Search results for: solar assisted adsorption chiller
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3160

Search results for: solar assisted adsorption chiller

2830 Reduction of Content of Lead and Zinc from Wastewater by Using of Metallurgical Waste

Authors: L. Rozumová, J. Seidlerová

Abstract:

The aim of this paper was to study the sorption properties of a blast furnace sludge used as the sorbent. The sorbent was utilized for reduction of content of lead and zinc ions. Sorbent utilized in this work was obtained from metallurgical industry from process of wet gas treatment in iron production. The blast furnace sludge was characterized by X-Ray diffraction, scanning electron microscopy, and XRFS spectroscopy. Sorption experiments were conducted in batch mode. The sorption of metal ions in the sludge was determined by correlation of adsorption isotherm models. The adsorption of lead and zinc ions was best fitted with Langmuir adsorption isotherms. The adsorption capacity of lead and zinc ions was 53.8 mg.g-1 and 10.7 mg.g-1, respectively. The results indicated that blast furnace sludge could be effectively used as secondary material and could be also employed as a low-cost alternative for the removal of heavy metals ions from wastewater.

Keywords: blast furnace sludge, lead, zinc, sorption

Procedia PDF Downloads 283
2829 Batch Adsorption Studies for the Removal of Textile Dyes from Aqueous Solution on Three Different Pine Bark

Authors: B. Cheknane, F. Zermane

Abstract:

The main objective of the present study is the valorization of natural raw materials of plant origin for the treatment of textile industry wastewater. Selected bark was: maritime (MP), pinyon (PP) and Aleppo pine (AP) bark. The efficiency of these barks were tested for the removal of three dye; rhodamine B (RhB), Green Malachite (GM) and X Methyl Orange (MO). At the first time we focus to study the different parameters which can influence the adsorption processes such as: nature of the adsorbents, nature of the pollutants (dyes) and the effect of pH. Obtained results reveals that the speed adsorption is strongly influencing by the pH medium and the comparative study show that adsorption is favorable in the acidic medium with amount adsorbed of (Q=40mg/g) for rhodamine B and (Q=46mg/g) for orange methyl. Results of adsorption kinetics reveals that the molecules of GM are adsorbed better (Q=48mg/g) than the molecules of RhB (Q=46mg/g) and methyl orange (Q=18mg/g), with equilibrium time of 6 hours. The results of adsorption isotherms show clearly that the maritime pine bark is the most effective adsorbents with adsorbed amount of (QRhB=200mg/g) and (QMO=88mg/g) followed by pinyon pine (PP) with (QRhB=184mg/g) and (QMO=56mg/g) and finally Aleppo pine (AP) bark with (QRhB=131mg/g) and (QMO= 46mg/g). The different obtained isotherms were modeled using the Langmuir and Freundlich models and according to the adjustment coefficient values R2, the obtained isotherms are well represented by Freundlich model.

Keywords: maritime pine bark (MP), pinyon pine bark (PP), Aleppo pine (AP) bark, adsorption, dyes

Procedia PDF Downloads 303
2828 SEM and FTIR Study of Adsorption Characteristics Using Xanthate (KIBX) Synthesized Collectors on Sphalerite

Authors: Zohir Nedjar, Djamel Barkat

Abstract:

Thiols such as alkyl xanthates are commonly used as collectors in the froth flotation of sulfide minerals. Under the concen-tration, pH and Eh conditions relevant to flotation, the thermodynamically favoured reaction between a thiol and a sulfide mineral surface is charge transfechemisorption in which the collector becomes bonded to metal atoms in the outermost layer of the sulfide lattice. The adsorption of potassium isobutyl xanthate (KIBX 3.10-3M) on sphalerite has been also studied using electrochemical potential, FTIR technique and SEM. Non activated minerals and minerals activated with copper sulfate (10-4 M) and copper nitrate (10-4 M) have been investigated at pH = 7.5. Surface species have been identified by FTIR and correlated with SEM. After copper sulfate activation, copper xanthate exists on all of the minerals studied. Neutral pH is most favorable for potassium isobutyl xanthate adsorption on sphalerite.

Keywords: flotation, adsorption, xanthate KIBX, sphalerite

Procedia PDF Downloads 282
2827 Low Temperature Solution Processed Solar Cell Based on ITO/PbS/PbS:Bi3+ Heterojunction

Authors: M. Chavez, H. Juarez, M. Pacio, O. Portillo

Abstract:

PbS chemical bath heterojunction sollar cells have shown significant improvements in performance. Here we demonstrate a solar cell based on the heterojunction formed between PbS layer and PbS:Bi3+ thin films that are deposited via solution process at 40°C. The device achieve an current density of 4 mA/cm2. The simple and low-cost deposition method of PbS:Bi3+ films is promising for the fabrication.

