Search results for: social network ties
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13663

Search results for: social network ties

13333 Integrative Analysis of Urban Transportation Network and Land Use Using GIS: A Case Study of Siddipet City

Authors: P. Priya Madhuri, J. Kamini, S. C. Jayanthi

Abstract:

Assessment of land use and transportation networks is essential for sustainable urban growth, urban planning, efficient public transportation systems, and reducing traffic congestion. The study focuses on land use, population density, and their correlation with the road network for future development. The scope of the study covers inventory and assessment of the road network dataset (line) at the city, zonal, or ward level, which is extracted from very high-resolution satellite data (spatial resolution < 0.5 m) at 1:4000 map scale and ground truth verification. Road network assessment is carried out by computing various indices that measure road coverage and connectivity. In this study, an assessment of the road network is carried out for the study region at the municipal and ward levels. In order to identify gaps, road coverage and connectivity were associated with urban land use, built-up area, and population density in the study area. Ward-wise road connectivity and coverage maps have been prepared. To assess the relationship between road network metrics, correlation analysis is applied. The study's conclusions are extremely beneficial for effective road network planning and detecting gaps in the road network at the ward level in association with urban land use, existing built-up, and population.

Keywords: road connectivity, road coverage, road network, urban land use, transportation analysis

Procedia PDF Downloads 33
13332 A Predictive MOC Solver for Water Hammer Waves Distribution in Network

Authors: A. Bayle, F. Plouraboué

Abstract:

Water Distribution Network (WDN) still suffers from a lack of knowledge about fast pressure transient events prediction, although the latter may considerably impact their durability. Accidental or planned operating activities indeed give rise to complex pressure interactions and may drastically modified the local pressure value generating leaks and, in rare cases, pipe’s break. In this context, a numerical predictive analysis is conducted to prevent such event and optimize network management. A couple of Python/FORTRAN 90, home-made software, has been developed using Method Of Characteristic (MOC) solving for water-hammer equations. The solver is validated by direct comparison with theoretical and experimental measurement in simple configurations whilst afterward extended to network analysis. The algorithm's most costly steps are designed for parallel computation. A various set of boundary conditions and energetic losses models are considered for the network simulations. The results are analyzed in both real and frequencies domain and provide crucial information on the pressure distribution behavior within the network.

Keywords: energetic losses models, method of characteristic, numerical predictive analysis, water distribution network, water hammer

Procedia PDF Downloads 232
13331 A Hybrid Hopfield Neural Network for Dynamic Flexible Job Shop Scheduling Problems

Authors: Aydin Teymourifar, Gurkan Ozturk

Abstract:

In this paper, a new hybrid Hopfield neural network is proposed for the dynamic, flexible job shop scheduling problem. A new heuristic based and easy to implement energy function is designed for the Hopfield neural network, which penalizes the constraints violation and decreases makespan. Moreover, for enhancing the performance, several heuristics are integrated to it that achieve active, and non-delay schedules also, prevent early convergence of the neural network. The suggested algorithm that is designed as a generalization of the previous studies for the flexible and dynamic scheduling problems can be used for solving real scheduling problems. Comparison of the presented hybrid method results with the previous studies results proves its efficiency.

Keywords: dynamic flexible job shop scheduling, neural network, heuristics, constrained optimization

Procedia PDF Downloads 418
13330 Optimization and Retrofitting for an Egyptian Refinery Water Network

Authors: Mohamed Mousa

Abstract:

Sacristies in the supply of freshwater, strict regulations on discharging wastewater and the support to encourage sustainable development by water minimization techniques leads to raise the interest of water reusing, regeneration, and recycling. Water is considered a vital element in chemical industries. In this study, an optimization model will be developed to determine the optimal design of refinery’s water network system via source interceptor sink that involves several network alternatives, then a Mixed-Integer Non-Linear programming (MINLP) was used to obtain the optimal network superstructure based on flowrates, the concentration of contaminants, etc. The main objective of the model is to reduce the fixed cost of piping installation interconnections, reducing the operating cots of all streams within the refiner’s water network, and minimize the concentration of pollutants to comply with the environmental regulations. A real case study for one of the Egyptian refineries was studied by GAMS / BARON global optimization platform, and the water network had been retrofitted and optimized, leading to saving around 195 m³/ hr. of freshwater with a total reduction reaches to 26 %.

