Search results for: shear fracture
1539 Response Reduction Factor for Earthquake Resistant Design of Special Moment Resisting Frames
Authors: Rohan V. Ambekar, Shrirang N. Tande
Abstract:
The present study estimates the seismic response reduction factor (R) of reinforced concrete special moment resisting frame (SMRF) with and without shear wall using static nonlinear (pushover) analysis. Calculation of response reduction factor (R) is done as per the new formulation of response reduction factor (R) given by Applied Technology Council (ATC)-19 which is the product of strength factor (Rs), ductility factor (Rµ) and redundancy factor (RR). The analysis revealed that these three factors affect the actual value of response reduction factor (R) and therefore they must be taken into consideration while determining the appropriate response reduction factor to be used during the seismic design process. The actual values required for determination of response reduction factor (R) is worked out on the basis of pushover curve which is a plot of base shear verses roof displacement. Finally, the calculated values of response reduction factor (R) of reinforced concrete special moment resisting frame (SMRF) with and without shear wall are compared with the codal values.Keywords: response reduction factor, ductility ratio, base shear, special moment resisting frames
Procedia PDF Downloads 4851538 Analysis of the Plastic Zone Under Mixed Mode Fracture in Bonded Composite Repair of Aircraft
Authors: W. Oudad, H. Fikirini, K. Boulenouar
Abstract:
Material fracture by opening (mode I) is not alone responsible for fracture propagation. Many industrial examples show the presence of mode II and mixed mode I + II. In the present work the three-dimensional and non-linear finite element method is used to estimate the performance of the bonded composite repair of metallic aircraft structures by analyzing the plastic zone size ahead of repaired cracks under mixed mode loading. The computations are made according to Von Mises and Tresca criteria. The extension of the plastic zone which takes place at the tip of a crack strictly depends on many variables, such as the yield stress of the material, the loading conditions, the crack size and the thickness of the cracked component, The obtained results show that the presence of the composite patch reduces considerably the size of the plastic zone ahead of the crack. The effects of the composite orientation layup (adhesive properties) and the patch thickness on the plastic zone size ahead of repaired cracks were analyzed.Keywords: crack, elastic-plastic, J integral, patch, plastic zone
Procedia PDF Downloads 4431537 Seismic Base Shear Force Depending on Building Fundamental Period and Site Conditions: Deterministic Formulation and Probabilistic Analysis
Authors: S. Dorbani, M. Badaoui, D. Benouar
Abstract:
The aim of this paper is to investigate the effect of the building fundamental period of reinforced concrete buildings of (6, 9, and 12-storey), with different floor plans: Symmetric, mono-symmetric, and unsymmetric. These structures are erected at different epicentral distances. Using the Boumerdes, Algeria (2003) earthquake data, we focused primarily on the establishment of the deterministic formulation linking the base shear force to two parameters: The first one is the fundamental period that represents the numerical fingerprint of the structure, and the second one is the epicentral distance used to represent the impact of the earthquake on this force. In a second step, with a view to highlight the effect of uncertainty in these parameters on the analyzed response, these parameters are modeled as random variables with a log-normal distribution. The variability of the coefficients of variation of the chosen uncertain parameters, on the statistics on the seismic base shear force, showed that the effect of uncertainty on fundamental period on this force statistics is low compared to the epicentral distance uncertainty influence.Keywords: base shear force, fundamental period, epicentral distance, uncertainty, lognormal variables, statistics
Procedia PDF Downloads 3191536 A Study on the Interlaminar Shear Strength of Carbon Fiber Reinforced Plastics Depending on the Lamination Methods
Authors: Min Sang Lee, Hee Jae Shin, In Pyo Cha, Sun Ho Ko, Hyun Kyung Yoon, Hong Gun Kim, Lee Ku Kwac
Abstract:
The prepreg process among the CFRP (Carbon Fiber Reinforced Plastic) forming methods is the short term of ‘Pre-impregnation’, which is widely used for aerospace composites that require a high quality property such as a fiber-reinforced woven fabric, in which an epoxy hardening resin is impregnated. the reality is, however, that this process requires continuous researches and developments for its commercialization because the delamination characteristically develops between the layers when a great weight is loaded from outside. to supplement such demerit, three lamination methods among the prepreg lamination methods of CFRP were designed to minimize the delamination between the layers due to external impacts. Further, the newly designed methods and the existing lamination methods were analyzed through a mechanical characteristic test, Interlaminar Shear Strength test. The Interlaminar Shear Strength test result confirmed that the newly proposed three lamination methods, i.e. the Roll, Half and Zigzag laminations, presented more excellent strengths compared to the conventional Ply lamination. The interlaminar shear strength in the roll method with relatively dense fiber distribution was approximately 1.75% higher than that in the existing ply lamination method, and in the half method, it was approximately 0.78% higher.Keywords: carbon fiber reinforced plastic(CFRP), pre-impregnation, laminating method, interlaminar shear strength (ILSS)
Procedia PDF Downloads 3711535 Seismic Response of Large-Scale Rectangular Steel-Plate Concrete Composite Shear Walls
Authors: Siamak Epackachi, Andrew S. Whittaker, Amit H. Varma
Abstract:
An experimental program on steel-plate concrete (SC) composite shear walls was executed in the NEES laboratory at the University at Buffalo. Four large-size specimens were tested under displacement-controlled cyclic loading. The design variables considered in the testing program included wall thickness, reinforcement ratio, and faceplate slenderness ratio. The aspect ratio (height-to-length) of the four walls was 1.0. Each SC wall was installed on top of a re-usable foundation block. A bolted baseplate to RC foundation connection was used for all four walls. The walls were identified to be flexure-critical. This paper presents the damage to SC walls at different drift ratios, the cyclic force-displacement relationships, energy dissipation and equivalent viscous damping ratios, the strain and stress fields in the steel faceplates and the contribution of the steel faceplates to the total shear load, the variation of vertical strain in the steel faceplates along the length of the wall, near the base, at different drift ratios, the contributions of shear, flexure, and base rotation to the total lateral displacement, the displacement ductility of the SC walls, and the cyclic secant stiffness of the four SC walls.Keywords: steel-plate composite shear wall, safety-related nuclear structure, flexure-critical wall, cyclic loading
Procedia PDF Downloads 3491534 A Study on the Effect of Mg and Ag Additions and Age Hardening Treatment on the Properties of As-Cast Al-Cu-Mg-Ag Alloys
Authors: Ahmed. S. Alasmari, M. S. Soliman, Magdy M. El-Rayes
Abstract:
This study focuses on the effect of the addition of magnesium (Mg) and silver (Ag) on the mechanical properties of aluminum based alloys. The alloying elements will be added at different levels using the factorial design of experiments of 22; the two factors are Mg and Ag at two levels of concentration. The superior mechanical properties of the produced Al-Cu-Mg-Ag alloys after aging will be resulted from a unique type of precipitation named as Ω-phase. The formed precipitate enhanced the tensile strength and thermal stability. This paper further investigated the microstructure and mechanical properties of as cast Al–Cu–Mg–Ag alloys after being complete homogenized treatment at 520 °C for 8 hours followed by isothermally age hardening process at 190 °C for different periods of time. The homogenization at 520 °C for 8 hours was selected based on homogenization study at various temperatures and times. The alloys’ microstructures were studied by using optical microscopy (OM). In addition to that, the fracture surface investigation was performed using a scanning electronic microscope (SEM). Studying the microstructure of aged Al-Cu-Mg-Ag alloys reveal that the grains are equiaxed with an average grain size of about 50 µm. A detailed fractography study for fractured surface of the aged alloys exhibited a mixed fracture whereby the random fracture suggested crack propagation along the grain boundaries while the dimples indicated that the fracture was ductile. The present result has shown that alloy 5 has the highest hardness values and the best mechanical behaviors.Keywords: precipitation hardening, aluminum alloys, aging, design of experiments, analysis of variance, heat treatments
Procedia PDF Downloads 1561533 Tapered Double Cantilever Beam: Evaluation of the Test Set-up for Self-Healing Polymers
Authors: Eleni Tsangouri, Xander Hillewaere, David Garoz Gómez, Dimitrios Aggelis, Filip Du Prez, Danny Van Hemelrijck
Abstract:
Tapered Double Cantilever Beam (TDCB) is the most commonly used test set-up to evaluate the self-healing feature of thermoset polymers autonomously activated in the presence of crack. TDCB is a modification of the established fracture mechanics set-up of Double Cantilever Beam and is designed to provide constant strain energy release rate with crack length under stable load evolution (mode-I). In this study, the damage of virgin and autonomously healed TDCB polymer samples is evaluated considering the load-crack opening diagram, the strain maps provided by Digital Image Correlation technique and the fractography maps given by optical microscopy. It is shown that the pre-crack introduced prior to testing (razor blade tapping), the loading rate and the length of the side groove are the features that dominate the crack propagation and lead to inconstant fracture energy release rate.Keywords: polymers, autonomous healing, fracture, tapered double cantilever beam
Procedia PDF Downloads 3501532 An Investigation of the Effects of Gripping Systems in Geosynthetic Shear Testing
Authors: Charles Sikwanda
Abstract:
The use of geosynthetic materials in geotechnical engineering projects has rapidly increased over the past several years. These materials have resulted in improved performance and cost reduction of geotechnical structures as compared to the use of conventional materials. However, working with geosynthetics requires knowledge of interface parameters for design. These parameters are typically determined by the large direct shear device in accordance with ASTM-D5321 and ASTM-D6243 standards. Although these laboratory tests are standardized, the quality of the results can be largely affected by several factors that include; the shearing rate, applied normal stress, gripping mechanism, and type of the geosynthetic specimens tested. Amongst these factors, poor surface gripping of a specimen is the major source of the discrepancy. If the specimen is inadequately secured to the shearing blocks, it experiences progressive failure and shear strength that deviates from the true field performance of the tested material. This leads to inaccurate, unsafe, and cost ineffective designs of projects. Currently, the ASTM-D5321 and ASTM-D6243 standards do not provide a standardized gripping system for geosynthetic shear strength testing. Over the years, researchers have come up with different gripping systems that can be used such as; glue, metal textured surface, sandblasting, and sandpaper. However, these gripping systems are regularly not adequate to sufficiently secure the tested specimens to the shearing device. This has led to large variability in test results and difficulties in results interpretation. Therefore, this study was aimed at determining the effects of gripping systems in geosynthetic interface shear strength testing using a 300 x 300 mm direct shear box. The results of the research will contribute to easy data interpretation and increase result accuracy and reproducibility.Keywords: geosynthetics, shear strength parameters, gripping systems, gripping