Keywords: PbS doped, Bismuth, solar cell, thin films

Procedia PDF Downloads 533
2826 Spectral Response Measurements and Materials Analysis of Ageing Solar Photovoltaic Modules

Authors: T. H. Huang, C. Y. Gao, C. H. Lin, J. L. Kwo, Y. K. Tseng

Abstract:

The design and reliability of solar photovoltaic modules are crucial to the development of solar energy, and efforts are still being made to extend the life of photovoltaic modules to improve their efficiency because natural aging is time-consuming and does not provide manufacturers and investors with timely information, accelerated aging is currently the best way to estimate the life of photovoltaic modules. In this study, the accelerated aging of different light sources was combined with spectral response measurements to understand the effect of light sources on aging tests. In this study, there are two types of experimental samples: packaged and unpackaged and then irradiated with full-spectrum and UVC light sources for accelerated aging, as well as a control group without aging. The full-spectrum aging was performed by irradiating the solar cell with a xenon lamp like the solar spectrum for two weeks, while the accelerated aging was performed by irradiating the solar cell with a UVC lamp for two weeks. The samples were first visually observed, and infrared thermal images were taken, and then the electrical (IV) and Spectral Responsivity (SR) data were obtained by measuring the spectral response of the samples, followed by Scanning Electron Microscopy (SEM), Raman spectroscopy (Raman), and X-ray Diffraction (XRD) analysis. The results of electrical (IV) and Spectral Responsivity (SR) and material analyses were used to compare the differences between packaged and unpackaged solar cells with full spectral aging, accelerated UVC aging, and unaged solar cells. The main objective of this study is to compare the difference in the aging of packaged and unpackaged solar cells by irradiating different light sources. We determined by infrared thermal imaging that both full-spectrum aging and UVC accelerated aging increase the defects of solar cells, and IV measurements demonstrated that the conversion efficiency of solar cells decreases after full-spectrum aging and UVC accelerated aging. SEM observed some scorch marks on both unpackaged UVC accelerated aging solar cells and unpackaged full-spectrum aging solar cells. Raman spectroscopy examines the Si intensity of solar cells, and XRD confirms the crystallinity of solar cells by the intensity of Si and Ag winding peaks.

Keywords: solar cell, aging, spectral response measurement

Procedia PDF Downloads 81
2825 Study and Design of Solar Inverter System

Authors: Khaled A. Madi, Abdulalhakim O. Naji, Hassouna A. Aalaoh, Elmahdi Eldeeb

Abstract:

Solar energy is one of the cleanest energy sources with no environmental impact. Due to rapid increase in industrial as well as domestic needs, solar energy becomes a good candidate for safe and easy to handle energy source, especially after it becomes available due to reduction of manufacturing price. The main part of the solar inverter system is the inverter where the DC is inverted to AC, where we try to minimize the loss of power to the minimum possible level by the use of microcontroller. In this work, a deep investigation is made experimentally as well as theoretically for a microcontroller based variable frequency power inverter. The microcontroller will provide the variable frequency Pulse Width Modulation (PWM) signal that will control the switching of the gate of the Insulating Gate Bipolar Transistor (IGBT) with less harmonics at the output of power inverter which can be fed to the public grid at high quality. The proposed work for single phase as well as three phases is also simulated using Matlab/Simulink where we found a good agreement between the simulated and the practical results, even though the experimental work were done in the laboratory of the academy.

Keywords: solar, inverter, PV, solar inverter system

Procedia PDF Downloads 427
2824 The Effect of Acid Treatment of PEDOT: PSS Anode for Organic Solar Cells

Authors: Ismail Borazan, Ayse Celik Bedeloglu, Ali Demir, David Carroll

Abstract:

In this project, PEDOT:PSS layer was treated with formic acid, sulphuric acid, and hydrochloric acid, methanol, acetone, and dichlorobenzene:methanol. The resistivity measurements with 2-probes were carried out and the best-chosen method was employed to make an organic solar cell device.

Keywords: organic solar cells, PEDOT:PSS, polymer electrodes, resistivity

Procedia PDF Downloads 794
2823 Design and Comparative Analysis of Grid-Connected Bipv System with Monocrystalline Silicon and Polycrystalline Silicon in Kandahar Climate

Authors: Ahmad Shah Irshad, Naqibullah Kargar, Wais Samadi

Abstract:

Building an integrated photovoltaic (BIPV) system is a new and modern technique for solar energy production in Kandahar. Due to its location, Kandahar has abundant sources of solar energy. People use both monocrystalline and polycrystalline silicon solar PV modules for the grid-connected solar PV system, and they don’t know which technology performs better for the BIPV system. This paper analyses the parameters described by IEC61724, “Photovoltaic System Performance Monitoring Guidelines for Measurement, Data Exchange and Analysis,” to evaluate which technology shows better performance for the BIPV system. The monocrystalline silicon BIPV system has a 3.1% higher array yield than the polycrystalline silicon BIPV system. The final yield is 0.2%, somewhat higher for monocrystalline silicon than polycrystalline silicon. Monocrystalline silicon has 0.2% and 4.5% greater yearly yield factor and capacity factors than polycrystalline silicon, respectively. Monocrystalline silicon shows 0.3% better performance than polycrystalline silicon. With 1.7% reduction and 0.4% addition in collection losses and useful energy produced, respectively, monocrystalline silicon solar PV system shows good performance than polycrystalline silicon solar PV system. But system losses are the same for both technologies. The monocrystalline silicon BIPV system injects 0.2% more energy into the grid than the polycrystalline silicon BIPV system.