Keywords: freshwater minimization, modelling, GAMS, BARON, water network design, wastewater reudction

Procedia PDF Downloads 232
13329 Sensor Network Routing Optimization by Simulating Eurygaster Life in Wheat Farms

Authors: Fariborz Ahmadi, Hamid Salehi, Khosrow Karimi

Abstract:

A sensor network is set of sensor nodes that cooperate together to perform a predefined tasks. The important problem in this network is power consumption. So, in this paper one algorithm based on the eurygaster life is introduced to minimize power consumption by the nodes of these networks. In this method the search space of problem is divided into several partitions and each partition is investigated separately. The evaluation results show that our approach is more efficient in comparison to other evolutionary algorithm like genetic algorithm.

Keywords: evolutionary computation, genetic algorithm, particle swarm optimization, sensor network optimization

Procedia PDF Downloads 428
13328 Identification System for Grading Banana in Food Processing Industry

Authors: Ebenezer O. Olaniyi, Oyebade K. Oyedotun, Khashman Adnan

Abstract:

In the food industry high quality production is required within a limited time to meet up with the demand in the society. In this research work, we have developed a model which can be used to replace the human operator due to their low output in production and slow in making decisions as a result of an individual differences in deciding the defective and healthy banana. This model can perform the vision attributes of human operators in deciding if the banana is defective or healthy for food production based. This research work is divided into two phase, the first phase is the image processing where several image processing techniques such as colour conversion, edge detection, thresholding and morphological operation were employed to extract features for training and testing the network in the second phase. These features extracted in the first phase were used in the second phase; the classification system phase where the multilayer perceptron using backpropagation neural network was employed to train the network. After the network has learned and converges, the network was tested with feedforward neural network to determine the performance of the network. From this experiment, a recognition rate of 97% was obtained and the time taken for this experiment was limited which makes the system accurate for use in the food industry.

Keywords: banana, food processing, identification system, neural network

Procedia PDF Downloads 470
13327 Identifying Critical Links of a Transport Network When Affected by a Climatological Hazard

Authors: Beatriz Martinez-Pastor, Maria Nogal, Alan O'Connor

Abstract:

During the last years, the number of extreme weather events has increased. A variety of extreme weather events, including river floods, rain-induced landslides, droughts, winter storms, wildfire, and hurricanes, have threatened and damaged many different regions worldwide. These events have a devastating impact on critical infrastructure systems resulting in high social, economical and environmental costs. These events have a huge impact in transport systems. Since, transport networks are completely exposed to every kind of climatological perturbations, and its performance is closely related with these events. When a traffic network is affected by a climatological hazard, the quality of its service is threatened, and the level of the traffic conditions usually decreases. With the aim of understanding this process, the concept of resilience has become most popular in the area of transport. Transport resilience analyses the behavior of a traffic network when a perturbation takes place. This holistic concept studies the complete process, from the beginning of the perturbation until the total recovery of the system, when the perturbation has finished. Many concepts are included in the definition of resilience, such as vulnerability, redundancy, adaptability, and safety. Once the resilience of a transport network can be evaluated, in this case, the methodology used is a dynamic equilibrium-restricted assignment model that allows the quantification of the concept, the next step is its improvement. Through the improvement of this concept, it will be possible to create transport networks that are able to withstand and have a better performance under the presence of climatological hazards. Analyzing the impact of a perturbation in a traffic network, it is observed that the response of the different links, which are part of the network, can be completely different from one to another. Consequently and due to this effect, many questions arise, as what makes a link more critical before an extreme weather event? or how is it possible to identify these critical links? With this aim, and knowing that most of the times the owners or managers of the transport systems have limited resources, the identification of the critical links of a transport network before extreme weather events, becomes a crucial objective. For that reason, using the available resources in the areas that will generate a higher improvement of the resilience, will contribute to the global development of the network. Therefore, this paper wants to analyze what kind of characteristic makes a link a critical one when an extreme weather event damages a transport network and finally identify them.