Procedia PDF Downloads 2021531 Challenges in Experimental Testing of a Stiff, Overconsolidated Clay
Authors: Maria Konstadinou, Etienne Alderlieste, Anderson Peccin da Silva, Ben Arntz, Leonard van der Bijl, Wouter Verschueren
Abstract:
The shear strength and compression properties of stiff Boom clay from Belgium at the depth of about 30 m has been investigated by means of cone penetration and laboratory testing. The latter consisted of index classification, constant rate of strain, direct, simple shear, and unconfined compression tests. The Boom clay samples exhibited strong swelling tendencies. The suction pressure was measured via different procedures and has been compared to the expected in-situ stress. The undrained shear strength and OCR profile determined from CPTs is not compatible with the experimental measurements, which gave significantly lower values. The observed response can be attributed to the presence of pre-existing discontinuities, as shown in microscale CT scans of the samples. The results of this study demonstrate that the microstructure of the clay prior to testing has an impact on the mechanical behaviour and can cause inconsistencies in the comparison of the laboratory test results with in-situ data.Keywords: boom clay, laboratory testing, overconsolidation ratio, stress-strain response, swelling, undrained shear strength
Procedia PDF Downloads 1441530 A Systematic Review of Patient-Reported Outcomes and Return to Work after Surgical vs. Non-surgical Midshaft Humerus Fracture
Authors: Jamal Alasiri, Naif Hakeem, Saoud Almaslmani
Abstract:
Background: Patients with humeral shaft fractures have two different treatment options. Surgical therapy has lesser risks of non-union, mal-union, and re-intervention than non-surgical therapy. These positive clinical outcomes of the surgical approach make it a preferable treatment option despite the risks of radial nerve palsy and additional surgery-related risk. We aimed to evaluate patients’ outcomes and return to work after surgical vs. non-surgical management of shaft humeral fracture. Methods: We used databases, including PubMed, Medline, and Cochrane Register of Controlled Trials, from 2010 to January 2022 to search for potential randomised controlled trials (RCTs) and cohort studies comparing the patients’ related outcome measures and return to work between surgical and non-surgical management of humerus fracture. Results: After carefully evaluating 1352 articles, we included three RCTs (232 patients) and one cohort study (39 patients). The surgical intervention used plate/nail fixation, while the non-surgical intervention used a splint or brace procedure to manage shaft humeral fracture. The pooled DASH effects of all three RCTs at six (M.D: -7.5 [-13.20, -1.89], P: 0.009) I2:44%) and 12 months (M.D: -1.32 [-3.82, 1.17], p:0.29, I2: 0%) were higher in patients treated surgically than in non-surgical procedures. The pooled constant Murley score at six (M.D: 7.945[2.77,13.10], P: 0.003) I2: 0%) and 12 months (M.D: 1.78 [-1.52, 5.09], P: 0.29, I2: 0%) were higher in patients who received non-surgical than surgical therapy. However, pooled analysis for patients returning to work for both groups remained inconclusive. Conclusion: Altogether, we found no significant evidence supporting the clinical benefits of surgical over non-surgical therapy. Thus, the non-surgical approach remains the preferred therapeutic choice for managing shaft humeral fractures due to its lesser side effects.Keywords: shaft humeral fracture, surgical treatment, Patient-related outcomes, return to work, DASH
Procedia PDF Downloads 971529 Numerical Analysis on the Effect of Abrasive Parameters on Wall Shear Stress and Jet Exit Kinetic Energy
Authors: D. Deepak, N. Yagnesh Sharma
Abstract:
Abrasive Water Jet (AWJ) machining is a relatively new nontraditional machine tool used in machining of fiber reinforced composite. The quality of machined surface depends on jet exit kinetic energy which depends on various operating and material parameters. In the present work the effect abrasive parameters such as its size, concentration and type on jet kinetic energy is investigated using computational fluid dynamics (CFD). In addition, the effect of these parameters on wall shear stress developed inside the nozzle is also investigated. It is found that for the same operating parameters, increase in the abrasive volume fraction (concentration) results in significant decrease in the wall shear stress as well as the jet exit kinetic energy. Increase in the abrasive particle size results in marginal decrease in the jet exit kinetic energy. Numerical simulation also indicates that garnet abrasives produce better jet exit kinetic energy than aluminium oxide and silicon carbide.Keywords: abrasive water jet machining, jet kinetic energy, operating pressure, wall shear stress, Garnet abrasive
Procedia PDF Downloads 3761528 A Study on the Shear-Induced Crystallization of Aliphatic-Aromatic Copolyester
Authors: Ramin Hosseinnezhad, Iurii Vozniak, Andrzej Galeski
Abstract:
Shear-induced crystallization, originated from orientation of chains along the flow direction, is an inevitable part of most polymer processing technologies. It plays a dominant role in determining the final product properties and is affected by many factors such as shear rate, cooling rate, total strain, etc. Investigation of the shear-induced crystallization process become of great importance for preparation of nanocomposite, which requires crystallization of nanofibrous sheared inclusions at higher temperatures. Thus, the effects of shear time, shear rate, and also thermal condition of cooling on crystallization of two aliphatic-aromatic copolyesters have been investigated. This was performed using Linkam optical shearing system (CSS450) for both Ecoflex® F Blend C1200 produced by BASF and synthesized copolyester of butylene terephthalate and a mixture of butylene esters: adipate, succinate, and glutarate, (PBASGT), containing 60% of aromatic comonomer. Crystallization kinetics of these biodegradable copolyesters was studied at two different conditions of shearing. First, sample with a thickness of 60µm was heated to 60˚C above its melting point and subsequently subjected to different shear rates (100–800 sec-1) while cooling with specific rates. Second, the same type of sample was cooled down when shearing at constant temperature was finished. The intensity of transmitted depolarized light, recorded by a camera attached to the optical microscope, was used as a measure to follow the crystallization. Temperature dependencies of conversion degree of samples during cooling were collected and used to determine the half-temperature (Th), at which 50% conversion degree was reached. Shearing ecoflex films for 45 seconds with a shear rate of 100 sec-1 resulted in significant increase of Th from 56˚C to 70˚C. Moreover, the temperature range for the transition of molten samples to crystallized state decreased from 42˚C to 20˚C. Comparatively low shift of 10˚C in Th towards higher temperature was observed for PBASGT films at shear rate of 600 sec-1 for 45 seconds. However, insufficient melt flow strength and non-laminar flow due to Taylor vortices was a hindrance to reach more elevated Th at very high shear rates (600–800 sec-1). The shift in Th was smaller for the samples sheared at a constant temperature and subsequently cooled down. This may be attributed to the longer time gap between cessation of shearing and the onset of crystallization. The longer this time gap, the more possibility for crystal nucleus to re-melt at temperatures above Tm and for polymer chains to recoil and relax. It is found that the crystallization temperature, crystallization induction time and spherulite growth of aliphatic-aromatic copolyesters are dramatically influenced by both the cooling rate and the shear imposed during the process.Keywords: induced crystallization, shear rate, aliphatic-aromatic copolyester, ecoflex
Procedia PDF Downloads 4471527 Effects of Directivity and Fling Step on Buildings Equipped with J-Hook Sandwich Composite Walls and Reinforced Concrete Shear Walls
Authors: Majid Saaly, Shahriar Tavousi Tafreshi, Mehdi Nazari Afshar
Abstract:
The structural systems with the sandwich composite wall (SCSSC) are of very popular due to their ductileness and competency to swallow more energy and power than standard reinforced concrete shear walls. The purpose of this enhanced system is in high-rise building, Nuclear power plant facilities, and bridge slabs are much more. SCSSCs showed acceptable seismic performance under experimental tests and cyclic loading from the points of view of in-plane and out-of-plane shear and flexural interaction, in-plane punching shear, and compressive behavior. The use of sandwich composite walls with J-hook connectors has a significant effect on energy dissipation and reduction of dynamic responses of mid-rise and high-rise structural models. By changing the systems of the building from SW to SCWJ, the maximum inter-story drift values of ten- and fifteen-story models are reduced by up to 25% and 35%, respectively.Keywords: J-Hook sandwich composite walls, fling step, directivity, IDA analyses, fractile curves
Procedia PDF Downloads 1541526 Undercasts in Fracture Care: A Randomized Control Study
Authors: B. Kenny
Abstract:
There is currently no literature comparing undercasts in fracture care. This study is a randomised trial comparing the 4 commonly used undercasts in Australia. These are Webril, Sofban, Goretech and Delta-dry. The ideal undercast should be comfortable for the patient and not cause itchiness. It should be durable enough to withstand daily activities. The clinician/technician should find the undercast easy to apply and remove. It should provide adequate padding without compromising cast mouldability to obtain a good cast index and air index. 18 volunteering medical students were randomly allocated to receive 4 angular casts, one over each elbow and ankle(total of 72 casts). They were blinded to cast type. After an hour their casts were stressed by pouring 20ml Normal Saline onto the skin beneath. Each student filled a questionnaire about comfort, itchiness, weight and water resistance. Subsequently they ranked each cast 1 to 4 based on preference. Our preliminary results show Delta-dry is the most preferred undercast followed by Webril, Sofban and Goretech in that order. Underlay selection is important component of patient care with long immobilsation. Webril or Deltra-dry are by far the most preferred undercasts in our study.Keywords: casts, fracture, treatment modality, patient compliance
Procedia PDF Downloads 3131525 The Effect of Shredded Polyurethane Foams on Shear Modulus and Damping Ratio of Sand
Authors: Javad Saeidaskari, Nader Khalafian
Abstract:
The undesirable impact of vibrations induced by road and railway traffic is an important concern in modern world. These vibrations are transmitted through soil and cause disturbances to the residence area and high-tech production facilities alongside the train/traffic lines. In this paper for the first time a new method of soil improvement with vibration absorber material, is used to increase the damping factor, in other word, to reduce the ability of wave transitions in sand. In this study standard Firoozkooh No. 161 sand is used as the host sand. The semi rigid polyurethane (PU) foam which used in this research is one of the common materials for vibration absorbing purposes. Series of cyclic triaxial tests were conducted on remolded samples with identical relative density of 70% of maximum dry density for different volume percentage of shredded PU foam. The frequency of tests was 0.1 Htz with shear strain of 0.37% and 0.75% and also the effective confining pressures during the tests were 100 kPa and 350 kPa. In order to find out the best soil-PU foam mixture, different volume percent of PU foam varying from 10% to 30% were examined. The results show that adding PU foam up to 20%, as its optimum content, causes notable enhancement in damping ratio for both shear strains of 0.37% (52.19% and 69% increase for effective confining pressures of 100 kPa and 350 kPa, respectively) and 0.75% (59.56% and 59.11% increase for effective confining pressures of 100 kPa and 350 kPa, respectively). The results related to shear modulus present significant reduction for both shear strains of 0.37% (82.22% and 56.03% decrease for effective confining pressures of 100 kPa and 350 kPa, respectively) and 0.75% (89.32% and 39.9% decrease for effective confining pressures of 100 kPa and 350 kPa, respectively). In conclusion, shredded PU foams effectively affect the dynamic properties of sand and act as vibration absorber in soil.Keywords: polyurethane foam, sand, damping ratio, shear modulus