Keywords: photovoltaic technologies, performance analysis, solar energy, solar irradiance, performance ratio

Procedia PDF Downloads 346
2822 The Development of Solar Cells to Maximize the Utilization of Solar Energy in Al-Baha Area

Authors: Mohammed Ahmed Alghamdi, Hazem Mahmoud Ali Darwish, Mostafa Mohamed Abdelraheem

Abstract:

Transparent conducting oxides (TCOs) possess low resistivity, exhibit good adherence to many substrates, and have good transmission characteristics from the visible to near-infrared wavelengths, which make it useful for various applications. Thin films of transparent conducting oxide (TCO’s) have received much attention because of their wide applications in the field of optoelectronic devices. Advancement of transparent conducting oxides TCO’s may not only lie within the improvement of existing materials in use, but also the development of novel materials. Solar cells are devices, which convert solar energy into electricity, either directly via the photovoltaic effect, or indirectly by first converting the solar energy to heat or chemical energy. Solar power has attracted attention of late as the most advanced of the alternative energy resources. The project aims to access the solar energy in Al-Baha region by search for materials (transparent-conductive oxides (TCO's)) to use in solar cells with highly transparent to the solar spectrum, have low electrical resistivity, be stable under H-plasma, and have a suitable structure in particular for a-Si solar cells. As the PV surface is exposed to the sunlight, the module temperature increases. High ambient temperatures along with long sunlight exposure time increases the temperature impact on PV cells efficiency. Since Al-Baha area is characterized by an atmosphere and pressure different from their counterparts in Saudi Arabia due to the height above sea level, hence it is appropriate to do studies to improve the efficiency of solar cells under these conditions. In this work, some ion change materials will be deposited using either sputtering/ or electron beam evaporation techniques. The optical properties of the synthesized materials will be studied in details for solar cell application. As we will study the effect of some dyes on the optical properties of the prepared films. The efficiency and other parameters of solar cell will be determined.

Keywords: thin films, solar cell, optical properties, electrical properties

Procedia PDF Downloads 444
2821 Performance of a Solar Heating System on the Microclimate of an Agricultural Greenhouse

Authors: Nora Arbaoui, Rachid Tadili, Ilham Ihoume

Abstract:

Climate change and its effects on low external temperatures in winter require great consumption of energy to improve the greenhouse microclimate and increase agricultural production. To reduce the amount of energy consumed, a solar system has been developed to heat an agricultural greenhouse. This system is based on a transfer fluid that will circulate inside the greenhouse through a solar copper coil positioned on the roof of the greenhouse. This thermal energy accumulated during the day will be stored to be released during the night to improve the greenhouse’s microclimate. The use of this solar heating system has resulted in an average increase in the greenhouse’s indoor temperature of 8.3°C compared to the outdoor environment. This improved temperature has created a more favorable climate for crops and has subsequently had a positive effect on their development, quality, and production.

Keywords: solar system, agricultural greenhouse, heating, cooling, storage, drying

Procedia PDF Downloads 70
2820 Solar Energy Technology Adoption; A Vignette Study for the Up-Scale Residential Sector in Egypt

Authors: Mazen Zaki, Sherwat E. Ibrahim

Abstract:

Renewable energy has become a very important and critical topic all around the world due to the limited resources that led to shifting to the trend of renewable energy and its integration with the conventional ones. This paper investigates the adoption of the solar energy technology for up-scale residential sector in Cairo, Egypt. The technology acceptance model uses several stakeholder points’ of views to develop vignettes to be used in examining the intention and attitude of the householders to adopt the solar energy technology.

Keywords: solar energy, technology acceptance model, TAM, stakeholder analysis, vignette, residential sector

Procedia PDF Downloads 129
2819 The Adsorption of Zinc Metal in Waste Water Using ZnCl2 Activated Pomegranate Peel

Authors: S. N. Turkmen, A. S. Kipcak, N. Tugrul, E. M. Derun, S. Piskin

Abstract:

Activated carbon is an amorphous carbon chain which has extremely extended surface area. High surface area of activated carbon is due to the porous structure. Activated carbon, using a variety of materials such as coal and cellulosic materials; can be obtained by both physical and chemical methods. The prepared activated carbon can be used for decolorize, deodorize and also can be used for removal of organic and non-organic pollution. In this study, pomegranate peel was subjected to 800W microwave power for 1 to 4 minutes. Also fresh pomegranate peel was used for the reference material. Then ZnCl2 was used for the chemical activation purpose. After the activation process, activated pomegranate peels were used for the adsorption of Zn metal (40 ppm) in the waste water. As a result of the adsorption experiments, removal of heavy metals ranged from 89% to 85%.