Keywords: critical links, extreme weather events, hazard, resilience, transport network

Procedia PDF Downloads 286
13326 Hyperspectral Data Classification Algorithm Based on the Deep Belief and Self-Organizing Neural Network

Authors: Li Qingjian, Li Ke, He Chun, Huang Yong

Abstract:

In this paper, the method of combining the Pohl Seidman's deep belief network with the self-organizing neural network is proposed to classify the target. This method is mainly aimed at the high nonlinearity of the hyperspectral image, the high sample dimension and the difficulty in designing the classifier. The main feature of original data is extracted by deep belief network. In the process of extracting features, adding known labels samples to fine tune the network, enriching the main characteristics. Then, the extracted feature vectors are classified into the self-organizing neural network. This method can effectively reduce the dimensions of data in the spectrum dimension in the preservation of large amounts of raw data information, to solve the traditional clustering and the long training time when labeled samples less deep learning algorithm for training problems, improve the classification accuracy and robustness. Through the data simulation, the results show that the proposed network structure can get a higher classification precision in the case of a small number of known label samples.

Keywords: DBN, SOM, pattern classification, hyperspectral, data compression

Procedia PDF Downloads 341
13325 Prediction Fluid Properties of Iranian Oil Field with Using of Radial Based Neural Network

Authors: Abdolreza Memari

Abstract:

In this article in order to estimate the viscosity of crude oil,a numerical method has been used. We use this method to measure the crude oil's viscosity for 3 states: Saturated oil's viscosity, viscosity above the bubble point and viscosity under the saturation pressure. Then the crude oil's viscosity is estimated by using KHAN model and roller ball method. After that using these data that include efficient conditions in measuring viscosity, the estimated viscosity by the presented method, a radial based neural method, is taught. This network is a kind of two layered artificial neural network that its stimulation function of hidden layer is Gaussian function and teaching algorithms are used to teach them. After teaching radial based neural network, results of experimental method and artificial intelligence are compared all together. Teaching this network, we are able to estimate crude oil's viscosity without using KHAN model and experimental conditions and under any other condition with acceptable accuracy. Results show that radial neural network has high capability of estimating crude oil saving in time and cost is another advantage of this investigation.

Keywords: viscosity, Iranian crude oil, radial based, neural network, roller ball method, KHAN model

Procedia PDF Downloads 501
13324 Understanding Attitude about Landscape Preservation in Context of Place Attachment

Authors: Baiju Soren

Abstract:

This research investigates village residents' feelings about rural landscapes and their attitudes toward preserving them, as well as the impact of attachment on participation in preserving those environments. To understand these relationships, 100 respondents from Bandudumha village : a tribal village, Mayurbhanj district of Odisha, were interviewed with a set of questionnaires and photographs. This framework is based on the idea that establishing environmental oversight and desire to cooperate in the development and preservation process can help to establish community values and meaning tied to places. As a result, a personal connection to the rural environment will be explored through an examination of place attachment, landscape choice, and the possible conservation value of landscapes to the people who live there. The findings suggest that commitment to a place can lead to unique ideas on collaborative preservation and the creation of truly relevant, socially inclusive landscapes. Furthermore, the data show how emotional ties to locations provide social support and provide insight into people–place relationships.

Keywords: participation in preservation, place attachment, preservation, rural landscape, sense of place

Procedia PDF Downloads 121
13323 Performance Analysis of Next Generation OCDM-RoF-Based Hybrid Network under Diverse Conditions

Authors: Anurag Sharma, Rahul Malhotra, Love Kumar, Harjit Pal Singh

Abstract:

This paper demonstrates OCDM-ROF based hybrid architecture where data/voice communication is enabled via a permutation of Optical Code Division Multiplexing (OCDM) and Radio-over-Fiber (RoF) techniques under various diverse conditions. OCDM-RoF hybrid network of 16 users with DPSK modulation format has been designed and performance of proposed network is analyzed for 100, 150, and 200 km fiber span length under the influence of linear and nonlinear effect. It has been reported that Polarization Mode Dispersion (PMD) has the least effect while other nonlinearity affects the performance of proposed network.

