Search results for: gripping
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15

Search results for: gripping

15 An Investigation of the Effects of Gripping Systems in Geosynthetic Shear Testing

Authors: Charles Sikwanda

Abstract:

The use of geosynthetic materials in geotechnical engineering projects has rapidly increased over the past several years. These materials have resulted in improved performance and cost reduction of geotechnical structures as compared to the use of conventional materials. However, working with geosynthetics requires knowledge of interface parameters for design. These parameters are typically determined by the large direct shear device in accordance with ASTM-D5321 and ASTM-D6243 standards. Although these laboratory tests are standardized, the quality of the results can be largely affected by several factors that include; the shearing rate, applied normal stress, gripping mechanism, and type of the geosynthetic specimens tested. Amongst these factors, poor surface gripping of a specimen is the major source of the discrepancy. If the specimen is inadequately secured to the shearing blocks, it experiences progressive failure and shear strength that deviates from the true field performance of the tested material. This leads to inaccurate, unsafe, and cost ineffective designs of projects. Currently, the ASTM-D5321 and ASTM-D6243 standards do not provide a standardized gripping system for geosynthetic shear strength testing. Over the years, researchers have come up with different gripping systems that can be used such as; glue, metal textured surface, sandblasting, and sandpaper. However, these gripping systems are regularly not adequate to sufficiently secure the tested specimens to the shearing device. This has led to large variability in test results and difficulties in results interpretation. Therefore, this study was aimed at determining the effects of gripping systems in geosynthetic interface shear strength testing using a 300 x 300 mm direct shear box. The results of the research will contribute to easy data interpretation and increase result accuracy and reproducibility.

Keywords: geosynthetics, shear strength parameters, gripping systems, gripping

Procedia PDF Downloads 170
14 Towards the Design of Gripper Independent of Substrate Surface Structures

Authors: Annika Schmidt, Ausama Hadi Ahmed, Carlo Menon

Abstract:

End effectors for robotic systems are becoming more and more advanced, resulting in a growing variety of gripping tasks. However, most grippers are application specific. This paper presents a gripper that interacts with an object’s surface rather than being dependent on a defined shape or size. For this purpose, ingressive and astrictive features are combined to achieve the desired gripping capabilities. The developed prototype is tested on a variety of surfaces with different hardness and roughness properties. The results show that the gripping mechanism works on all of the tested surfaces. The influence of the material properties on the amount of the supported load is also studied and the efficiency is discussed.

Keywords: claw, dry adhesion, insects, material properties

Procedia PDF Downloads 324
13 Characterization of Surface Suction Grippers for Continuous-Discontinuous Fiber Reinforced Semi-Finished Parts of an Automated Handling and Preforming Operation

Authors: Jürgen Fleischer, Woramon Pangboonyanon, Dominic Lesage

Abstract:

Non-metallic lightweight materials such as fiber reinforced plastics (FRP) become very significant at present. Prepregs e.g. SMC and unidirectional tape (UD-tape) are one of raw materials used to produce FRP. This study concerns with the manufacturing steps of handling and preforming of this UD-SMC and focuses on the investigation of gripper characteristics regarding gripping forces in normal and lateral direction, in order to identify suitable operating pressures for a secure gripping operation. A reliable handling and preforming operation results in a higher adding value of the overall process chain. As a result, the suitable operating pressures depending on travelling direction for each material type could be shown. Moreover, system boundary conditions regarding allowable pulling force in normal and lateral directions during preforming could be measured.

Keywords: continuous-discontinuous fiber reinforced plastics, UD-SMC-prepreg, handling, preforming, prepregs, sheet moulding compounds, surface suction gripper

Procedia PDF Downloads 190
12 Strength Translation from Spun Yarns to Woven Fabrics

Authors: Anindya Ghosh

Abstract:

Structural parameters, yarn to yarn friction, strength of ring, rotor, air-jet and open-end friction spun yarns and the strength of fabrics made from these yarns are measured. The ratio of fabric strip strength per yarn and corresponding single yarn strength is considered as a measure of quantifying the fabric assistance. Mechanism of yarn failure inside the fabric is different as that of single yarn and the former exhibit more fibre rupture. Fabrics made from weaker yarns have higher ratio of strip strength to single yarn strength than that made from stronger yarns due to larger increase in the percentage of rupture fibres in the former. The fabric assistance also depends to some extent on the degree of gripping of the yarns that is influenced by the yarn to yarn friction, extent of yarn flattening and yarn diameter.

