Search results for: slope deformation behaviour model
18790 Effect of Carbon Amount of Dual-Phase Steels on Deformation Behavior Using Acoustic Emission
Authors: Ramin Khamedi, Isa Ahmadi
Abstract:
In this study acoustic emission (AE) signals obtained during deformation and fracture of two types of ferrite-martensite dual phase steels (DPS) specimens have been analyzed in frequency domain. For this reason two low carbon steels with various amounts of carbon were chosen, and intercritically heat treated. In the introduced method, identifying the mechanisms of failure in the various phases of DPS is done. For this aim, AE monitoring has been used during tensile test of several DPS with various volume fraction of the martensite (VM) and attempted to relate the AE signals and failure mechanisms in these steels. Different signals, which referred to 2-3 micro-mechanisms of failure due to amount of carbon and also VM have been seen. By Fast Fourier Transformation (FFT) of signals in distinct locations, an excellent relationship between peak frequencies in these areas and micro-mechanisms of failure were seen. The results were verified by microscopic observations (SEM).Keywords: acoustic emission, dual phase steels, deformation, failure, fracture
Procedia PDF Downloads 40218789 Deformation and Crystallization in a 7075-T651 Friction Stir Weld
Authors: C. S. Paglia
Abstract:
The deformation and the crystallization in a 7075-T651 friction stir weld, in particular for regions directly in contact with the mechanical action of the rotating probe, have been investigated by means of optical microscopy. The investigation enabled to identify regions of the weld differently affected by the deformation caused by the welding process. The highly deformed grains in the horizontal direction close to the plate margin were indicative of shear movements along the horizontal plane, while highly deformed grains along the plate margin in the vertical direction were indicative of vertical shear movements of opposite directions, which superimposed the shear movement along the horizontal plane. The vertical shear movements were not homogeneous through the plate thickness. The microstructure indicated that after the probe passes, the grain growth may take place under static conditions. The small grains microstructure of the nugget region, formed after the main dynamic recrystallization process, develops to an equiaxed microstructure. A material transport influenced by the rotating shoulder was also observed from the trailing to the advancing side of the weld.Keywords: AA7075-T651, friction stir welding, deformation, crystallization
Procedia PDF Downloads 11918788 Ag-Cu and Bi-Cd Eutectics Ribbons under Superplastic Tensile Test Regime
Authors: Edgar Ochoa, G. Torres-Villasenor
Abstract:
Superplastic deformation is shown by materials with a fine grain size, usually less than 10 μm, when they are deformed within the strain rate range 10-5 10-1 s-1 at temperatures greater than 0.5Tm, where Tm is the melting point in Kelvin. According to the constitutive equation for superplastic flow, refinement of the grain size would be expected to increase the optimum strain rate and decrease the temperature required for superplastic flow. Ribbons of eutectic Ag-Cu and Bi-Cd alloys were manufactured by using a single roller melt-spinning technique to obtain a fine grain structure for later test in superplastic regime. The eutectics ribbons were examined by scanning electron microscopy and X-Ray diffraction, and the grain size was determined using the image analysis software ImageJ. The average grain size was less than 1 μm. Tensile tests were carried out from 10-4 to 10-1 s-1, at room temperature, to evaluate the superplastic behavior. The largest deformation was shown by the Bi-Cd eutectic ribbons, Ɛ=140 %, despite that these ribbons have a hexagonal unit cell. On the other hand, Ag-Cu eutectic ribbons have a minor grain size and cube unit cell, however they showed a lower deformation in tensile test under the same conditions than Bi-Cd ribbons. This is because the Ag-Cu grew in a strong cube-cube orientation relationship.Keywords: eutectic ribbon, fine grain, superplastic deformation, cube-cube orientation
Procedia PDF Downloads 16518787 The Effect of Fibre Orientation on the Mechanical Behaviour of Skeletal Muscle: A Finite Element Study
Authors: Christobel Gondwe, Yongtao Lu, Claudia Mazzà, Xinshan Li
Abstract:
Skeletal muscle plays an important role in the human body system and function by generating voluntary forces and facilitating body motion. However, The mechanical properties and behaviour of skeletal muscle are still not comprehensively known yet. As such, various robust engineering techniques have been applied to better elucidate the mechanical behaviour of skeletal muscle. It is considered that muscle mechanics are highly governed by the architecture of the fibre orientations. Therefore, the aim of this study was to investigate the effect of different fibre orientations on the mechanical behaviour of skeletal muscle.In this study, a continuum mechanics approach–finite element (FE) analysis was applied to the left bicep femoris long head to determine the contractile mechanism of the muscle using Hill’s three-element model. The geometry of the muscle was segmented from the magnetic resonance images. The muscle was modelled as a quasi-incompressible hyperelastic (Mooney-Rivlin) material. Two types of fibre orientations were implemented: one with the idealised fibre arrangement, i.e. parallel single-direction fibres going from the muscle origin to insertion sites, and the other with curved fibre arrangement which is aligned with the muscle shape.The second fibre arrangement was implemented through the finite element method; non-uniform rational B-spline (FEM-NURBs) technique by means of user material (UMAT) subroutines. The stress-strain behaviour of the muscle was investigated under idealised exercise conditions, and will be further analysed under physiological conditions. The results of the two different FE models have been outputted and qualitatively compared.Keywords: FEM-NURBS, finite element analysis, Mooney-Rivlin hyperelastic, muscle architecture
Procedia PDF Downloads 47718786 Modeling of the Effect of Explosives, Geological and Geotechnical Parameters on the Stability of Rock Masses Case of Marrakech: Agadir Highway, Morocco