Keywords: OCDM, RoF, DPSK, PMD, eye diagram, BER, Q factor

Procedia PDF Downloads 637
13322 Broadcast Routing in Vehicular Ad hoc Networks (VANETs)

Authors: Muazzam A. Khan, Muhammad Wasim

Abstract:

Vehicular adhoc network (VANET) Cars for network (VANET) allowing vehicles to talk to each other, which is committed to building a strong network of mobile vehicles is technical. In VANETs vehicles are equipped with special devices that can get and share info with the atmosphere and other vehicles in the network. Depending on this data security and safety of the vehicles can be enhanced. Broadcast routing is dispersion of any audio or visual medium of mass communication scattered audience distribute audio and video content, but usually using electromagnetic radiation (waves). The lack of server or fixed infrastructure media messages in VANETs plays an important role for every individual application. Broadcast Message VANETs still open research challenge and requires some effort to come to good solutions. This paper starts with a brief introduction of VANET, its applications, and the law of the message-trends in this network starts. This work provides an important and comprehensive study of reliable broadcast routing in VANET scenario.

Keywords: vehicular ad-hoc network , broadcasting, networking protocols, traffic pattern, low intensity conflict

Procedia PDF Downloads 532
13321 A Spatial Information Network Traffic Prediction Method Based on Hybrid Model

Authors: Jingling Li, Yi Zhang, Wei Liang, Tao Cui, Jun Li

Abstract:

Compared with terrestrial network, the traffic of spatial information network has both self-similarity and short correlation characteristics. By studying its traffic prediction method, the resource utilization of spatial information network can be improved, and the method can provide an important basis for traffic planning of a spatial information network. In this paper, considering the accuracy and complexity of the algorithm, the spatial information network traffic is decomposed into approximate component with long correlation and detail component with short correlation, and a time series hybrid prediction model based on wavelet decomposition is proposed to predict the spatial network traffic. Firstly, the original traffic data are decomposed to approximate components and detail components by using wavelet decomposition algorithm. According to the autocorrelation and partial correlation smearing and truncation characteristics of each component, the corresponding model (AR/MA/ARMA) of each detail component can be directly established, while the type of approximate component modeling can be established by ARIMA model after smoothing. Finally, the prediction results of the multiple models are fitted to obtain the prediction results of the original data. The method not only considers the self-similarity of a spatial information network, but also takes into account the short correlation caused by network burst information, which is verified by using the measured data of a certain back bone network released by the MAWI working group in 2018. Compared with the typical time series model, the predicted data of hybrid model is closer to the real traffic data and has a smaller relative root means square error, which is more suitable for a spatial information network.

Keywords: spatial information network, traffic prediction, wavelet decomposition, time series model

Procedia PDF Downloads 147
13320 Research on Reservoir Lithology Prediction Based on Residual Neural Network and Squeeze-and- Excitation Neural Network

Authors: Li Kewen, Su Zhaoxin, Wang Xingmou, Zhu Jian Bing

Abstract:

Conventional reservoir prediction methods ar not sufficient to explore the implicit relation between seismic attributes, and thus data utilization is low. In order to improve the predictive classification accuracy of reservoir lithology, this paper proposes a deep learning lithology prediction method based on ResNet (Residual Neural Network) and SENet (Squeeze-and-Excitation Neural Network). The neural network model is built and trained by using seismic attribute data and lithology data of Shengli oilfield, and the nonlinear mapping relationship between seismic attribute and lithology marker is established. The experimental results show that this method can significantly improve the classification effect of reservoir lithology, and the classification accuracy is close to 70%. This study can effectively predict the lithology of undrilled area and provide support for exploration and development.

Keywords: convolutional neural network, lithology, prediction of reservoir, seismic attributes

Procedia PDF Downloads 177
13319 Individuals’ Inner Wellbeing during the COVID-19 Pandemic: A Quantitative Comparison of Social Connections and Close Relationships between the UK and India

Authors: Maria Spanoudaki, Pauldy C. J. Otermans, Dev Aditya

Abstract:

Relationships form an integral part of our everyday wellbeing. In this study, the focus is on Inner Wellbeing which can be described as an individuals' thoughts and feelings about what they can do and be. Relationships can come in many forms and can be divided into Social Connections (thoughts and feelings about the social network people can establish and rely on), and Close Relationships (thoughts and feeling about the emotional support people can receive from significant others or their close, intimate circle). The purpose of this study is to compare the Social Connections and Close Relationship dimensions of Inner Wellbeing during the COVID-19 pandemic between the UK and India. 392 participants in the UK and 205 participants India completed an online questionnaire using the Inner Wellbeing scale. Factor analyses showed that the construct of Inner Wellbeing can be described as one factor for the UK sample whereas it can be described as two factors (one focusing on positive items and one focusing on negative items) for the Indian sample. Results showed that Social Connections were significantly during COVID-19 in the UK compared to India, whereas there is no significant difference for Close Relationships. The implications on relationships and wellbeing are discussed in detail.

