyosung Choo

Abstract:

Heat transfer of two-phase impinging jet on a flat plate surface are experimentally investigated. The effects of the nozzle-to-surface distance and volumetric quality on the Nusselt number are considered. The results show that the normalized stagnation Nusselt number drastically increase with decreasing the nozzle-to-surface distance due to the jet deflection effect. Based on the experimental results, new correlations for the stagnation Nusselt number are developed as a function of the nozzle-to-surface distance.

Keywords: jet impingement, water jet, air assisted, circular jet

Procedia PDF Downloads 191
7653 Double Row Taper Roller Bearing Wheel-end System in Rigid Rear Drive Axle in Heavy Duty SUV Passenger Vehicle

Authors: Mohd Imtiaz S, Saurabh Jain, Pothiraj K.

Abstract:

In today’s highly competitive passenger vehicle market, comfortable driving experience is one of the key parameters significantly weighed by the customer. Smooth ride and handling of the vehicle with exceptionally reliable wheel end solution is a paramount requirement in passenger Sports Utility Vehicle (SUV) vehicles subjected to challenging terrains and loads with rigid rear drive axle configuration. Traditional wheel-end bearing systems in passenger segment rigid rear drive axle utilizes the semi-floating layout, which imparts vertical bending loads and torsion to the axle shafts. The wheel-end bearing is usually a Single or Double Row Deep-Groove Ball Bearing (DRDGBB) or Double Row Angular Contact Ball Bearing (DRACBB). This solution is cost effective and simple in architecture. However, it lacks effectiveness against the heavy loads subjected to a SUV vehicle, especially the axial trust at high-speed cornering. This paper describes the solution of Double Row Taper Roller Bearing (DRTRB) wheel-end for a SUV vehicle in the rigid rear drive axle and improvement in terms of maximizing its load carrying capacity along with better reliability in terms of axial thrust in high-speed cornering. It describes the advantage of geometry of DRTRB over DRDGBB and DRACBB highlighting contact and load flow. The paper also highlights the vehicle level considerations affecting the B10 life of the bearing system for better selection of the DRTRB wheel-ends systems. This paper also describes real time vehicle level results along with theoretical improvements.

Keywords: axial thrust, b10 life, deep-groove ball bearing, taper roller bearing, semi-floating layout.

Procedia PDF Downloads 74
7652 A Particle Filter-Based Data Assimilation Method for Discrete Event Simulation

Authors: Zhi Zhu, Boquan Zhang, Tian Jing, Jingjing Li, Tao Wang

Abstract:

Data assimilation is a model and data hybrid-driven method that dynamically fuses new observation data with a numerical model to iteratively approach the real system state. It is widely used in state prediction and parameter inference of continuous systems. Because of the discrete event system’s non-linearity and non-Gaussianity, traditional Kalman Filter based on linear and Gaussian assumptions cannot perform data assimilation for such systems, so particle filter has gradually become a technical approach for discrete event simulation data assimilation. Hence, we proposed a particle filter-based discrete event simulation data assimilation method and took the unmanned aerial vehicle (UAV) maintenance service system as a proof of concept to conduct simulation experiments. The experimental results showed that the filtered state data is closer to the real state of the system, which verifies the effectiveness of the proposed method. This research can provide a reference framework for the data assimilation process of other complex nonlinear systems, such as discrete-time and agent simulation.

Keywords: discrete event simulation, data assimilation, particle filter, model and data-driven

Procedia PDF Downloads 13
7651 Low-Voltage Multiphase Brushless DC Motor for Electric Vehicle Application

Authors: Mengesha Mamo Wogari

Abstract:

In this paper, low voltage multiphase brushless DC motor with square wave air-gap flux distribution for electric vehicle application is proposed. Ten-phase, 5 kW motor, has been designed and simulated by finite element methods demonstrating the desired high torque capability at low speed and flux weakening operation for high-speed operations. The motor torque is proportional to number of phases for a constant phase current and air-gap flux. The concept of vector control and simple space vector modulation technique is used on MATLAB to control the motor demonstrating simple switching pattern for selected number of phases. The low voltage DC and inverter output AC are desired characteristics to avoid any electric shock in the vehicle, accidentally and during abnormal conditions. The switching devices for inverter are of low-voltage rating and cost effective though their number is equal to twice the number of phases.

Keywords: brushless DC motors, electric Vehicle, finite element methods, Low-voltage inverter, multiphase

Procedia PDF Downloads 153
7650 Architecture for Multi-Unmanned Aerial Vehicles Based Autonomous Precision Agriculture Systems

Authors: Ebasa Girma, Nathnael Minyelshowa, Lebsework Negash

Abstract:

The use of unmanned aerial vehicles (UAVs) in precision agriculture has seen a huge increase recently. As such, systems that aim to apply various algorithms on the field need a structured framework of abstractions. This paper defines the various tasks of the UAVs in precision agriculture and models them into an architectural framework. The presented architecture is built on the context that there will be minimal physical intervention to do the tasks defined with multiple coordinated and cooperative UAVs. Various tasks such as image processing, path planning, communication, data acquisition, and field mapping are employed in the architecture to provide an efficient system. Besides, different limitation for applying Multi-UAVs in precision agriculture has been considered in designing the architecture. The architecture provides an autonomous end-to-end solution, starting from mission planning, data acquisition, and image processing framework that is highly efficient and can enable farmers to comprehensively deploy UAVs onto their lands. Simulation and field tests show that the architecture offers a number of advantages that include fault-tolerance, robustness, developer, and user-friendliness.