Procedia PDF Downloads 4481524 Characterization of A390 Aluminum Alloy Produced at Different Slow Shot Speeds Using Assisted Vacuum High-Pressure Die Casting
Authors: Wenbo Yu, Zihao Yuan, Zhipeng Guo, Shoumei Xiong
Abstract:
Under different slow shot speeds in vacuum assisted high pressure die casting (VHPDC) process, plate-shaped specimens of hypereutectic A390 aluminum alloy were produced. According to the results, the vacuum pressure inside the die cavity increased linearly with the increasing slow shot speed at the beginning of mold filling. Meanwhile, it was found that the tensile properties of vacuum die castings were deteriorated by the porosity content. In addition, the average primary Si size varies between 14µm to 23µm, which has a binary functional relationship with the slow shot speeds. Due to the vacuum effect, the castings were treated by T6 heat treatment. After heat treatment, microstructural morphologies revealed that needle-shaped and thin-flaked eutectic Si particles became rounded while Al2Cu dissolved into α-Al matrix. For the as-received sample in-situ tensile test, microcracks firstly initiate at the primary Si particles and propagated along Al matrix with a transgranular fracture mode. In contrast, for the treated sample, the crack initiated at the Al2Cu particles and propagated along Al grain boundaries with an intergranular fracture mode. In-situ three bending test, microcracks firstly formed in the primary Si particles for both samples. Subsequently, the cracks between primary Si linked along Al grain boundaries in as received sample. In contrast, the cracks in primary Si linked through the solid lines in Al matrix. Furthermore, the fractography revealed that the fracture mechanism has evolved from brittle transgranular fracture to a fracture mode with many dimples after heat treatment.Keywords: A390 aluminum, vacuum assisted high pressure die casting, heat treatment, mechanical properties
Procedia PDF Downloads 2461523 Material Flow Modeling in Friction Stir Welding of AA6061-T6 Alloy and Study of the Effect of Process Parameters
Authors: B. SahaRoy, T. Medhi, S. C. Saha
Abstract:
To understand the friction stir welding process, it is very important to know the nature of the material flow in and around the tool. The process is a combination of both thermal as well as mechanical work i.e it is a coupled thermo-mechanical process. Numerical simulations are very much essential in order to obtain a complete knowledge of the process as well as the physics underlying it. In the present work a model based approach is adopted in order to study material flow. A thermo-mechanical based CFD model is developed using a Finite Element package, Comsol Multiphysics. The fluid flow analysis is done. The model simultaneously predicts shear strain fields, shear strain rates and shear stress over the entire workpiece for the given conditions. The flow fields generated by the streamline plot give an idea of the material flow. The variation of dynamic viscosity, velocity field and shear strain fields with various welding parameters is studied. Finally the result obtained from the above mentioned conditions is discussed elaborately and concluded.Keywords: AA6061-T6, CFD modelling, friction stir welding, material flow
Procedia PDF Downloads 5201522 Modeling the Time-Dependent Rheological Behavior of Clays Used in Fabrication of Ceramic
Authors: Larbi Hammadi, N. Boudjenane, N. Benhallou, R. Houjedje, R. Reffis, M. Belhadri
Abstract:
Many of clays exhibited the thixotropic behavior in which, the apparent viscosity of material decreases with time of shearing at constant shear rate. The structural kinetic model (SKM) was used to characterize the thixotropic behavior of two different kinds of clays used in fabrication of ceramic. Clays selected for analysis represent the fluid and semisolid clays materials. The SKM postulates that the change in the rheological behavior is associated with shear-induced breakdown of the internal structure of the clays. This model for the structure decay with time at constant shear rate assumes nth order kinetics for the decay of the material structure with a rate constant.Keywords: ceramic, clays, structural kinetic model, thixotropy, viscosity
Procedia PDF Downloads 4051521 Investigation of the Mechanical Performance of Hot Mix Asphalt Modified with Crushed Waste Glass
Authors: Ayman Othman, Tallat Ali
Abstract:
The successive increase of generated waste materials like glass has led to many environmental problems. Using crushed waste glass in hot mix asphalt paving has been though as an alternative to landfill disposal and recycling. This paper discusses the possibility of utilizing crushed waste glass, as a part of fine aggregate in hot mix asphalt in Egypt. This is done through evaluation of the mechanical properties of asphalt concrete mixtures mixed with waste glass and determining the appropriate glass content that can be adapted in asphalt pavement. Four asphalt concrete mixtures with various glass contents, namely; 0%, 4%, 8% and 12% by weight of total mixture were studied. Evaluation of the mechanical properties includes performing Marshall stability, indirect tensile strength, fracture energy and unconfined compressive strength tests. Laboratory testing had revealed the enhancement in both compressive strength and Marshall stability test parameters when the crushed glass was added to asphalt concrete mixtures. This enhancement was accompanied with a very slight reduction in both indirect tensile strength and fracture energy when glass content up to 8% was used. Adding more than 8% of glass causes a sharp reduction in both indirect tensile strength and fracture energy. Testing results had also shown a reduction in the optimum asphalt content when the waste glass was used. Measurements of the heat loss rate of asphalt concrete mixtures mixed with glass revealed their ability to hold heat longer than conventional mixtures. This can have useful application in asphalt paving during cold whether or when a long period of post-mix transportation is needed.Keywords: waste glass, hot mix asphalt, mechanical performance, indirect tensile strength, fracture energy, compressive strength
Procedia PDF Downloads 3081520 Investigating the Shear Behaviour of Fouled Ballast Using Discrete Element Modelling
Authors: Ngoc Trung Ngo, Buddhima Indraratna, Cholachat Rujikiathmakjornr
Abstract:
For several hundred years, the design of railway tracks has practically remained unchanged. Traditionally, rail tracks are placed on a ballast layer due to several reasons, including economy, rapid drainage, and high load bearing capacity. The primary function of ballast is to distributing dynamic track loads to sub-ballast and subgrade layers, while also providing lateral resistance and allowing for rapid drainage. Upon repeated trainloads, the ballast becomes fouled due to ballast degradation and the intrusion of fines which adversely affects the strength and deformation behaviour of ballast. This paper presents the use of three-dimensional discrete element method (DEM) in studying the shear behaviour of the fouled ballast subjected to direct shear loading. Irregularly shaped particles of ballast were modelled by grouping many spherical balls together in appropriate sizes to simulate representative ballast aggregates. Fouled ballast was modelled by injecting a specified number of miniature spherical particles into the void spaces. The DEM simulation highlights that the peak shear stress of the ballast assembly decreases and the dilation of fouled ballast increases with an increase level of fouling. Additionally, the distributions of contact force chain and particle displacement vectors were captured during shearing progress, explaining the formation of shear band and the evolutions of volumetric change of fouled ballast.Keywords: railway ballast, coal fouling, discrete element modelling, discrete element method
Procedia PDF Downloads 4481519 Shear Stress and Oxygen Concentration Manipulation in a Micropillars Microfluidic Bioreactor
Authors: Deybith Venegas-Rojas, Jens Budde, Dominik Nörz, Manfred Jücker, Hoc Khiem Trieu
Abstract:
Microfluidics is a promising approach for biomedicine cell culture experiments with microfluidic bioreactors (MBR), which can provide high precision in volume and time control over mass transport and microenvironments in small-scale studies. Nevertheless, shear stress and oxygen concentration are important factors that affect the microenvironment and then the cell culture. It is presented a novel MBR design in which differences in geometry, shear stress, and oxygen concentration were studied and optimized for cell culture. The aim is to mimic the in vivo condition with biocompatible materials and continuous perfusion of nutrients, a healthy shear stress, and oxygen concentration. The design consists of a capture system of PDMS micropillars which keep cells in place, so it is not necessary any hydrogel or complicated scaffolds for cells immobilization. Besides, the design allows continuous supply with nutrients or even any other chemical for cell experimentation. Finite element method simulations were used to study and optimize the effect of parameters such as flow rate, shear stress, oxygen concentration, micropillars shape, and dimensions. The micropillars device was fabricated with microsystem technology such as soft-lithography, deep reactive ion etching, self-assembled monolayer, replica molding, and oxygen plasma bonding. Eight different geometries were fabricated and tested, with different flow rates according to the simulations. During the experiments, it was observed the effect of micropillars size, shape, and configuration for stability and shear stress control when increasing flow rate. The device was tested with several successful HepG2 3D cell cultures. With this MBR, the aforementioned parameters can be controlled in order to keep a healthy microenvironment according to specific necessities of different cell types, with no need of hydrogels and can be used for a wide range of experiments with cells.Keywords: cell culture, micro-bioreactor, microfluidics, micropillars, oxygen concentration, shear stress
Procedia PDF Downloads 2871518 Investigation of the Effect of Fine-Grained and Its Plastic Properties on Liquefaction Resistance of Sand
Authors: S. A. Naeini, M. Mortezaee
Abstract:
The purpose of this paper is to investigate the effect of fine grain content in soil and its plastic properties on soil liquefaction potential. For this purpose, the conditions for considering the fine grains effect and percentage of plastic fine on the liquefaction resistance of saturated sand presented by researchers has been investigated. Then, some comprehensive results of all the issues raised by some researchers are stated. From these investigations it was observed that by increasing the percentage of cohesive fine grains in the sandy soil (up to 20%), the maximum shear strength decreases and by adding more fine- grained percentage, the maximum shear strength of the resulting soil increases but never reaches the amount of clean sand.Keywords: fine-grained, liquefaction, plasticity, shear strength, sand
Procedia PDF Downloads 1291517 Determination of Dynamic Soil Properties Using Multichannel Analysis of Surface Wave (MASW) Techniques in Earth-Filled Dam