Keywords: social networks, relationship maintenance, relationship satisfaction, COVID-19

Procedia PDF Downloads 162
13318 An Anthropological Perspective: Interaction with Extended Kinship in Saudi Arabia in the 21st Century

Authors: Alaa Alshehri

Abstract:

It has been thought that kinship in modernization is moving in a linear Western model; however, the literature shows that different cultures adjust to modernization by preserving its norms and values. Saudi Arabia is a young country experiencing rapid expansion from oil discovery until economic diversification. By conducting 10 interviews from different provinces of the country from the age of 27-47, these anthropological studies suggest that Saudi people adapted to modernization and globalization through unique interactions with extended families by asking the participants to give detailed descriptions of their interactions with their kinship. With almost all the participants noticing the changes within the last few years, this interaction is rooted in their religious beliefs, which they stressed, even with the free choice of life opportunities. They tried to find a balance between individuality and collectivity and connect the gap between the older and younger generations. This study adds to the anthropological debate on kinship definition and ties in modernization and provides a perspective on the social reality of one of the major Middle Eastern countries, Saudi Arabia.

Keywords: collectivity, economic diversification, kinship, modernization theory, individuality

Procedia PDF Downloads 100
13317 Prediction of the Transmittance of Various Bended Angles Lightpipe by Using Neural Network under Different Sky Clearness Condition

Authors: Li Zhang, Yuehong Su

Abstract:

Lightpipe as a mature solar light tube technique has been employed worldwide. Accurately assessing the performance of lightpipe and evaluate daylighting available has been a challenging topic. Previous research had used regression model and computational simulation methods to estimate the performance of lightpipe. However, due to the nonlinear nature of solar light transferring in lightpipe, the methods mentioned above express inaccurate and time-costing issues. In the present study, a neural network model as an alternative method is investigated to predict the transmittance of lightpipe. Four types of commercial lightpipe with bended angle 0°, 30°, 45° and 60° are discussed under clear, intermediate and overcast sky conditions respectively. The neural network is generated in MATLAB by using the outcomes of an optical software Photopia simulations as targets for networks training and testing. The coefficient of determination (R²) for each model is higher than 0.98, and the mean square error (MSE) is less than 0.0019, which indicate the neural network strong predictive ability and the use of the neural network method could be an efficient technique for determining the performance of lightpipe.

Keywords: neural network, bended lightpipe, transmittance, Photopia

Procedia PDF Downloads 152
13316 Trusted Neural Network: Reversibility in Neural Networks for Network Integrity Verification

Authors: Malgorzata Schwab, Ashis Kumer Biswas

Abstract:

In this concept paper, we explore the topic of Reversibility in Neural Networks leveraged for Network Integrity Verification and crafted the term ''Trusted Neural Network'' (TNN), paired with the API abstraction around it, to embrace the idea formally. This newly proposed high-level generalizable TNN model builds upon the Invertible Neural Network architecture, trained simultaneously in both forward and reverse directions. This allows for the original system inputs to be compared with the ones reconstructed from the outputs in the reversed flow to assess the integrity of the end-to-end inference flow. The outcome of that assessment is captured as an Integrity Score. Concrete implementation reflecting the needs of specific problem domains can be derived from this general approach and is demonstrated in the experiments. The model aspires to become a useful practice in drafting high-level systems architectures which incorporate AI capabilities.