Keywords: fabric assistance, fabric strength, yarn diameter, yarn friction, yarn strength

Procedia PDF Downloads 217
11 Analysis of Bending Abilities of Soft Pneumatic Actuator

Authors: Jeevan Balaji, Shreyas Chigurupati

Abstract:

Pneumatic gripper use compressed air to operate its actuators (fingers). Unlike the conventional metallic gripper, a soft pneumatic actuator (SPA) can be used for relocating fragile objects. An added advantage for this gripper is that the pressure exerted on the object can be varied by changing the dimensions of the air chambers and also by the number of chambers. SPAs have many benefits over conventional robots in the military, medical fields because of their compliance nature and are easily produced using the 3D printing process. In the paper, SPA is proposed to perform pick and place tasks. A design was developed for the actuators, which is convenient for gripping any fragile objects. Thermoplastic polyurethane (TPU) is used for 3D printing the actuators. The actuator model behaves differently as the parameters such as its chamber height, number of chambers change. A detailed FEM model of the actuator is drafted for different pressure inputs using ABAQUS CAE software, and a safe loading pressure range is found.

Keywords: soft robotics, pneumatic actuator, design and modelling, bending analysis

Procedia PDF Downloads 123
10 Analysis of a Single Motor Finger Mechanism for a Prosthetic Hand

Authors: Shaukat Ali, Kanber Sedef, Mustafa Yilmaz

Abstract:

This work analyzes a finger mechanism for a prosthetic hand that will help in improving the living standards of people who have lost their hands for a variety of reasons. The finger mechanism is single degree of freedom and hence has advantages such as compact size, reduced mass and less energy consumption. The proposed finger mechanism is a six bar linkage actuated by a single motor. The kinematic, static and dynamic analyses have been done by using the conventional methods of mechanism analysis. The kinematic results present the motion of the proposed finger mechanism and location of the fingertip. The static and dynamic analyses provide the useful information about the gripping force at the fingertip for various configurations and the selection of motor that will move the finger over its range of configuration. This single motor finger mechanism is simple and resembles the human finger’s motion suitable for grasping operation. This study can be used in the optimization of geometrical parameters of the proposed mechanism to obtain the desired configurations with minimum torque and enhanced griping.

Keywords: dynamics, finger mechanism, grasping, kinematics

Procedia PDF Downloads 323
9 Effect of Hand Grip Strength on Shoulder Muscles Activity in Patients with Subacromial Impingement

Authors: Mohamed E. Abdelrahamn, Mahmoud Aly Hassan, Mohamed Sarhan

Abstract:

Subacromial impingement syndrome (SIS) is a common shoulder disorder. Patients often complain from a decrease in electromyography (EMG) activity of the rotator cuff muscles especially the supraspinatus muscle during glenohumeral elevation. Objective: The purpose of the study is to assess the effect of applying 50% of maximum voluntary contraction of hand grip strength on the EMG activity of the shoulder muscles in patients with SIS. Methods: Thirty male and female patients participated in this study. Their ages ranged from 25 to 40 years. EMG activity of supraspinatus muscle and middle deltoid muscle was assessed without and with applying 50% of maximum voluntary contraction (MVC). Results: A significant difference was found for both supraspinatus and middle deltoid muscles, indicating that the gripping resulted in increasing muscle activity. Conclusion: Applying 50% MVC of hand grip strength could increase the supraspinatus and middle deltoid muscles activity in patients of SIS. This might be useful in the development and monitoring of shoulder rehabilitation strategies.