Keywords: activated carbon, adsorption, chemical activation, microwave, pomegranate peel

Procedia PDF Downloads 526
2818 Production of Clean Reusable Distillery Waste Water Using Activated Carbon Prepared from Waste Orange Peels

Authors: Joseph Govha, Sharon Mudutu

Abstract:

The research details the treatment of distillery waste water by making use of activated carbon prepared from orange peels as an adsorbent. Adsorption was carried out at different conditions to determine the optimum conditions that work best for the removal of color in distillery waste water using orange peel activated carbon. Adsorption was carried out at different conditions by varying contact time, adsorbent dosage, pH, testing for color intensity and Biological Oxygen Demand. A maximum percentage color removal of 88% was obtained at pH 7 at an adsorbent dosage of 1g/20ml. Maximum adsorption capacity was obtained from the Langmuir isotherm at R2=0.98.

Keywords: distillery, waste water, orange peel, activated carbon, adsorption

Procedia PDF Downloads 269
2817 Solar Heating System to Promote the Disinfection

Authors: Elmo Thiago Lins Cöuras Ford, Valentina Alessandra Carvalho do Vale

Abstract:

It presents a heating system using low cost alternative solar collectors to promote the disinfection of water in low income communities that take water contaminated by bacteria. The system consists of two solar collectors, with total area of 4 m² and was built using PET bottles and cans of beer and soft drinks. Each collector is made up of 8 PVC tubes, connected in series and work in continuous flow. It will determine the flux the most appropriate to generate the temperature to promote the disinfection. Will be presented results of the efficiency and thermal loss of system and results of analysis of water after undergoing the process of heating.

Keywords: disinfection of water, solar heating system, poor communities, PVC

Procedia PDF Downloads 455
2816 Purification of Bilge Water by Adsorption

Authors: Fatiha Atmani, Lamia Djellab, Nacera Yeddou Mezenner, Zohra Bensaadi

Abstract:

Generally, bilge waters can be briefly defined as saline and greasy wastewaters. The oil and grease are mixed with the sea water, which affects many marine species. Bilge water is a complex mixture of various compounds such as solvents, surfactants, fuel, lubricating oils, and hydraulic oils. It is resulted mainly by the leakage from the machinery and fresh water washdowns,which are allowed to drain to the lowest inner part of the ship's hull. There are several physicochemical methods used for bilge water treatment such as biodegradation electrochemical and electro-coagulation/flotation.The research herein presented discusses adsorption as a method to treat bilge water and eggshells were studied as an adsorbent. The influence of operating parameters as contact time, temperature and adsorbent dose (0,2 - 2g/l) on the removal efficiency of Chemical oxygen demand, COD, and turbidity was analyzed. The bilge wastewater used for this study was supplied by Harbour Bouharoune. Chemical oxygen demand removal increased from 26.7% to 68.7% as the adsorbent dose increased from 0.2 to 2 g. The kinetics of adsorption by eggshells were fast, reaching 55 % of the total adsorption capacity in ten minutes (T= 20°C, pH =7.66, m=2g/L). It was found that the turbidity removal efficiency decreased and 95% were achieved at the end of 90 min reaction. The adsorption process was found to be effective for the purification of bilge water and pseudo-second-order kinetic model was fitted for COD removal.

Keywords: adsorption, bilge water, eggshells and kinetics, equilibrium and kinetics

Procedia PDF Downloads 337
2815 Impact of Large Scale Solar Power Plant on Airports and Aviation

Authors: Munirah Stapah Salleh, Ahmad Rosly Abbas, Sazalina Zakaria, Nur Iffika Ruslan, Nurfaziera Rahim

Abstract:

One of the areas that require a massive amount of energy is the airport. Hence, several airports have increased their reliance on renewable energy, specifically solar photovoltaic (PV) systems, to solve the issue. The interest regarding the installations of airport-based solar farms caught much attention. This, at the same time, helps to minimize the reliance on conventional energy sources that are fossil-based. However, many concerns were raised on the solar PV systems, especially on the effect of potential glare occurrence to the pilots during their flies. This paper will be discussing both the positive and negative impact of the large scale solar power plant on airports and aviation. Installing the large scale solar have negative impacts on airport and aviation, such as physical collision hazards, potential interference, or voltage problems with aircraft navigational and surveillance equipment as well as potential glare. On the positive side, it helps to lower environmental footprint, acquiring less energy from the utility provider, which are traditionally highly relying on other energy sources that have larger effects on the environment, and, last but not least, reduce the power supply uncertainty.