Authors: Taoufik Benchelha, Toufik Remmal, Rachid El Hamdouni, Hamou Mansouri, Houssein Ejjaouani, Halima Jounaid, Said Benchelha
Abstract:
During the earthworks for the construction of Marrakech-Agadir highway in southern Morocco, which crosses mountainous areas of the High Western Atlas, the main problem faced is the stability of the slopes. Indeed, the use of explosives as a means of excavation associated with the geological structure of the terrain encountered can trigger major ruptures and cause damage which depends on the intrinsic characteristics of the rock mass. The study consists of a geological and geotechnical analysis of several unstable zones located along the route, mobilizing millions of cubic meters of rock, with deduction of the parameters influencing slope stability. From this analysis, a predictive model for rock mass stability is carried out, based on a statistic method of logistic regression, in order to predict the geomechanical behavior of the rock slopes constrained by earthworks.Keywords: explosive, logistic regression, rock mass, slope stability
Procedia PDF Downloads 37418785 Evaluation of Neighbourhood Characteristics and Active Transport Mode Choice
Authors: Tayebeh Saghapour, Sara Moridpour, Russell George Thompson
Abstract:
One of the common aims of transport policy makers is to switch people’s travel to active transport. For this purpose, a variety of transport goals and investments should be programmed to increase the propensity towards active transport mode choice. This paper aims to investigate whether built environment features in neighbourhoods could enhance the odds of active transportation. The present study introduces an index measuring public transport accessibility (PTAI), and a walkability index along with socioeconomic variables to investigate mode choice behaviour. Using travel behaviour data, an ordered logit regression model is applied to examine the impacts of explanatory variables on walking trips. The findings indicated that high rates of active travel are consistently associated with higher levels of walking and public transport accessibility.Keywords: active transport, public transport accessibility, walkability, ordered logit model
Procedia PDF Downloads 34918784 Assessing the Theoretical Suitability of Sentinel-2 and Worldview-3 Data for Hydrocarbon Mapping of Spill Events, Using Hydrocarbon Spectral Slope Model
Authors: K. Tunde Olagunju, C. Scott Allen, Freek Van Der Meer
Abstract:
Identification of hydrocarbon oil in remote sensing images is often the first step in monitoring oil during spill events. Most remote sensing methods adopt techniques for hydrocarbon identification to achieve detection in order to model an appropriate cleanup program. Identification on optical sensors does not only allow for detection but also for characterization and quantification. Until recently, in optical remote sensing, quantification and characterization are only potentially possible using high-resolution laboratory and airborne imaging spectrometers (hyperspectral data). Unlike multispectral, hyperspectral data are not freely available, as this data category is mainly obtained via airborne survey at present. In this research, two (2) operational high-resolution multispectral satellites (WorldView-3 and Sentinel-2) are theoretically assessed for their suitability for hydrocarbon characterization, using the hydrocarbon spectral slope model (HYSS). This method utilized the two most persistent hydrocarbon diagnostic/absorption features at 1.73 µm and 2.30 µm for hydrocarbon mapping on multispectral data. In this research, spectra measurement of seven (7) different hydrocarbon oils (crude and refined oil) taken on ten (10) different substrates with the use of laboratory ASD Fieldspec were convolved to Sentinel-2 and WorldView-3 resolution, using their full width half maximum (FWHM) parameter. The resulting hydrocarbon slope values obtained from the studied samples enable clear qualitative discrimination of most hydrocarbons, despite the presence of different background substrates, particularly on WorldView-3. Due to close conformity of central wavelengths and narrow bandwidths to key hydrocarbon bands used in HYSS, the statistical significance for qualitative analysis on WorldView-3 sensors for all studied hydrocarbon oil returned with 95% confidence level (P-value ˂ 0.01), except for Diesel. Using multifactor analysis of variance (MANOVA), the discriminating power of HYSS is statistically significant for most hydrocarbon-substrate combinations on Sentinel-2 and WorldView-3 FWHM, revealing the potential of these two operational multispectral sensors as rapid response tools for hydrocarbon mapping. One notable exception is highly transmissive hydrocarbons on Sentinel-2 data due to the non-conformity of spectral bands with key hydrocarbon absorptions and the relatively coarse bandwidth (> 100 nm).Keywords: hydrocarbon, oil spill, remote sensing, hyperspectral, multispectral, hydrocarbon-substrate combination, Sentinel-2, WorldView-3
Procedia PDF Downloads 21318783 Energy Absorption of Circular Thin-Walled Tube with Curved-Crease Patterns under Axial Crushing
Authors: Grzegorz Dolzyk, Sungmoon Jung
Abstract:
Thin-walled tubes are commonly used as energy absorption devices for their excellent mechanical properties and high manufacturability. Techniques such as grooving and pre-folded origami shapes were introduced to circular and polygonal tubes to improve its energy absorption efficiency. This paper examines the energy absorption characteristics of circular tubes with pre-embedded curved-crease pattern. Set of numerical analyzes were conducted with different grooving patterns for tubes with various diameter (D) to thickness (t) ratio. It has been found that even very shallow grooving can positively affect thin wall tubes, leading to increased energy absorption and higher crushing load efficiency. The phenomenon is associated with nonsymmetric deformation that is usually observed for tubes with a high D/t ratio ( > 90). Grooving can redirect a natural mode of post-buckling deformation to a one with a higher number of lobes such that its beneficial and more stable. Also, the opposite effect can be achieved, and highly disrupted deformation can be a cause of reduced energy absorption capabilities. Curved-crease engraved patterns can be used to stabilize and change a form of hazardous post-buckling deformation.Keywords: axial crushing, energy absorption, grooving, thin-wall structures