Keywords: trusted, neural, invertible, API

Procedia PDF Downloads 146
13315 Accessibility to Urban Parks for Low-income Residents in Chongqing, China: Perspective from Relative Deprivation

Authors: Junhang Luo

Abstract:

With the transformation of spatial structure and the deepening of urban development, the demand for a better life and the concerns for social resources equities of residents are increasing. As an important social resource, park plays an essential role in building environmentally sustainable cities. Thus, it is important to examine park accessibility for low-income and how it works in relative deprivation, so as to provide all residents with equitable services. Using the network and buffer methods of GIS, this paper analyzes urban park accessibility for low-income residents in Chongqing, China. And then conduct a satisfaction evaluation of park resource accessibility with low-incomes through questionnaire surveys from deprivation dimensions. Results show that the level of park accessibility in Chongqing varies significantly and the degree of relative deprivation is relatively high. Public transportation convenience improves and the number of community park increases contribute positively to improving park accessibility and alleviating the relative deprivation of public resources. Combined with the innovation pattern of social governance in China, it suggests that urban park accessibility needs to be jointly governed and optimized by multiple social resources from the government to the public, and the service efficiency needs the index system and planning standards according to local conditions to improve quality and promote equity. At the same time, building a perfect park system and complete legislation assurance system will also play a positive role in ensuring that all residents can enjoy the urban public space more fairly, especially low-income groups.

Keywords: urban park, accessibility, relative deprivation, GIS network analysis, chongqing

Procedia PDF Downloads 159
13314 Nonlinear Adaptive PID Control for a Semi-Batch Reactor Based on an RBF Network

Authors: Magdi. M. Nabi, Ding-Li Yu

Abstract:

Control of a semi-batch polymerization reactor using an adaptive radial basis function (RBF) neural network method is investigated in this paper. A neural network inverse model is used to estimate the valve position of the reactor; this method can identify the controlled system with the RBF neural network identifier. The weights of the adaptive PID controller are timely adjusted based on the identification of the plant and self-learning capability of RBFNN. A PID controller is used in the feedback control to regulate the actual temperature by compensating the neural network inverse model output. Simulation results show that the proposed control has strong adaptability, robustness and satisfactory control performance and the nonlinear system is achieved.

Keywords: Chylla-Haase polymerization reactor, RBF neural networks, feed-forward, feedback control

Procedia PDF Downloads 702
13313 Anti-Social Media: Implications of Social Media in the Form of Stressors on Our Daily Lives

Authors: Aimen Batool Bint-E-Rashid, Huma Irfan

Abstract:

This research aims to investigate the role of social media (Snapchat, Facebook, Twitter, etc.) in our daily lives and its implication on our everyday routine in the form of stressors. The study has been validated by a social media survey with 150 social media users belonging to various age groups. The study explores how social media can make an individual anti-social in his or her life offline. To explain the phenomenon, we have proposed and evaluated a model based on social media usage and stressors including burnout and social overload. Results, through correlation and regression tests, have revealed that with increase in social media usage, social overload and burnout also increases. Evidence for the fact that excessive social media usage causes social overload and burnout has been provided in the study.

Keywords: burnout, emotional exhaustion, fatigue, stressors, social networking, social media, social overload

Procedia PDF Downloads 207
13312 Construction Project Planning Using Fuzzy Critical Path Approach

Authors: Omar M. Aldenali

Abstract:

Planning is one of the most important phases of the management science and network planning, which represents the project activities relationship. Critical path is one of the project management techniques used to plan and control the execution of a project activities. The objective of this paper is to implement a fuzzy logic approach to arrange network planning on construction projects. This method is used to finding out critical path in the fuzzy construction project network. The trapezoidal fuzzy numbers are used to represent the activity construction project times. A numerical example that represents a house construction project is introduced. The critical path method is implemented on the fuzzy construction network activities, and the results showed that this method significantly affects the completion time of the construction projects.

Keywords: construction project, critical path, fuzzy network project, planning

Procedia PDF Downloads 143
13311 Parallel Hybrid Honeypot and IDS Architecture to Detect Network Attacks

Authors: Hafiz Gulfam Ahmad, Chuangdong Li, Zeeshan Ahmad

Abstract:

In this paper, we proposed a parallel IDS and honeypot based approach to detect and analyze the unknown and known attack taxonomy for improving the IDS performance and protecting the network from intruders. The main theme of our approach is to record and analyze the intruder activities by using both the low and high interaction honeypots. Our architecture aims to achieve the required goals by combing signature based IDS, honeypots and generate the new signatures. The paper describes the basic component, design and implementation of this approach and also demonstrates the effectiveness of this approach reducing the probability of network attacks.