Keywords: solar photovoltaic systems, large scale solar, airport, glare effects

Procedia PDF Downloads 187
2814 Adsorption of Cd(II) and Pb(II) from Aqueous Solutions by Using Pods of Acacia Karoo

Authors: Gulshan Kumar Jawa, Sandeep Mohan Ahuja

Abstract:

With the increase in industrialization, the presence of heavy metals in wastewater streams has turned into a serious concern for the ecosystem. The metals diffuse through the food chains, causing various health hazards. Conventional methods used to remove these heavy metals from water have some limitations, such as cost, secondary pollution due to sludge formation, recovery of metal, economic viability at low metal concentrations, etc. Many of the biomaterials have been investigated by researchers for the adsorption of heavy metals from water solutions as an alternative technique for the last two decades and have found promising results. In this paper, the batch study on the use of pods of acacia karoo for the adsorption of Cd(II) and Pb(II) from aqueous solutions has been reported. The effect of various parameters on the removal of metal ions, such as pH, contact time, stirring speed, initial metal ion concentration, adsorbent dose, and temperature, have been established to find the optimum parameters through one parameter optimization. Further, kinetic, equilibrium, and thermodynamic studies have been conducted. The pods of acacia karoo have shown great potential for adsorption of Cd(II) and Pb(II) from aqueous solutions and have proven to be a better and more economical alternative for the purpose.

Keywords: adsorption, heavy metals, biomaterials, Cadmium(II), Lead(II), pods of acacia karoo

Procedia PDF Downloads 19
2813 Solar and Wind Energy Potential Study of Lower Sindh, Pakistan for Power Generation

Authors: M. Akhlaque Ahmed, Sidra A. Shaikh, Maliha A. Siddiqui

Abstract:

Global and diffuse solar radiation on horizontal surface of Lower Sindh, namely Karachi, Hyderabad, Nawabshah were carried out using sunshine hour data of the area to assess the feasibility of solar energy utilization for power generation in Sindh province. The results obtained show a large variation in the direct and diffuse component of solar radiation in summer and winter months in Lower Sindh (50% direct and 50% diffuse for Karachi and Hyderabad). In Nawabshah area, the contribution of diffuse solar radiation is low during the monsoon months, July and August. The KT value of Nawabshah indicates a clear sky throughout almost the entire year. The percentage of diffuse radiation does not exceed more than 20%. In Nawabshah, the appearance of cloud is rare even during the monsoon months. The estimated values indicate that Nawabshah has high solar potential, whereas Karachi and Hyderabad have low solar potential. During the monsoon months the Lower part of Sindh can utilize the hybrid system with wind power. Near Karachi and Hyderabad, the wind speed ranges between 6.2 m/sec to 6.9 m/sec. A wind corridor exists near Karachi, Hyderabad, Gharo, Keti Bander and Shah Bander. The short fall of solar can be compensated by wind because in the monsoon months of July and August, wind speeds are higher in the Lower region of Sindh.

Keywords: hybrid power system, lower Sindh, power generation, solar and wind energy potential

Procedia PDF Downloads 230
2812 Mapping of Solar Radiation Anomalies Based on Climate Change

Authors: Elison Eduardo Jardim Bierhals, Claudineia Brazil, Francisco Pereira, Elton Rossini

Abstract:

The use of alternative energy sources to meet energy demand reduces environmental damage. To diversify an energy matrix and to minimize global warming, a solar energy is gaining space, being an important source of renewable energy, and its potential depends on the climatic conditions of the region. Brazil presents a great solar potential for a generation of electric energy, so the knowledge of solar radiation and its characteristics are fundamental for the study of energy use. Due to the above reasons, this article aims to verify the climatic variability corresponding to the variations in solar radiation anomalies, in the face of climate change scenarios. The data used in this research are part of the Intercomparison of Interconnected Models, Phase 5 (CMIP5), which contributed to the preparation of the fifth IPCC-AR5 report. The solar radiation data were extracted from The Australian Community Climate and Earth System Simulator (ACCESS) model using the RCP 4.5 and RCP 8.5 scenarios that represent an intermediate structure and a pessimistic framework, the latter being the most worrisome in all cases. In order to allow the use of solar radiation as a source of energy in a given location and/or region, it is important, first, to determine its availability, thus justifying the importance of the study. The results pointed out, for the 75-year period (2026-2100), based on a pessimistic scenario, indicate a drop in solar radiation of the approximately 12% in the eastern region of Rio Grande do Sul. Factors that influence the pessimistic prospects of this scenario should be better observed by the responsible authorities, since they can affect the possibility to produce electricity from solar radiation.