Keywords: deep learning, multi-UAVs, precision agriculture, UAVs architecture

Procedia PDF Downloads 114
7649 Yaw Angle Effect on the Aerodynamic Performance of Rear-Roof Spoiler of Hatchback Vehicle

Authors: See-Yuan Cheng, Kwang-Yhee Chin, Shuhaimi Mansor

Abstract:

Rear-roof spoiler is commonly used for improving the aerodynamic performance of road vehicles. This study aims to investigate the effect of yaw angle on the effectiveness of strip-type rear-roof spoiler in providing lower drag and lift coefficients of a hatchback model. A computational fluid dynamics (CFD) method was used. The numerically obtained results were compared to the experimental data for validation of the CFD method. At increasing yaw angle, both the drag and lift coefficients of the model were to increase. In addition, the effectiveness of spoiler was deteriorated. These unfavorable effects were due to the formation of longitudinal vortices around the side edges of the model that had caused the surface pressure of the model to drop. Furthermore, there were significant crossflow structures developed behind the model at larger yaw angle, which were associated with the drop in the surface pressure of the rear section of the model and cause the drag coefficient to rise.

Keywords: Ahmed model, aerodynamics, spoiler, yaw angle

Procedia PDF Downloads 357
7648 The Effect of Substrate Surface Roughness for Hot Dip Aluminizing of IN718 Alloy

Authors: Aptullah Karakas, Murat Baydogan

Abstract:

The hot dip aluminizing (HDA) process involves immersing a metallic substrate into a molten aluminum bath for several minutes, and removed from the bath and cooled down to room temperature. After the HDA process, various aluminide layers are formed as a result of interdiffusion between the substrate and the molten aluminum and between the aluminide layers. In order to form a uniform aluminide layer, the specimen must be covered and wet well by the molten aluminum. Surface roughness plays an important role in wettability, and thus, surface preparation is an important stage in determining the final surface roughness. In this study, different roughness values were achieved by grinding the surface with emery papers as 180, 320 and 600 grids. After the surface preparation, the HDA process was performed in a molten Al-Si bath at 700 ᴼC for 10 minutes. After the HDA process, a microstructural examination of the coating was carried out to evaluate the uniformity of the coating and adhesion between the substrate and the coating. According to the results, the best adhesion at the interface was observed on the specimen, which was prepared by 320 grid emery paper having a mean surface roughness (Ra) of 0.097 µm.

Keywords: hot-dip aluminizing, microstructure, surface roughness, coating

Procedia PDF Downloads 70
7647 An Innovative Green Cooling Approach Using Peltier Chip in Milling Operation for Surface Roughness Improvement

Authors: Md. Anayet U. Patwari, Mohammad Ahsan Habib, Md. Tanzib Ehsan, Md Golam Ahnaf, Md. S. I. Chowdhury

Abstract:

Surface roughness is one of the key quality parameters of the finished product. During any machining operation, high temperatures are generated at the tool-chip interface impairing surface quality and dimensional accuracy of products. Cutting fluids are generally applied during machining to reduce temperature at the tool-chip interface. However, usages of cutting fluids give rise to problems such as waste disposal, pollution, high cost, and human health hazard. Researchers, now-a-days, are opting towards dry machining and other cooling techniques to minimize use of coolants during machining while keeping surface roughness of products within desirable limits. In this paper, a concept of using peltier cooling effects during aluminium milling operation has been presented and adopted with an aim to improve surface roughness of the machined surface. Experimental evidence shows that peltier cooling effect provides better surface roughness of the machined surface compared to dry machining.

Keywords: aluminium, milling operation, peltier cooling effect, surface roughness

Procedia PDF Downloads 337
7646 Effects of X and + Tail-Body Configurations on Hydrodynamic Performance and Stability of an Underwater Vehicle

Authors: Kadri Koçer, Sezer Kefeli

Abstract:

This paper proposes a comparison of hydrodynamic performance and stability characteristic for an underwater vehicle which has two type of tail design, namely X and +tail-body configurations. The effects of these configurations on the underwater vehicle’s hydrodynamic performance and maneuvering characteristic will be investigated comprehensively. Hydrodynamic damping coefficients for modeling the motion of the underwater vehicles will be predicted. Additionally, forces and moments due to control surfaces will be compared using computational fluid dynamics methods. In the aviation, the X tail-body configuration is widely used for high maneuverability requirements. However, in the underwater, the + tail-body configuration is more commonly used than the X tail-body configuration for its stability characteristics. Thus it is important to see the effect and differences of the tail designs in the underwater world. For CFD analysis, the incompressible, three-dimensional, and steady Navier-Stokes equations will be used to simulate the flows. Also, k-ε Realizable turbulence model with enhanced wall treatment will be taken. Numerical results is verified with experimental results for verification. The overall goal of this study is to present the advantages and disadvantages of hydrodynamic performance and stability characteristic for X and + tail-body configurations of the underwater vehicle.

Keywords: maneuverability, stability, CFD, tail configuration, hydrodynamic design

Procedia PDF Downloads 184
7645 Evaluation of the Electric Vehicle Impact in Distribution System

Authors: Sania Maghsodloo, Sirus Mohammadi

Abstract:

Electric Vehicle (EV) technology is expected to take a major share in the light-vehicle market in the coming decades. Transportation electrification has become an important issue in recent decades and the large scale deployment of EVs has yet to be achieved. The smart coordination of EV demand addresses an improvement in the flexibility of power systems and reduces the costs of power system investment. The uncertainty in EV drivers’ behaviour is one of the main problems to solve to obtain an optimal integration of EVs into power systems Charging of EVs will put an extra burden on the distribution grid and in some cases adjustments will need to be made. The stochastic process of the driving pattern is done to make the outcome of the project more realistic. Based on the stochastic data, the optimization of charging plans is made.

Keywords: electric vehicles (PEVs), smart grid, Monticello, distribution system

Procedia PDF Downloads 552