Keywords: network security, intrusion detection, honeypot, snort, nmap

Procedia PDF Downloads 567
13310 Performance Evaluation of Task Scheduling Algorithm on LCQ Network

Authors: Zaki Ahmad Khan, Jamshed Siddiqui, Abdus Samad

Abstract:

The Scheduling and mapping of tasks on a set of processors is considered as a critical problem in parallel and distributed computing system. This paper deals with the problem of dynamic scheduling on a special type of multiprocessor architecture known as Linear Crossed Cube (LCQ) network. This proposed multiprocessor is a hybrid network which combines the features of both linear type of architectures as well as cube based architectures. Two standard dynamic scheduling schemes namely Minimum Distance Scheduling (MDS) and Two Round Scheduling (TRS) schemes are implemented on the LCQ network. Parallel tasks are mapped and the imbalance of load is evaluated on different set of processors in LCQ network. The simulations results are evaluated and effort is made by means of through analysis of the results to obtain the best solution for the given network in term of load imbalance left and execution time. The other performance matrices like speedup and efficiency are also evaluated with the given dynamic algorithms.

Keywords: dynamic algorithm, load imbalance, mapping, task scheduling

Procedia PDF Downloads 450
13309 Re-Visiting Rumi and Iqbal on Self-Enhancement for Social Responsibility

Authors: Javed Y. Uppal

Abstract:

The background of this study is the great degree of stress that the world is experiencing today, internationally among the countries, within a community among people, and even individually within one’s own self. The significance of the study is the attempt to find a solution of this stress in the philosophy of the olden times of Jalaluddin Rumi and comparatively recently of that of Allama Iqbal. The methodology adopted in this paper is firstly exploration of the perspectives of these philosophers that are being consolidated by a number of psychic and spiritual experts of today, who are being widely read but less followed. This paper further goes on presenting brief life sketches of Rumi and Iqbal. It expounds the key concepts proposed by them and the social change that was resulted in the times of the two above mentioned metaphysical philosophers. It is further amplified that with the recent advancements, in both metaphysics and the physical sciences, the gap between the two is closing down. Both Rumi and Iqbal emphasized their common essence. The old time's concepts, postulates, and philosophies are hence once again becoming valid. The findings of this paper are that the existence of human empathy, affection and mutual social attraction among humans is still valid. The positive inner belief system that dictates our thoughts and actions is vital. As a conclusion, empathy should enable us solving our problems collectively. We need to strengthen our inner communication system, to listen to the messages that come to our inner-selves. We need to get guidance and strength from them. We need to value common needs and purposes collectively to achieve results. Spiritual energy among us is to be harnessed and utilized. Connectivity is to be recognized to unify and strengthen ties among people. Mutual bonding at small and large group levels is to be employed for the survival of the disadvantaged, and sustainability of the empowering trends. With the above guidelines, hopefully, we can define a framework towards a brave and happy new humane world.

Keywords: belief system, connectivity, human empathy, inner-self, mutual bonding, spiritual energy

Procedia PDF Downloads 156
13308 Bi-Objective Optimization for Sustainable Supply Chain Network Design in Omnichannel

Authors: Veerpaul Maan, Gaurav Mishra

Abstract:

The evolution of omnichannel has revolutionized the supply chain of the organizations by enhancing customer shopping experience. For these organizations need to develop well-integrated multiple distribution channels to leverage the benefits of omnichannel. To adopt an omnichannel system in the supply chain has resulted in structuring and reconfiguring the practices of the traditional supply chain distribution network. In this paper a multiple distribution supply chain network (MDSCN) have been proposed which integrates online giants with a local retailers distribution network in uncertain environment followed by sustainability. To incorporate sustainability, an additional objective function is added to reduce the carbon content through minimizing the travel distance of the product. Through this proposed model, customers are free to access product and services as per their choice of channels which increases their convenience, reach and satisfaction. Further, a numerical illustration is being shown along with interpretation of results to validate the proposed model.