Keywords: climate change, energy, IPCC, solar radiation

Procedia PDF Downloads 170
2811 Simulation and Experimentation of Solar Thermal Collector for Air Heating System Using Dynamic Ribs

Authors: Nishitha Chowdary, Prabhav Dwivedi

Abstract:

Solar radiation (or insolation) is responsible for 174 petawatts (PW) of energy reaching the Earth's atmosphere. About one-third of this is reflected in space. Solar energy is by far the most abundant source of energy on Earth. In this study to use solar energy to the fullest in a solar air heater, An analysis of a solar air heater duct roughened with fixed cylindrical ribs in 3-D has been done using CFD. These fixed cylindrical ribs have a uniform circular cross-section and are placed in transverse in-line and staggered arrangements. The orientation of ribs has been fixed and is perpendicular to the in-flow direction. Cylindrical ribs are arranged periodically with fixed pitch; therefore, one pitch length is only considered in the present study. Validation has been done with smooth as well as with roughened duct and is matched perfectly with the developed correlations. Geometric parameters, namely rib height (e), ranges from 1 to 2 mm and pitch ranges from 10 to 40 mm are used in the present investigation. Thermo-hydraulic performance parameters in terms of average Nusselt number and friction factor have been extracted for Reynolds number ranging 5000—18000 to optimize the performance of roughened duct.

Keywords: cylindrical ribs, solar air heater, thermo-hydraulic performance factor, roughened duct

Procedia PDF Downloads 136
2810 An Integrated Power Generation System Design Developed between Solar Energy-Assisted Dual Absorption Cycles

Authors: Asli Tiktas, Huseyin Gunerhan, Arif Hepbasli

Abstract:

Solar energy, with its abundant and clean features, is one of the prominent renewable energy sources in multigeneration energy systems where various outputs, especially power generation, are produced together. In the literature, concentrated solar energy systems, which are an expensive technology, are mostly used in solar power plants where medium-high capacity production outputs are achieved. In addition, although different methods have been developed and proposed for solar energy-supported integrated power generation systems by different investigators, absorption technology, which is one of the key points of the present study, has been used extensively in cooling systems in these studies. Unlike these common uses mentioned in the literature, this study designs a system in which a flat plate solar collector (FPSC), Rankine cycle, absorption heat transformer (AHT), and cooling systems (ACS) are integrated. The system proposed within the scope of this study aims to produce medium-high-capacity electricity, heating, and cooling outputs using a technique different from the literature, with lower production costs than existing systems. With the proposed integrated system design, the average production costs based on electricity, heating, and cooling load production for similar scale systems are 5-10% of the average production costs of 0.685 USD/kWh, 0.247 USD/kWh, and 0.342 USD/kWh. In the proposed integrated system design, this will be achieved by increasing the outlet temperature of the AHT and FPSC system first, expanding the high-temperature steam coming out of the absorber of the AHT system in the turbine up to the condenser temperature of the ACS system, and next directly integrating it into the evaporator of this system and then completing the AHT cycle. Through this proposed system, heating and cooling will be carried out by completing the AHT and ACS cycles, respectively, while power generation will be provided because of the expansion of the turbine. Using only a single generator in the production of these three outputs together, the costs of additional boilers and the need for a heat source are also saved. In order to demonstrate that the system proposed in this study offers a more optimum solution, the techno-economic parameters obtained based on energy, exergy, economic, and environmental analysis were compared with the parameters of similar scale systems in the literature. The design parameters of the proposed system were determined through a parametric optimization study to exceed the maximum efficiency and effectiveness and reduce the production cost rate values of the compared systems.

Keywords: solar energy, absorption technology, Rankine cycle, multigeneration energy system

Procedia PDF Downloads 35
2809 Surface Modification of Poly High Internal Phase Emulsion by Solution Plasma Process for CO2 Adsorption

Authors: Mookyada Mankrut, Manit Nithitanakul

Abstract:

An increase in the amount of atmospheric carbon dioxide (CO2) resulting from anthropogenic CO2 emission has been a concerned problem so far. Adsorption using porous materials is feasible way to reduce the content of CO2 emission into the atmosphere due to several advantages: low energy consumption in regeneration process, low-cost raw materials and, high CO2 adsorption capacity. In this work, the porous poly(divinylbenzene) (poly(DVB)) support was synthesized under high internal phase emulsion (HIPE) polymerization then modified with polyethyleneimine (PEI) by using solution plasma process. These porous polymers were then used as adsorbents for CO2 adsorption study. All samples were characterized by some techniques: Fourier transform infrared spectroscopy (FT-IR), scanning electron spectroscopy (SEM), water contact angle measurement and, surface area analyzer. The results of FT-IR and a decrease in contact angle, pore volume and, surface area of PEI-loaded materials demonstrated that surface of poly(DVB) support was modified. In other words, amine groups were introduced to poly(DVB) surface. In addition, not only the outer surface of poly(DVB) adsorbent was modified, but also the inner structure as shown by FT-IR study. As a result, PEI-loaded materials exhibited higher adsorption capacity, comparing with those of the unmodified poly(DVB) support.