Procedia PDF Downloads 14218782 Research on Structural Changes in Plastic Deformation during Rolling and Crimping of Tubes
Authors: Hein Win Zaw
Abstract:
Today, the advanced strategies for aircraft production technology potentially need the higher performance, and on the other hand, those strategies and engineering technologies should meet considerable process and reduce of production costs. Thus, professionals who are working in these scopes are attempting to develop new materials to improve the manufacturability of designs, the creation of new technological processes, tools and equipment. This paper discusses about the research on structural changes in plastic deformation during rotary expansion and crimp of pipes. Pipelines are experiencing high pressure and pulsating load. That is why, it is high demands on the mechanical properties of the material, the quality of the external and internal surfaces, preserve cross-sectional shape and the minimum thickness of the pipe wall are taking into counts. In the manufacture of pipes, various operations: distribution, crimping, bending, etc. are used. The most widely used at various semi-products, connecting elements found the process of rotary expansion and crimp of pipes. In connection with the use of high strength materials and less-plastic, these conventional techniques do not allow obtaining high-quality parts, and also have a low economic efficiency. Therefore, research in this field is relevantly considerable to develop in advanced. Rotary expansion and crimp of pipes are accompanied by inhomogeneous plastic deformation, which leads to structural changes in the material, causes its deformation hardening, by this result changes the operational reliability of the product. Parts of the tube obtained by rotary expansion and crimp differ by multiplicity of form and characterized by various diameter in the various section, which formed in the result of inhomogeneous plastic deformation. The reliability of the coupling, obtained by rotary expansion and crimp, is determined by the structural arrangement of material formed by the formation process; there is maximum value of deformation, the excess of which is unacceptable. The structural state of material in this condition is determined by technological mode of formation in the rotary expansion and crimp. Considering the above, objective of the present study is to investigate the structural changes at different levels of plastic deformation, accompanying rotary expansion and crimp, and the analysis of stress concentrators of different scale levels, responsible for the formation of the primary zone of destruction.Keywords: plastic deformation, rolling of tubes, crimping of tubes, structural changes
Procedia PDF Downloads 33018781 Analysis of Generation Z and Perceptions of Conscious Consumption in the Light of Primary Data
Authors: Mónika Garai-Fodor, Nikoett Huszak
Abstract:
In the present study, we investigate the cognitive aspects of conscious consumer behaviour among Generation Z members. In our view, conscious consumption can greatly help to foster social responsibility, environmental and health-conscious behaviour, and ethical consumerism. We believe that it is an important educational task to promote and reinforce consumer behaviour among young people that increases and creates community value. In this study, we analysed the dimensions of young people's conscious consumer behaviour and its manifestation in concrete forms of behaviour, purchasing, and consumer decisions. As a result of a survey conducted through a snowball sampling procedure, the responses of 200 respondents who are members of Generation Z were analysed. The research analysed young people's perceptions and opinions of conscious living and their perceptions of self-conscious consumer behaviour. The primary research used a pre-tested standardised online questionnaire. Data were evaluated using bivariate and multivariate analyses in addition to descriptive statistics. The research presents results that are valid for the sample, and we plan to continue with a larger sample survey and extend it to other generations. Our main objective is to analyse what conscious living means to young people, what behavioural elements they associate with it, and what activities they themselves undertake in this context.Keywords: generation Z, conscious consumption, primary research, sustainability
Procedia PDF Downloads 3718780 Model Based Simulation Approach to a 14-Dof Car Model Using Matlab/Simulink
Authors: Ishit Sheth, Chandrasekhar Jinendran, Chinmaya Ranjan Sahu
Abstract:
A fourteen degree of freedom (DOF) ride and handling control mathematical model is developed for a car using generalized boltzmann hamel equation which will create a basis for design of ride and handling controller. Mathematical model developed yield equations of motion for non-holonomic constrained systems in quasi-coordinates. The governing differential equation developed integrates ride and handling control of car. Model-based systems engineering approach is implemented for simulation using matlab/simulink, vehicle’s response in different DOF is examined and later validated using commercial software (ADAMS). This manuscript involves detailed derivation of full car vehicle model which provides response in longitudinal, lateral and yaw motion to demonstrate the advantages of the developed model over the existing dynamic model. The dynamic behaviour of the developed ride and handling model is simulated for different road conditions.Keywords: Full Vehicle Model, MBSE, Non Holonomic Constraints, Boltzmann Hamel Equation
Procedia PDF Downloads 22618779 Landslide Hazard Zonation and Risk Studies Using Multi-Criteria Decision-Making and Slope Stability Analysis
Authors: Ankit Tyagi, Reet Kamal Tiwari, Naveen James
Abstract:
In India, landslides are the most frequently occurring disaster in the regions of the Himalayas and the Western Ghats. The steep slopes and land use in these areas are quite apprehensive. In the recent past, many landslide hazard zonation (LHZ) works have been carried out in the Himalayas. However, the preparation of LHZ maps considering temporal factors such as seismic ground shaking, seismic amplification at surface level, and rainfall are limited. Hence this study presents a comprehensive use of the multi-criteria decision-making (MCDM) method in landslide risk assessment. In this research, we conducted both geospatial and geotechnical analysis to minimize the danger of landslides. Geospatial analysis is performed using high-resolution satellite data to produce landslide causative factors which were given weightage using the MCDM method. The geotechnical analysis includes a slope stability check, which was done to determine the potential landslide slope. The landslide risk map can provide useful information which helps people to understand the risk of living in an area.Keywords: landslide hazard zonation, PHA, AHP, GIS
Procedia PDF Downloads 19018778 Performances of Two-Segment Crash Box with Holes under Oblique Load
Authors: Moch Agus Choiron
Abstract:
Crash box design has been developed to obtain optimum energy absorption. In this study, two-segment crash box design with holes is investigated under oblique load. The deformation behavior and crash energy absorption are observed. The analysis was performed using finite element method. The crash test components were impactor, crash box, and fixed rigid base. Impactor and the fixed base material are modelled as a rigid, and crash box material as bilinear isotropic hardening. The models consist of 2 and 4 holes laid within ¼, ½ and ¾ from first segment length. 100 mm aluminum crash box and frontal crash velocity of 16 km/jam were selected. Based on simulation results, it can be concluded that 2 holes located at ¾ has the largest crash energy absorption. This behavior associated with deformation pattern, which produces higher number of folding than other models.Keywords: crash Box, two-segments, holes configuration, oblique load, deformation pattern
Procedia PDF Downloads 35918777 Non-Singular Gravitational Collapse of a Homogeneous Scalar Field in Deformed Phase Space
Authors: Amir Hadi Ziaie
Abstract:
In the present work, we revisit the collapse process of a spherically symmetric homogeneous scalar field (in FRW background) minimally coupled to gravity, when the phase-space deformations are taken into account. Such a deformation is mathematically introduced as a particular type of noncommutativity between the canonical momenta of the scale factor and of the scalar field. In the absence of such deformation, the collapse culminates in a spacetime singularity. However, when the phase-space is deformed, we find that the singularity is removed by a non-singular bounce, beyond which the collapsing cloud re-expands to infinity. More precisely, for negative values of the deformation parameter, we identify the appearance of a negative pressure, which decelerates the collapse to finally avoid the singularity formation. While in the un-deformed case, the horizon curve monotonically decreases to finally cover the singularity, in the deformed case the horizon has a minimum value that this value depends on deformation parameter and initial configuration of the collapse. Such a setting predicts a threshold mass for black hole formation in stellar collapse and manifests the role of non-commutative geometry in physics and especially in stellar collapse and supernova explosion.Keywords: gravitational collapse, non-commutative geometry, spacetime singularity, black hole physics
Procedia PDF Downloads 34218776 Structural Analysis of Hydro-Turbine Head Cover Using Ansys
Authors: Surjit Angra, Manisha Kumari, Vinod Kumar
Abstract:
The objective of the Hydro Turbine Head Cover is to support the guide bearing, guide vane regulating mechanism and even in some design for generator thrust bearing support. Mechanical design of head cover deals with high static as well as fluctuating load acting on the structure. In the present work structural analysis of hydro turbine Head-cover using ANSYS software is carried out. Finite element method is used to calculate stresses on head cover. These calculations were done for the maximum possible loading under operating condition “LCI Quick Shut Down”. The results for equivalent Von-Mises stress, total deformation and directional deformation have been plotted and compared with the existing results whether the design is safe or not.Keywords: ANSYS, head cover, hydro-turbine, structural analysis, total deformation, Von-Mises stress
Procedia PDF Downloads 53218775 Study on Multi-Point Stretch Forming Process for Double Curved Surface
Authors: Jiwoo Park, Junseok Yoon, Jeong Kim, Beomsoo Kang
Abstract:
Multi-Point Stretch Forming (MPSF) process is suitable for flexible manufacturing, and it has several advantages including that it could be applied to various forming such as sheet metal forming, single curved surface forming and double curved one. In this study, a systematic numerical simulation was carried out for atypical double curved surface forming using the multiple die stretch forming process. In this simulation, urethane pads were defined based on hyper-elastic material model as a cushion for the smooth forming surface. The deformation behaviour on elastic recovery was also investigated to consider the exact result after the last forming process, and then the experiment was also carried out to confirm the formability of this forming process. By comparing the simulation and experiment results, the suitability of the multiple die stretch forming process for the atypical double curved surface was verified. Consequently, it is confirmed that the multi-point stretch forming process has the capability and feasibility of being used to manufacture the double curved surfaces of sheet metal.Keywords: multi-point stretch forming, double curved surface, numerical simulation, manufacturing
Procedia PDF Downloads 47818774 Study on Shifting Properties of CVT Rubber V-belt
Authors: Natsuki Tsuda, Kiyotaka Obunai, Kazuya Okubo, Hideyuki Tashiro, Yoshinori Yamaji, Hideyuki Kato
Abstract:
The objective of this study is to investigate the effect of belt stiffness on the performance of the CVT unit, such as the required pulley thrust force and the ratio coverage. The CVT unit consists of the V-grooved pulleys and the rubber CVT belt. The width of the driving pulley groove was controlled by the stepper motor, while that of the driven pulley was controlled by the hydraulic pressure. The generated mechanical power on the motor was transmitted from the driving axis to the driven axis through the CVT unit. The rotational speed and the transmitting torque of both axes were measured by the tachometers and the torque meters attached with these axes, respectively. The transmitted, mechanical power was absorbed by the magnetic powder brake. The thrust force acting on both pulleys and the force between both shafts were measured by the load cell. The back face profile of the rubber CVT belt along with width direction was measured by the 2-dimensional laser displacement meter. This paper found that when the stiffness of the rubber CVT belt in the belt width direction was reduced, the thrust force required for shifting was reduced. Moreover, when the stiffness of the rubber CVT belt in the belt width direction was reduced, the ratio coverage of the CVT unit was reduced. Due to the decrement of stiffness in belt width direction, the excessive concave deformation of belt in pulley groove was confirmed. Because of this excessive concave deformation, apparent wrapping radius of belt would have been reduced. Proposed model could be effectively estimated the difference of ratio coverage due to concave deformation. The proposed model could also be utilized for designing the rubber CVT belt with optimal bending stiffness in width direction.Keywords: CVT, countinuously variable transmission, rubber, belt stiffness, transmission
Procedia PDF Downloads 14118773 Influence of Hygro-Thermo-Mechanical Loading on Buckling and Vibrational Behavior of FG-CNT Composite Beam with Temperature Dependent Characteristics
Authors: Puneet Kumar, Jonnalagadda Srinivas
Abstract:
The authors report here vibration and buckling analysis of functionally graded carbon nanotube-polymer composite (FG-CNTPC) beams under hygro-thermo-mechanical environments using higher order shear deformation theory. The material properties of CNT and polymer matrix are often affected by temperature and moisture content. A micromechanical model with agglomeration effect is employed to compute the elastic, thermal and moisture properties of the composite beam. The governing differential equation of FG-CNTRPC beam is developed using higher-order shear deformation theory to account shear deformation effects. The elastic, thermal and hygroscopic strain terms are derived from variational principles. Moreover, thermal and hygroscopic loads are determined by considering uniform, linear and sinusoidal variation of temperature and moisture content through the thickness. Differential equations of motion are formulated as an eigenvalue problem using appropriate displacement fields and solved by using finite element modeling. The obtained results of natural frequencies and critical buckling loads show a good agreement with published data. The numerical illustrations elaborate the dynamic as well as buckling behavior under uniaxial load for different environmental conditions, boundary conditions and volume fraction distribution profile, beam slenderness ratio. Further, comparisons are shown at different boundary conditions, temperatures, degree of moisture content, volume fraction as well as agglomeration of CNTs, slenderness ratio of beam for different shear deformation theories.Keywords: hygrothermal effect, free vibration, buckling load, agglomeration
Procedia PDF Downloads 26118772 The Use of the TRIGRS Model and Geophysics Methodologies to Identify Landslides Susceptible Areas: Case Study of Campos do Jordao-SP, Brazil
Authors: Tehrrie Konig, Cassiano Bortolozo, Daniel Metodiev, Rodolfo Mendes, Marcio Andrade, Marcio Moraes
Abstract:
Gravitational mass movements are recurrent events in Brazil, usually triggered by intense rainfall. When these events occur in urban areas, they end up becoming disasters due to the economic damage, social impact, and loss of human life. To identify the landslide-susceptible areas, it is important to know the geotechnical parameters of the soil, such as cohesion, internal friction angle, unit weight, hydraulic conductivity, and hydraulic diffusivity. The measurement of these parameters is made by collecting soil samples to analyze in the laboratory and by using geophysical methodologies, such as Vertical Electrical Survey (VES). The geophysical surveys analyze the soil properties with minimal impact in its initial structure. Statistical analysis and mathematical models of physical basis are used to model and calculate the Factor of Safety for steep slope areas. In general, such mathematical models work from the combination of slope stability models and hydrological models. One example is the mathematical model TRIGRS (Transient Rainfall Infiltration and Grid-based Regional Slope- Stability Model) which calculates the variation of the Factor of Safety of a determined study area. The model relies on changes in pore-pressure and soil moisture during a rainfall event. TRIGRS was written in the Fortran programming language and associates the hydrological model, which is based on the Richards Equation, with the stability model based on the principle of equilibrium limit. Therefore, the aims of this work are modeling the slope stability of Campos do Jordão with TRIGRS, using geotechnical and geophysical methodologies to acquire the soil properties. The study area is located at southern-east of Sao Paulo State in the Mantiqueira Mountains and has a historic landslide register. During the fieldwork, soil samples were collected, and the VES method applied. These procedures provide the soil properties, which were used as input data in the TRIGRS model. The hydrological data (infiltration rate and initial water table height) and rainfall duration and intensity, were acquired from the eight rain gauges installed by Cemaden in the study area. A very high spatial resolution digital terrain model was used to identify the slopes declivity. The analyzed period is from March 6th to March 8th of 2017. As results, the TRIGRS model calculates the variation of the Factor of Safety within a 72-hour period in which two heavy rainfall events