Keywords: sustainable supply chain network, omnichannel, multiple distribution supply chain network, integrate multiple distribution channels

Procedia PDF Downloads 223
13307 The Connection Between the International Law and the Legal Consultation on the Social Media

Authors: Amir Farouk Ahmed Ali Hussin

Abstract:

Social media, such as Facebook, LinkedIn and Ex-Twitter have experienced exponential growth and a remarkable adoption rate in recent years. They give fantastic means of online social interactions and communications with family, friends, and colleagues from around the corner or across the globe, and they have become an important part of daily digital interactions for more than one and a half billion users around the world. The personal information sharing practices that social network providers encourage have led to their success as innovative social interaction platforms. Moreover, these practices have outcome in concerns with respect to privacy and security from different stakeholders. Guiding these privacy and security concerns in social networks is a must for these networks to be sustainable. Real security and privacy tools may not be enough to address existing concerns. Some points should be followed to protect users from the existing risks. In this research, we have checked the various privacy and security issues and concerns pertaining to social media. However, we have classified these privacy and security issues and presented a thorough discussion of the effects of these issues and concerns on the future of the social networks. In addition, we have presented a set of points as precaution measures that users can consider to address these issues.

Keywords: international legal, consultation mix, legal research, small and medium-sized enterprises, strategic International law, strategy alignment, house of laws, deployment, production strategy, legal strategy, business strategy

Procedia PDF Downloads 63
13306 Allostatic Load as a Predictor of Adolescents’ Executive Function: A Longitudinal Network Analysis

Authors: Sipu Guo, Silin Huang

Abstract:

Background: Most studies investigate the link between executive function and allostatic load (AL) among adults aged 18 years and older. Studies differed regarding the specific biological indicators studied and executive functions accounted for. Specific executive functions may be differentially related to allostatic load. We investigated the comorbidities of executive functions and allostatic load via network analysis. Methods: We included 603 adolescents (49.84% girls; Mean age = 12.38, SD age = 1.79) from junior high school in rural China. Eight biological markers at T1 and four executive function tasks at T2 were used to evaluate networks. Network analysis was used to determine the network structure, core symptoms, and bridge symptoms in the AL-executive function network among rural adolescents. Results: The executive functions were related to 6 AL biological markers, not to cortisol and epinephrine. The most influential symptoms were inhibition control, cognitive flexibility, processing speed, and systolic blood pressure (SBP). SBP, dehydroepiandrosterone, and processing speed were the bridges through which AL was related to executive functions. dehydroepiandrosterone strongly predicted processing speed. The SBP was the biggest influencer in the entire network. Conclusions: We found evidence for differential relations between markers and executive functions. SBP was a driver in the network; dehydroepiandrosterone showed strong relations with executive function.

Keywords: allostatic load, executive function, network analysis, rural adolescent

Procedia PDF Downloads 52
13305 Selecting the Best RBF Neural Network Using PSO Algorithm for ECG Signal Prediction

Authors: Najmeh Mohsenifar, Narjes Mohsenifar, Abbas Kargar

Abstract:

In this paper, has been presented a stable method for predicting the ECG signals through the RBF neural networks, by the PSO algorithm. In spite of quasi-periodic ECG signal from a healthy person, there are distortions in electro cardiographic data for a patient. Therefore, there is no precise mathematical model for prediction. Here, we have exploited neural networks that are capable of complicated nonlinear mapping. Although the architecture and spread of RBF networks are usually selected through trial and error, the PSO algorithm has been used for choosing the best neural network. In this way, 2 second of a recorded ECG signal is employed to predict duration of 20 second in advance. Our simulations show that PSO algorithm can find the RBF neural network with minimum MSE and the accuracy of the predicted ECG signal is 97 %.

Keywords: electrocardiogram, RBF artificial neural network, PSO algorithm, predict, accuracy

Procedia PDF Downloads 626
13304 General Network with Four Nodes and Four Activities with Triangular Fuzzy Number as Activity Times

Authors: Rashmi Tamhankar, Madhav Bapat

Abstract:

In many projects, we have to use human judgment for determining the duration of the activities which may vary from person to person. Hence, there is vagueness about the time duration for activities in network planning. Fuzzy sets can handle such vague or imprecise concepts and has an application to such network. The vague activity times can be represented by triangular fuzzy numbers. In this paper, a general network with fuzzy activity times is considered and conditions for the critical path are obtained also we compute total float time of each activity. Several numerical examples are discussed.

Keywords: PERT, CPM, triangular fuzzy numbers, fuzzy activity times

Procedia PDF Downloads 473