Keywords: electromyography, supraspinatus muscle, deltoid muscle, subacromial impingement syndrome

Procedia PDF Downloads 272
8 Deep Learning Application for Object Image Recognition and Robot Automatic Grasping

Authors: Shiuh-Jer Huang, Chen-Zon Yan, C. K. Huang, Chun-Chien Ting

Abstract:

Since the vision system application in industrial environment for autonomous purposes is required intensely, the image recognition technique becomes an important research topic. Here, deep learning algorithm is employed in image system to recognize the industrial object and integrate with a 7A6 Series Manipulator for object automatic gripping task. PC and Graphic Processing Unit (GPU) are chosen to construct the 3D Vision Recognition System. Depth Camera (Intel RealSense SR300) is employed to extract the image for object recognition and coordinate derivation. The YOLOv2 scheme is adopted in Convolution neural network (CNN) structure for object classification and center point prediction. Additionally, image processing strategy is used to find the object contour for calculating the object orientation angle. Then, the specified object location and orientation information are sent to robotic controller. Finally, a six-axis manipulator can grasp the specific object in a random environment based on the user command and the extracted image information. The experimental results show that YOLOv2 has been successfully employed to detect the object location and category with confidence near 0.9 and 3D position error less than 0.4 mm. It is useful for future intelligent robotic application in industrial 4.0 environment.

Keywords: deep learning, image processing, convolution neural network, YOLOv2, 7A6 series manipulator

Procedia PDF Downloads 210
7 Impact of Economic Crisis on Secondary Education in Anambra State

Authors: Stella Nkechi Ezeaku, Ifunanya Nkechi Ohamobi

Abstract:

This study investigated the impact of economic crisis on education in Anambra state. The population of the study comprised of all principals and teachers in Anambra state numbering 5,887 (253 principles and 5,634 teachers). To guide the study, three research questions and one hypothesis were formulated correlational design was adopted. Stratified random sampling technique was used to select 200 principals and 300 teachers as respondents for the study. A researcher-developed instrument tagged Impact of Economic Crisis on Education questionnaire (IECEQ) was used to collect data needed for the study. The instrument was validated by experts in measurement and evaluation. The reliability of the instrument was established using randomly selected members of the population who did not take part in the study. The data obtained was analyzed using Cronbach alpha technique and reliability co-efficient of .801 and .803 was obtained. The data were analyzed using simple and Multiple Regression Analysis. The formulated hypothesis was tested at .05 level of significance. Findings revealed that: there is a significant relationship between economic crisis and realization of goals of secondary education. The result also shows that economic crisis affect students' academic performance, teachers' morale and productivity and principals' administrative capability. This study therefore concludes that certain strategies must be devised to minimize the impact of economic crisis on secondary education. It is recommended that all stakeholders to education should be more resourceful and self-sufficient in order to cushion the effects of economic crisis currently gripping most world economies Nigeria inclusive.

Keywords: impact, economic, crisis, education

Procedia PDF Downloads 202
6 Design Study on a Contactless Material Feeding Device for Electro Conductive Workpieces

Authors: Oliver Commichau, Richard Krimm, Bernd-Arno Behrens

Abstract:

A growing demand on the production rate of modern presses leads to higher stroke rates. Commonly used material feeding devices for presses like grippers and roll-feeding systems can only achieve high stroke rates along with high gripper forces, to avoid stick-slip. These forces are limited by the sensibility of the surfaces of the workpieces. Stick-slip leads to scratches on the surface and false positioning of the workpiece. In this paper, a new contactless feeding device is presented, which develops higher feeding force without damaging the surface of the workpiece through gripping forces. It is based on the principle of the linear induction motor. A primary part creates a magnetic field and induces eddy currents in the electrically conductive material. A Lorentz-Force applies to the workpiece in feeding direction as a mutual reaction between the eddy-currents and the magnetic induction. In this study, the FEA model of this approach is shown. The calculation of this model was used to identify the influence of various design parameters on the performance of the feeder and thus showing the promising capabilities and limits of this technology. In order to validate the study, a prototype of the feeding device has been built. An experimental setup was used to measure pulling forces and placement accuracy of the experimental feeder in order to give an outlook of a potential industrial application of this approach.

Keywords: conductive material, contactless feeding, linear induction, Lorentz-Force

Procedia PDF Downloads 148
5 The Power of Words: The Use of Language in Ethan Frome

Authors: Ritu Sharma

Abstract:

In order to be objective, critics must examine the dynamic relationships between the author, the reader, the text, and the outside world. However, it is also crucial to recognize that because the language was created by God, meaning is ingrained in it. Meaning is located in and discovered through literature rather than being limited to the author, reader, text, or the outside world. The link between the author, the reader, and the text is crucial because literature unites an author and a reader through the use of language. Literature is a potent kind of communication, and Ethan Frome's audience is forever changed as a result of the book's language and the language its characters use. The narrative of Ethan Frome and his wife Zeena is presented in Ethan Frome. Ethan's story is told throughout the course of the book, revealed through the eyes of the narrator, an outsider passing through Starkfield, as well as through the insight that the narrator gains from the townspeople and his stay on the Frome farm. The story is set in the rural New England community of Starkfield, Massachusetts. The weather provides the ideal setting for Ethan and the narrator to get to know one another as the narrator gets preoccupied with unraveling the narrative that underlies Ethan's physical anomalies. In addition to telling a gripping tale and capturing human nature as it is, Ethan Frome uses its storyline to achieve something more significant. The book by Edith Wharton supports language. Zeena's deliberate and convincing language challenges relativity and meaninglessness. Ethan and Mattie's effort to effectively use words reflects the complexity of language, and their battle illustrates the influence that language may have if and when it is used. Ethan Frome defends the written word, the foundation upon which it is constructed, as a literary work. Communication is based on language, and as the characters respond to and get involved in disputes throughout the book, Zeena, Ethan, and Mattie, each reflects particular theories of communication that help define their uses of communication within the broader context of language.

Keywords: dynamic relationships, potent, communication, complexity

Procedia PDF Downloads 54
4 Body Types of Softball Players in the 39th National Games of Thailand

Authors: Nopadol Nimsuwan, Sumet Prom-in

Abstract:

The purpose of this study was to investigate the body types, size, and body compositions of softball players in the 39th National Games of Thailand. The population of this study was 352 softball players who participated in the 39th National Games of Thailand from which a sample size of 291 was determined using the Taro Yamane formula and selection is made with stratified sampling method. The data collected were weight, height, arm length, leg length, chest circumference, mid-upper arm circumference, calf circumference, subcutaneous fat in the upper arm area, the scapula bone area, above the pelvis area, and mid-calf area. Keys and Brozek formula was used to calculate the fat quantity, Kitagawa formula to calculate the muscle quantity, and Heath and Carter method was used to determine the values of body dimensions. The results of the study can be concluded as follows. The average body dimensions of the male softball players were the endo-mesomorph body type while the average body dimensions of female softball players were the meso-endomorph body type. When considered according to the softball positions, it was found that the male softball players in every position had the endo-mesomorph body type while the female softball players in every position had the meso-endomorph body type except for the center fielder that had the endo-ectomorph body type. The endo-mesomorph body type is suitable for male softball players, and the meso-endomorph body type is suitable for female softball players because these body types are suitable for the five basic softball skills which are: gripping, throwing, catching, hitting, and base running. Thus, people related to selecting softball players to play in sports competitions of different levels should consider factors in terms of body type, size, and body components of the players.

Keywords: body types, softball players, national games of Thailand, social sustainability

Procedia PDF Downloads 446
3 Designing a Crowbar for Women: An Ergonomic Approach

Authors: Prakash Chandra Dhara, Rupa Maity, Mousumi Chatterjee

Abstract:

Crowbars are used for the gardening purpose. The same tools are used by both male and female gardeners. The existing crowbars are suitable for the female gardeners. The present study was aimed to design a crowbar, which was required to use by the women for the gardening purpose, from the viewpoints of ergonomics. The study was carried out on 50 women in different villages of Howrah districts in West Bengal state. Different models of existing crowbars which were commonly used by the women were collected and evaluated by examining their shape and size. The problems of using existing crowbar were assessed by direct observation during its operation. The musculoskeletal disorder of the subjects for using the crowbar was evaluated by modified Nordic questionnaire method. The anthropometric dimensions, especially hand dimension, of the subjects were taken in standardized static conditions. Considering the problems of using the existing crowbars some design concepts were developed and accordingly three prototypes models (P1, P2, P3) of crowbar were prepared for designing of a modified crowbar for women. Psychophysical analysis of those prototypes was made by paired comparison tests. In the above test subjective preference for different characteristics of the crowbar, e.g., length, weight, length and breadth of the blade, handle diameter, position of the handle, were determined. From the results of the paired comparison test and percentile values of hand dimensions, a modified design of crowbar was suggested. The prototype model P1 possessed more preferred characteristics of the tool than that of other prototype models. In the final design, the weight of the tool and length of the blade was reduced from that of the existing crowbar. Other dimensions were also changed. Two handles were suggested in the redesigned tool for better gripping and operation. The modified crowbar was evaluated by studying the body joint angles, viz., wrist, shoulder and elbow, for assessing the suitability of the design. It was concluded that the redesigned crowbar was suitable for women’s use.