stroke the area and six landslides were registered. After each rainfall, the Factor of Safety declined, as expected. The landslides happened in areas identified by the model with low values of Factor of Safety, proving its efficiency on the identification of landslides susceptible areas. This study presents a critical threshold for landslides, in which an accumulated rainfall higher than 80mm/m² in 72 hours might trigger landslides in urban and natural slopes. The geotechnical and geophysics methods are shown to be very useful to identify the soil properties and provide the geological characteristics of the area. Therefore, the combine geotechnical and geophysical methods for soil characterization and the modeling of landslides susceptible areas with TRIGRS are useful for urban planning. Furthermore, early warning systems can be developed by combining the TRIGRS model and weather forecast, to prevent disasters in urban slopes.Keywords: landslides, susceptibility, TRIGRS, vertical electrical survey
Procedia PDF Downloads 17118771 A Comparative Analysis on QRS Peak Detection Using BIOPAC and MATLAB Software
Authors: Chandra Mukherjee
Abstract:
The present paper is a representation of the work done in the field of ECG signal analysis using MATLAB 7.1 Platform. An accurate and simple ECG feature extraction algorithm is presented in this paper and developed algorithm is validated using BIOPAC software. To detect the QRS peak, ECG signal is processed by following mentioned stages- First Derivative, Second Derivative and then squaring of that second derivative. Efficiency of developed algorithm is tested on ECG samples from different database and real time ECG signals acquired using BIOPAC system. Firstly we have lead wise specified threshold value the samples above that value is marked and in the original signal, where these marked samples face change of slope are spotted as R-peak. On the left and right side of the R-peak, faces change of slope identified as Q and S peak, respectively. Now the inbuilt Detection algorithm of BIOPAC software is performed on same output sample and both outputs are compared. ECG baseline modulation correction is done after detecting characteristics points. The efficiency of the algorithm is tested using some validation parameters like Sensitivity, Positive Predictivity and we got satisfied value of these parameters.Keywords: first derivative, variable threshold, slope reversal, baseline modulation correction
Procedia PDF Downloads 41018770 Numerical Analysis of the Aging Effects of RC Shear Walls Repaired by CFRP Sheets: Application of CEB-FIP MC 90 Model
Authors: Yeghnem Redha, Guerroudj Hicham Zakaria, Hanifi Hachemi Amar Lemiya, Meftah Sid Ahmed, Tounsi Abdelouahed, Adda Bedia El Abbas
Abstract:
Creep deformation of concrete is often responsible for excessive deflection at service loads which can compromise the performance of elements within a structure. Although laboratory test may be undertaken to determine the deformation properties of concrete, these are time-consuming, often expensive and generally not a practical option. Therefore, relatively simple empirically design code models are relied to predict the creep strain. This paper reviews the accuracy of creep and shrinkage predictions of reinforced concrete (RC) shear walls structures strengthened with carbon fibre reinforced polymer (CFRP) sheets, which is characterized by a widthwise varying fibre volume fraction. This review is yielded by CEB-FIB MC90 model. The time-dependent behavior was investigated to analyze their static behavior. In the numerical formulation, the adherents and the adhesives are all modelled as shear wall elements, using the mixed finite element method. Several tests were used to dem¬onstrate the accuracy and effectiveness of the proposed method. Numerical results from the present analysis are presented to illustrate the significance of the time-dependency of the lateral displacements.Keywords: RC shear walls strengthened, CFRP sheets, creep and shrinkage, CEB-FIP MC90 model, finite element method, static behavior
Procedia PDF Downloads 30718769 The Association of Slope Failure and Lineament Density along the Ranau-Tambunan Road, Sabah, Malaysia
Authors: Norbert Simon, Rodeano Roslee, Abdul Ghani Rafek, Goh Thian Lai, Azimah Hussein, Lee Khai Ern
Abstract:
The 54 km stretch of Ranau-Tambunan (RTM) road in Sabah is subjected to slope failures almost every year. This study is focusing on identifying section of roads that are susceptible to failure based on temporal landslide density and lineament density analyses. In addition to the analyses, the rock slopes in several sections of the road were assessed using the geological strength index (GSI) technique. The analysis involved 148 landslides that were obtained in 1978, 1994, 2009 and 2011. The landslides were digitized as points and the point density was calculated based on every 1km2 of the road. The lineaments of the area was interpreted from Landsat 7 15m panchromatic band. The lineament density was later calculated based on every 1km2 of the area using similar technique with the slope failure density calculation. The landslide and lineament densities were classified into three different classes that indicate the level of susceptibility (low, moderate, high). Subsequently, the two density maps were overlap to produce the final susceptibility map. The combination of both high susceptibility classes from these maps signifies the high potential of slope failure in those locations in the future. The final susceptibility map indicates that there are 22 sections of the road that are highly susceptible. Seven rock slopes were assessed along the RTM road using the GSI technique. It was found from the assessment that rock slopes along this road are highly fractured, weathered and can be classified into fair to poor categories. The poor condition of the rock slope can be attributed to the high lineament density that presence in the study area. Six of the rock slopes are located in the high susceptibility zones. A detailed investigation on the 22 high susceptibility sections of the RTM road should be conducted due to their higher susceptibility to failure, in order to prevent untoward incident to road users in the future.Keywords: GSI, landslide, landslide density, landslide susceptibility, lineament density