Keywords: polyHIPEs, CO2 adsorption, solution plasma process, high internal phase emulsion

Procedia PDF Downloads 255
2808 Modeling of a Concentrating Photovoltaic Module with and without Cooling System

Authors: Intissar Benrhouma, Marta Victoria, Ignacio Anton, Bechir Chaouachi

Abstract:

Concentrating photovoltaic systems CPV use optical elements, such as Fresnel lenses, to concentrate solar intensity. The concentrated solar energy is delivered to the solar cell from 20 to 100 W/cm². Some of this energy is converted to electricity, while the rest must be disposed of as a residual heat. Solar cells cooling should be a necessary part of CPV modeling because these systems allowed increasing the power received by the cell. This high power can rise the electrons’ potential causing the heating of the cell, which reduces the global module’s efficiency. This work consists of modeling a concentrating photovoltaic module with and without a cooling system. We have established a theoretical model based on energy balances carried out on a photovoltaic module using solar radiation concentration cells. Subsequently, we developed a calculation program on Matlab which allowed us to simulate the functioning of this module. The obtained results show that the addition of a cooling system to the module improves greatly the performance of our CPV system.

Keywords: solar energy, photovoltaic, concentration, cooling, performance improvement

Procedia PDF Downloads 379
2807 Vehicle to Grid Potential for Solar Powered Electric Vehicle

Authors: Marcin Kowalski, Tomasz Wiktor, Piotr Ladonski, Krzysztof Bortnowski, Szymon Przybyl, Mateusz Grzesiak

Abstract:

This paper provides a detailed overview of the so-called smart grid or vehicle-to-grid idea, including a description of our way of implementation. The primary targets of this paper are technical students, young constructors, visionaries, however more experienced designers may find useful ideas for developing their vehicles. The publication will also be useful for home-grown builders who want to save on electricity. This article as well summarizes the advantages and disadvantages of V2G solution and might be helpful for students teams planning to participate in Bridgestone World Solar Challenge.

Keywords: solar powered vehicle, vehicle to grid, electric car, v2g, bridgestone world solar challenge

Procedia PDF Downloads 179
2806 Surface Integrity Improvement for Selective Laser Melting (SLM) Additive Manufacturing of C300 Parts Using Ball Burnishing

Authors: Adrian Travieso Disotuar, J. Antonio Travieso Rodriguez, Ramon Jerez Mesa, Montserrat Vilaseca

Abstract:

The effect of the non-vibration-assisted and vibration-assisted ball burnishing on both the surface and mechanical properties of C300 obtained by Selective Laser Melting additive manufacturing technology is studied in this paper. Different vibration amplitudes preloads, and burnishing strategies were tested. A topographical analysis was performed to determine the surface roughness of the different conditions. Besides, micro tensile tests were carried out in situ on Scanning Electron Microscopy to elucidate the post-treatment effects on damaging mechanisms. Experiments show that vibration-assisted ball burnishing significantly enhances mechanical properties compared to the non-vibration-assisted method. Moreover, it was found that the surface roughness was significantly improved with respect to the reference surface.

Keywords: additive manufacturing, ball burnishing, mechanical properties, metals, surface roughness

Procedia PDF Downloads 53
2805 Practical Evaluation of High-Efficiency Si-based Tandem Solar Cells

Authors: Sue-Yi Chen, Wei-Chun Hsu, Jon-Yiew Gan

Abstract:

Si-based double-junction tandem solar cells have become a popular research topic because of the advantages of low manufacturing cost and high energy conversion efficiency. However, there is no set of calculations to select the appropriate top cell materials. Therefore, this paper will propose a simple but practical selection method. First of all, we calculate the S-Q limit and explain the reasons for developing tandem solar cells. Secondly, we calculate the theoretical energy conversion efficiency of the double-junction tandem solar cells while combining the commercial monocrystalline Si and materials' practical efficiency to consider the actual situation. Finally, we conservatively conclude that if considering 75% performance of the theoretical energy conversion efficiency of the top cell, the suitable bandgap energy range will fall between 1.38eV to 2.5eV. Besides, we also briefly describe some improvements of several proper materials, CZTS, CdSe, Cu2O, ZnTe, and CdS, hoping that future research can select and manufacture high-efficiency Si-based tandem solar cells based on this paper successfully. Most importantly, our calculation method is not limited to silicon solely. If other materials’ performances match or surpass silicon's ability in the future, researchers can also apply this set of deduction processes.

Keywords: high-efficiency solar cells, material selection, Si-based double-junction solar cells, Tandem solar cells, photovoltaics.