Authors: Noppadon Sintuboon, Benjamas Sawatdipong, Anchalee Kongsuk
Abstract:
This study was conducted to investigate the engineering parameters: compressional wave: Vp, shear wave: Vs, and density: ρ related to the dynamically geotechnical properties of soils compaction in the core of earth-filled dam located in northern part of Thailand by using multichannel analysis of surface wave (MASW) techniques. The Vp, Vs, and ρ from MASW were 1,624 - 1,649 m/s, 301-323 m/s, and 1,829 kg/m3, respectively. Those parameters were calculated to Poison’s ratio: ν (0.48), shear modulus: G (1.66 x 108 - 1.92 x 108 kg/m2), Vp/Vs ratio (5.10 – 5.39) and Standard Penetration Test (SPT) showing the dynamic characteristics of soil deformation and stress resulting from dynamic loads. The results of this study will be useful in primary evaluating the current condition and foundation of the dam and can be compared to the data from the laboratory in the future.Keywords: earth-filled dam, MASW, dynamic elastic constant, shear wave
Procedia PDF Downloads 2941516 Shear Enhanced Flotation Technology Applied to Treat Winery Wastewater
Authors: Bernard Bladergroen, David Vlotman, Bradley Cerff
Abstract:
The agricultural sector is one which requires and consumes large amounts of water globally. Commercial wine production, in particular, uses extensive volumes of fresh water and generates significant volumes of wastewater through various processes. The wastewater produced by wineries typically exhibits elevated levels of chemical oxygen demand (COD), total suspended solids (TSS), total dissolved solids (TDS), acidic pH and varying salinity and nutrient contents. This study investigates the performance of a shear-enhanced flotation separation (SEFS) pilot plant as a primary treatment stage during winery wastewater processing by modifying a conventional Dissolved Air Flotation (DAF) system. The SEFS pilot plant achieved a 99% reduction in both turbidity and TSS in comparison to the 97% achieved with the conventional DAF system. The COD was reduced by 66% and 51% for the SEFS and DAF systems, respectively. SEFS shows the advantages of hydrodynamic shear to enhance the coagulation and subsequent flocculation processes with a significant reduction of coagulant and flocculant (36% and 31%, respectively).Keywords: shear enhanced flotation, suspended solids, primary wastewater treatment, zeta potential
Procedia PDF Downloads 601515 Characterization of Shear and Extensional Rheology of Fibre Suspensions Prior to Atomization
Authors: Siti N. M. Rozali, A. H. J. Paterson, J. P. Hindmarsh
Abstract:
Spray drying of fruit juices from liquid to powder is desirable as the powders are easier to handle, especially for storage and transportation. In this project, pomace fibres will be used as a drying aid during spray drying, replacing the commonly used maltodextrins. The main attraction of this drying aid is that the pomace fibres are originally derived from the fruit itself. However, the addition of micro-sized fibres to fruit juices is expected to affect the rheology and subsequent atomization behaviour during the spray drying process. This study focuses on the determination and characterization of the rheology of juice-fibre suspensions specifically inside a spray dryer nozzle. Results show that the juice-fibre suspensions exhibit shear thinning behaviour with a significant extensional viscosity. The shear and extensional viscosities depend on several factors which include fibre fraction, shape, size and aspect ratio. A commercial capillary rheometer is used to characterize the shear behaviour while a portable extensional rheometer has been designed and built to study the extensional behaviour. Methods and equipment will be presented along with the rheology results. Rheology or behaviour of the juice-fibre suspensions provides an insight into the limitations that will be faced during atomization, and in the future, this finding will assist in choosing the best nozzle design that can overcome the limitations introduced by the fibre particles thus resulting in successful spray drying of juice-fibre suspensions.Keywords: extensional rheology, fibre suspensions, portable extensional rheometer, shear rheology
Procedia PDF Downloads 2031514 Experimental Investigation on Shear Behaviour of Fibre Reinforced Concrete Beams Using Steel Fibres
Authors: G. Beulah Gnana Ananthi, A. Jaffer Sathick, M. Abirami
Abstract:
Fibre reinforced concrete (FRC) has been widely used in industrial pavements and non-structural elements such as pipes, culverts, tunnels, and precast elements. The strengthening effect of fibres in the concrete matrix is achieved primarily due to the bridging effect of fibres at the crack interfaces. The workability of the concrete was reduced on addition of high percentages of steel fibres. The optimum percentage of addition of steel fibres varies with its aspect ratio. For this study, 1% addition of steel has resulted to be the optimum percentage for both Hooked and Crimped Steel Fibres and was added to the beam specimens. The fibres restrain efficiently the cracks and take up residual stresses beyond the cracking. In this sense, diagonal cracks are effectively stitched up by fibres crossing it. The failure of beams within the shear failure range changed from shear to flexure in the presence of sufficient steel fibre quantity. The shear strength is increased with the addition of steel fibres and had exceeded the enhancement obtained with the transverse reinforcement. However, such increase is not directly in proportion with the quantity of fibres used. Considering all the clarification made in the present experimental investigation, it is concluded that 1% of crimped steel fibres with an aspect ratio of 50 is the best type of steel fibres for replacement of transverse stirrups in high strength concrete beams when compared to the steel fibres with hooked ends.Keywords: fibre reinforced concrete, steel fibre, shear strength, crack pattern
Procedia PDF Downloads 1431513 Ductility of Slab-Interior Column Connections Transferring Shear and Moment
Authors: Omar M. Ben-Sasi
Abstract:
Ductility of slab-column connections of flat slab structures is a desirable property that should be considered when designing such connections which are susceptible to punching failure around their columns. Tests to failure on six half-scale specimens were conducted for slab-interior column connections transferring shear force and unbalanced moment. The influences on connection ductility of four parameters; namely, the moment to shear force ratio, the ratio of column side length to slab effective depth, the aspect ratio of the column cross section, and the presence of four square openings located next to column corners were investigated. The study revealed marked effects of these parameters on connection ductility. Increasing the first and second parameters, were found to be in favor of increasing connection ductility, while the third and fourth parameters were found to have negative effects on the connection ductility. These findings should, hopefully, help in designing interior connections of flat slab structures.Keywords: ductility, flat slab, failure, shear force, moment, unbalanced moment, punching failure, connection, interior-column connection
Procedia PDF Downloads 3981512 Mechanical Properties of Hybrid Ti6Al4V Part with Wrought Alloy to Powder-Bed Additive Manufactured Interface
Authors: Amnon Shirizly, Ohad Dolev
Abstract:
In recent years, the implementation and use of Metal Additive Manufacturing (AM) parts increase. As a result, the demand for bigger parts rises along with the desire to reduce it’s the production cost. Generally, in powder bed Additive Manufacturing technology the part size is limited by the machine build volume. In order to overcome this limitation, the parts can be built in one or more machine operations and mechanically joint or weld them together. An alternative option could be a production of wrought part and built on it the AM structure (mainly to reduce costs). In both cases, the mechanical properties of the interface have to be defined and recognized. In the current study, the authors introduce guidelines on how to examine the interface between wrought alloy and powder-bed AM. The mechanical and metallurgical properties of the Ti6Al4V materials (wrought alloy and powder-bed AM) and their hybrid interface were examined. The mechanical properties gain from tensile test bars in the built direction and fracture toughness samples in various orientations. The hybrid specimens were built onto a wrought Ti6Al4V start-plate. The standard fracture toughness (CT25 samples) and hybrid tensile specimens' were heat treated and milled as a post process to final diminutions. In this Study, the mechanical tensile tests and fracture toughness properties supported by metallurgical observation will be introduced and discussed. It will show that the hybrid approach of utilizing powder bed AM onto wrought material expanding the current limitation of the future manufacturing technology.Keywords: additive manufacturing, hybrid, fracture-toughness, powder bed
Procedia PDF Downloads 1041511 The Role of the Stud’s Configuration in the Structural Response of Composite Bridges
Authors: Mohammad Mahdi Mohammadi Dehnavi, Alessandra De Angelis, Maria Rosaria Pecce
Abstract:
This paper deals with the role of studs in the structural response of steel-concrete composite beams. A tri-linear slip-shear strength law is assumed according to literature and codes provisions for developing a finite element (FE) model of a case study of a composite deck. The variation of the strength and ductility of the connection is implemented in the numerical model carrying out nonlinear analyses. The results confirm the utility of the model to evaluate the importance of the studs capacity, ductility and strength on the global response (ductility and strength) of the structures but also to analyze the trend of slip and shear at interface along the beams.Keywords: stud connectors, finite element method, slip, shear load, steel-concrete composite bridge
Procedia PDF Downloads 1511510 Seismic Evaluation of Multi-Plastic Hinge Design Approach on RC Shear Wall-Moment Frame Systems against Near-Field Earthquakes
Authors: Mohsen Tehranizadeh, Mahboobe Forghani
Abstract:
The impact of higher modes on the seismic response of dual structural system consist of concrete moment-resisting frame and with RC shear walls is investigated against near-field earthquakes in this paper. a 20 stories reinforced concrete shear wall-special moment frame structure is designed in accordance with ASCE7 requirements and The nonlinear model of the structure was performed on OpenSees platform. Nonlinear time history dynamic analysis with 3 near-field records are performed on them. In order to further understand the structural collapse behavior in the near field, the response of the structure at the moment of collapse especially the formation of plastic hinges is explored. The results revealed that the amplification of moment at top of the wall due to higher modes, the plastic hinge can form in the upper part of wall, even when designed and detailed for plastic hinging at the base only (according to ACI code).on the other hand, shear forces in excess of capacity design values can develop due to the contribution of the higher modes of vibration to dynamic response due to the near field can cause brittle shear or sliding failure modes. The past investigation on shear walls clearly shows the dual-hinge design concept is effective at reducing the effects of the second mode of response. An advantage of the concept is that, when combined with capacity design, it can result in relaxation of special reinforcing detailing in large portions of the wall. In this study, to investigate the implications of multi-design approach, 4 models with varies arrangement of hinge plastics at the base and height of the shear wall are considered. results base on time history analysis showed that the dual or multi plastic hinges approach can be useful in order to control the high moment and shear demand of higher mode effect.Keywords: higher mode effect, Near-field earthquake, nonlinear time history analysis, multi plastic hinge design
Procedia PDF Downloads 429