Procedia PDF Downloads 39618768 A Study of the Formation, Existence and Stability of Localised Pulses in PDE
Authors: Ayaz Ahmad
Abstract:
TOPIC: A study of the formation ,existness and stability of localised pulses in pde Ayaz Ahmad ,NITP, Abstract:In this paper we try to govern the evolution deterministic variable over space and time .We analysis the behaviour of the model which allows us to predict and understand the possible behaviour of the physical system .Bifurcation theory provides a basis to systematically investigate the models for invariant sets .Exploring the behaviour of PDE using bifurcation theory which provides many challenges both numerically and analytically. We use the derivation of a non linear partial differential equation which may be written in this form ∂u/∂t+c ∂u/∂x+∈(∂^3 u)/(∂x^3 )+¥u ∂u/∂x=0 We show that the temperature increased convection cells forms. Through our work we look for localised solution which are characterised by sudden burst of aeroidic spatio-temporal evolution. Key word: Gaussian pulses, Aeriodic ,spatio-temporal evolution ,convection cells, nonlinearoptics, Dr Ayaz ahmad Assistant Professor Department of Mathematics National institute of technology Patna ,Bihar,,India 800005 [email protected] +91994907553Keywords: Gaussian pulses, aeriodic, spatio-temporal evolution, convection cells, nonlinear optics
Procedia PDF Downloads 33918767 The Impact of Facebook Brand Pages Engagement on Consumers Purchase Behaviour
Authors: Sudarsan Jayasingh, R. Venkatesh
Abstract:
Increasing number of customers gets connected to social networking sites, such as Facebook and Twitter to details about the brand communications. This survey, based on a convenience sample, aimed to find the reason for the participants to like Facebook fan pages, how often they visit and interact with the pages that they like, and how is it related with their purchase behaviour. 104 respondents completed the online survey. Overall, the study aimed at determining whether or not creating and maintaining a Facebook fan page is a beneficial tool for brands to communicate with their consumer base.Keywords: facebook brand pages, social media, consumer engagement, digital engagement, purchase behaviour
Procedia PDF Downloads 31618766 Climate Change Impact on Slope Stability: A Study of Slope Drainage Design and Operation
Authors: Elena Mugarza, Stephanie Glendinning, Ross Stirling, Colin Davies
Abstract:
The effects of climate change and increased rainfall events on UK-based infrastructure are observable, with an increasing number being reported on in the national press. The fatal derailment at Stonehaven in 2020 prompted a wider review of Network Rail-owned earthworks assets. The event was indicated by the Rail Accident Investigation Branch (RAIB) to be caused by mis-installed drainage on the adjacent cutting. The slope failure on Snake Pass (public highway A57) was reportedly caused by significant water ingress following numerous storm events and resulted in the road’s closure for several months. This problem is only projected to continue with greater intensity and more prolonged rainfall events forecasted in the future. Subsequently, this project is designed to evaluate effective drainage trench design within infrastructure embankments, considering the capillary barrier phenomenon that may govern their deterioration and resultant failure. Theoretically, the differential between grain sizes of the embankment clays and gravels, customarily used in drainage trenches, would have a limiting effect on infiltration. As such, it is anticipated that the inclusion of an additional material with an intermediate grain size should improve the hydraulic conductivity across the drainage boundary. Multiple drainage designs will be studied using instrumentation within the drain and surrounding clays. Data from the real-world installation at the BIONICS embankment will be collected and compared with laboratory and Finite Element (FE) simulations. This research aims to reduce the risk of infrastructure slope failures by improving the resilience of earthwork drainage and lessening the consequential impact on transportation networks.Keywords: earthworks, slope drainage, transportation slopes, deterioration, capillary barriers, field study
Procedia PDF Downloads 5018765 A Large-Strain Thermoviscoplastic Damage Model
Authors: João Paulo Pascon
Abstract:
A constitutive model accounting for large strains, thermoviscoplasticity, and ductile damage evolution is proposed in the present work. To this end, a fully Lagrangian framework is employed, considering plane stress conditions and multiplicative split of the deformation gradient. The full model includes Gurson’s void growth, nucleation and coalescence, plastic work heating, strain and strain-rate hardening, thermal softening, and heat conductivity. The contribution of the work is the combination of all the above-mentioned features within the finite-strain setting. The model is implemented in a computer code using triangular finite elements and nonlinear analysis. Two mechanical examples involving ductile damage and finite strain levels are analyzed: an inhomogeneous tension specimen and the necking problem. Results demonstrate the capabilities of the developed formulation regarding ductile fracture and large deformations.Keywords: ductile damage model, finite element method, large strains, thermoviscoplasticity
Procedia PDF Downloads 8318764 A Cross-Sectional Study of Parents’ Knowledge, Attitude, and Health-Seeking Behaviour Towards Childhood Tuberculosis during COVID-19 Pandemic: Lessons Learned from Indonesia
Authors: Windy Rakhmawati, Suryani Suryani, Sri Hendrawati, Nenden Nur Asriyani Maryam
Abstract:
Tuberculosis (TB) is one of the leading causes of death in the world. Fear of COVID-19 has made people reluctant to visit health facilities, leading to disruptions to childhood TB control programs, which may increase household transmission and delay diagnosis and treatment. This study aimed to describe parents' knowledge, attitudes, and health-seeking behaviour towards childhood TB during the COVID-19 pandemic. This cross-sectional study was performed on 392 parents with TB children in three provinces with the highest proportion of TB cases in Indonesia. This study was conducted from February to December 2022. The inclusion criteria of respondents were parents with a child aged 0-14 years old with TB diagnosis who live with their parents. Data were collected using the Knowledge, Attitude, and Practice (KAP) survey guidelines from the World Health Organization and analyzed descriptively, as well as Spearman’s correlation. Overall, 392 parents of children with TB had poor knowledge (51.8%) including about causes, risk factors, transmission, symptoms, treatment, and prevention, which about 52.3%, 55.1%, 61.2%, 69.6%, 100%, 59.2%, respectively. Parents' health service-seeking behaviour towards Child TB was not normally distributed (P < 0.05) with knowledge test results (.000) and Seeking Health Services (.000). Health-seeking behaviour of parents in pediatric TB care was self-medication or self-treatment (86.2%), Traditional health seeking behaviour (4.8%), and modern health seeking behaviour (8.9%). The correlation between knowledge and seeking health services (Sig= .609) means there is no correlation between knowledge about TB and parents' health-seeking behaviour. Furthermore, 60.2% of the respondents would be shocked if their child had TB. More than half of the families in this study have poor knowledge and did self-medication or self-treatment regarding health-seeking behaviour for TB disease. Therefore, health workers, especially nurses, must provide TB-related education and health promotion and emphasize the importance of early detection. Health workers can also optimize their role in caring for and providing care to patients by increasing their trust in health workers, which will impact health-seeking behaviour in the future.Keywords: attitude, child, health seeking behaviour, knowledge, tuberculosis
Procedia PDF Downloads 6518763 Serious Gaming for Behaviour Change: A Review
Authors: Ramy Hammady, Sylvester Arnab
Abstract:
Significant attention has been directed to adopt game interventions practically to change certain behaviours in many disciplines such as health, education, psychology through many years. That’s due to the intrinsic motivation that games can cause and the substantial impact the games can leave on the player. Many review papers were induced to highlight and measure the effectiveness of the game’s interventions on changing behaviours; however, most of these studies neglected the game design process itself and the game features and elements that can stimuli changing behaviours. Therefore, this paper aims to identify the most game design mechanics and features that are the most influencing on changing behaviour during or after games interventions. This paper also sheds light on the theories of changing behaviours that clearly can led the game design process. This study gives directions to game designers to spot the most influential game features and mechanics for changing behaviour games in order to exploit it on the same manner.Keywords: behaviour change, game design, serious gaming, gamification, review
Procedia PDF Downloads 20718762 Contact-Impact Analysis of Continuum Compliant Athletic Systems
Authors: Theddeus Tochukwu Akano, Omotayo Abayomi Fakinlede
Abstract:
Proper understanding of the behavior of compliant mechanisms use by athletes is important in order to avoid catastrophic failure. Such compliant mechanisms like the flex-run require the knowledge of their dynamic response and deformation behavior under quickly varying loads. The modeling of finite deformations of the compliant athletic system is described by Neo-Hookean model under contact-impact conditions. The dynamic impact-contact governing equations for both the target and impactor are derived based on the updated Lagrangian approach. A method where contactor and target are considered as a united body is applied in the formulation of the principle of virtual work for the bodies. In this paper, methods of continuum mechanics and nonlinear finite element method were deployed to develop a model that could capture the behavior of the compliant athletic system under quickly varying loads. A hybrid system of symbolic algebra (AceGEN) and a compiled back end (AceFEM) were employed, leveraging both ease of use and computational efficiency. The simulated results reveal the effect of the various contact-impact conditions on the deformation behavior of the impacting compliant mechanism.Keywords: eigenvalue problems, finite element method, robin boundary condition, sturm-liouville problem
Procedia PDF Downloads 46918761 Development of an Auxetic Tissue Implant
Authors: Sukhwinder K. Bhullar, M. B. G. Jun
Abstract:
The developments in biomedical industry have demanded the development of biocompatible, high performance materials to meet higher engineering specifications. The general requirements of such materials are to provide a combination of high stiffness and strength with significant weight savings, resistance to corrosion, chemical resistance, low maintenance, and reduced costs. Auxetic materials which come under the category of smart materials offer huge potential through measured enhancements in mechanical properties. Unique deformation mechanism, providing cushioning on indentation, automatically adjustable with its strength and thickness in response to forces and having memory returns to its neutral state on dissipation of stresses make them good candidate in biomedical industry. As simple extension and compression of tissues is of fundamental importance in biomechanics, therefore, to study the elastic behaviour of auxetic soft tissues implant is targeted in this paper. Therefore development and characterization of auxetic soft tissue implant is studied in this paper. This represents a real life configuration where soft tissue such as meniscus in knee replacement, ligaments and tendons often are taken as transversely isotropic. Further, as composition of alternating polydisperse blocks of soft and stiff segments combined with excellent biocompatibility make polyurethanes one of the most promising synthetic biomaterials. Hence selecting auxetic polyurathylene foam functional characterization is performed and compared with conventional polyurathylene foam.Keywords: auxetic materials, deformation mechanism, enhanced mechanical properties, soft tissues
Procedia PDF Downloads 458