Procedia PDF Downloads 95
2804 Exploring the Association between Race and Attitudes toward Physician-Assisted Death; An Analysis of the Gss Dataset

Authors: Seini G. Kaufusi

Abstract:

Background. Physician-assisted death (PAD) has and continues to be a controversial issue in the U.S. Dying with dignity statutes exists in 9 U.S. jurisdictions that permit competent adults diagnosed with a terminal illness and given a prognosis of 6 month or less to live to request medication to hasten death. Robust advocacy for and against PAD influences policy, and opinions vary. Aim. This study aims to explore the association between race and the attitudes toward physician-assisted death in the U.S. Methods. Data for this study derives from the General Social Survey (GSS) dataset, a national survey conducted by the National Opinion Research Center (NORC) that focuses on the opinions and values of American’s. A cross-sectional design and probability sample from the 2018 data set was used to randomly select respondents. Results. The results indicated that race is significantly associated with attitudes towards physician-assisted death. The level of significance suggests a strong positive association, and the direction indicated that Black and Other racial groups have higher rates of positive decision about PAD. Conclusion. Although attitudes towards PAD varied, Black and other racial groups had favorable decisions for PAD. Further research is crucial in the continuous debate on PAD and understanding the influences of predictors for or against PAD.

Keywords: attitudes, euthanasia, physician-assisted death, race

Procedia PDF Downloads 145
2803 Integration of Hydropower and Solar Photovoltaic Generation into Distribution System: Case of South Sudan

Authors: Ater Amogpai

Abstract:

Hydropower and solar photovoltaic (PV) generation are crucial in sustainability and transitioning from fossil fuel to clean energy. Integrating renewable energy sources such as hydropower and solar photovoltaic (PV) into the distributed networks contributes to achieving energy balance, pollution mitigation, and cost reduction. Frequent power outages and a lack of load reliability characterize the current South Sudan electricity distribution system. The country’s electricity demand is 300MW; however, the installed capacity is around 212.4M. Insufficient funds to build new electricity facilities and expand generation are the reasons for the gap in installed capacity. The South Sudan Ministry of Energy and Dams gave a contract to an Egyptian Elsewedy Electric Company that completed the construction of a solar PV plant in 2023. The plant has a 35 MWh battery storage and 20 MW solar PV system capacity. The construction of Juba Solar PV Park started in 2022 to increase the current installed capacity in Juba City to 53 MW. The plant will begin serving 59000 residents in Juba and save 10,886.2t of carbon dioxide (CO2) annually.

Keywords: renewable energy, hydropower, solar energy, photovoltaic, South Sudan

Procedia PDF Downloads 73
2802 Space Weather and Earthquakes: A Case Study of Solar Flare X9.3 Class on September 6, 2017

Authors: Viktor Novikov, Yuri Ruzhin

Abstract:

The studies completed to-date on a relation of the Earth's seismicity and solar processes provide the fuzzy and contradictory results. For verification of an idea that solar flares can trigger earthquakes, we have analyzed a case of a powerful surge of solar flash activity early in September 2017 during approaching the minimum of 24th solar cycle was accompanied by significant disturbances of space weather. On September 6, 2017, a group of sunspots AR2673 generated a large solar flare of X9.3 class, the strongest flare over the past twelve years. Its explosion produced a coronal mass ejection partially directed towards the Earth. We carried out a statistical analysis of the catalogs of earthquakes USGS and EMSC for determination of the effect of solar flares on global seismic activity. New evidence of earthquake triggering due to the Sun-Earth interaction has been demonstrated by simple comparison of behavior of Earth's seismicity before and after the strong solar flare. The global number of earthquakes with magnitude of 2.5 to 5.5 within 11 days after the solar flare has increased by 30 to 100%. A possibility of electric/electromagnetic triggering of earthquake due to space weather disturbances is supported by results of field and laboratory studies, where the earthquakes (both natural and laboratory) were initiated by injection of electrical current into the Earth crust. For the specific case of artificial electric earthquake triggering the current density at a depth of earthquake, sources are comparable with estimations of a density of telluric currents induced by variation of space weather conditions due to solar flares. Acknowledgment: The work was supported by RFBR grant No. 18-05-00255.

Keywords: solar flare, earthquake activity, earthquake triggering, solar-terrestrial relations

Procedia PDF Downloads 125
2801 Electric Power Generation by Thermoelectric Cells and Parabolic Solar Concentrators

Authors: A. Kianifar, M. Afzali, I. Pishbin

Abstract:

In this paper, design details, theoretical analysis and thermal performance analysis of a solar energy concentrator suited to combined heat and thermoelectric power generation are presented. The thermoelectric device is attached to the absorber plate to convert concentrated solar energy directly into electric energy at the focus of the concentrator. A cooling channel (water cooled heat sink) is fitted to the cold side of the thermoelectric device to remove the waste heat and maintain a high temperature gradient across the device to improve conversion efficiency.

Keywords: concentrator thermoelectric generator, CTEG, solar energy, thermoelectric cells

Procedia PDF Downloads 283