Keywords: body dimension, crowbar, ergo-design, women, hand anthropometry

Procedia PDF Downloads 220
2 Design, Fabrication and Analysis of Molded and Direct 3D-Printed Soft Pneumatic Actuators

Authors: N. Naz, A. D. Domenico, M. N. Huda

Abstract:

Soft Robotics is a rapidly growing multidisciplinary field where robots are fabricated using highly deformable materials motivated by bioinspired designs. The high dexterity and adaptability to the external environments during contact make soft robots ideal for applications such as gripping delicate objects, locomotion, and biomedical devices. The actuation system of soft robots mainly includes fluidic, tendon-driven, and smart material actuation. Among them, Soft Pneumatic Actuator, also known as SPA, remains the most popular choice due to its flexibility, safety, easy implementation, and cost-effectiveness. However, at present, most of the fabrication of SPA is still based on traditional molding and casting techniques where the mold is 3d printed into which silicone rubber is cast and consolidated. This conventional method is time-consuming and involves intensive manual labour with the limitation of repeatability and accuracy in design. Recent advancements in direct 3d printing of different soft materials can significantly reduce the repetitive manual task with an ability to fabricate complex geometries and multicomponent designs in a single manufacturing step. The aim of this research work is to design and analyse the Soft Pneumatic Actuator (SPA) utilizing both conventional casting and modern direct 3d printing technologies. The mold of the SPA for traditional casting is 3d printed using fused deposition modeling (FDM) with the polylactic acid (PLA) thermoplastic wire. Hyperelastic soft materials such as Ecoflex-0030/0050 are cast into the mold and consolidated using a lab oven. The bending behaviour is observed experimentally with different pressures of air compressor to ensure uniform bending without any failure. For direct 3D-printing of SPA fused deposition modeling (FDM) with thermoplastic polyurethane (TPU) and stereolithography (SLA) with an elastic resin are used. The actuator is modeled using the finite element method (FEM) to analyse the nonlinear bending behaviour, stress concentration and strain distribution of different hyperelastic materials after pressurization. FEM analysis is carried out using Ansys Workbench software with a Yeon-2nd order hyperelastic material model. FEM includes long-shape deformation, contact between surfaces, and gravity influences. For mesh generation, quadratic tetrahedron, hybrid, and constant pressure mesh are used. SPA is connected to a baseplate that is in connection with the air compressor. A fixed boundary is applied on the baseplate, and static pressure is applied orthogonally to all surfaces of the internal chambers and channels with a closed continuum model. The simulated results from FEM are compared with the experimental results. The experiments are performed in a laboratory set-up where the developed SPA is connected to a compressed air source with a pressure gauge. A comparison study based on performance analysis is done between FDM and SLA printed SPA with the molded counterparts. Furthermore, the molded and 3d printed SPA has been used to develop a three-finger soft pneumatic gripper and has been tested for handling delicate objects.

Keywords: finite element method, fused deposition modeling, hyperelastic, soft pneumatic actuator

Procedia PDF Downloads 53
1 Development of a Mixed-Reality Hands-Free Teleoperated Robotic Arm for Construction Applications

Authors: Damith Tennakoon, Mojgan Jadidi, Seyedreza Razavialavi

Abstract:

With recent advancements of automation in robotics, from self-driving cars to autonomous 4-legged quadrupeds, one industry that has been stagnant is the construction industry. The methodologies used in a modern-day construction site consist of arduous physical labor and the use of heavy machinery, which has not changed over the past few decades. The dangers of a modern-day construction site affect the health and safety of the workers due to performing tasks such as lifting and moving heavy objects and having to maintain unhealthy posture to complete repetitive tasks such as painting, installing drywall, and laying bricks. Further, training for heavy machinery is costly and requires a lot of time due to their complex control inputs. The main focus of this research is using immersive wearable technology and robotic arms to perform the complex and intricate skills of modern-day construction workers while alleviating the physical labor requirements to perform their day-to-day tasks. The methodology consists of mounting a stereo vision camera, the ZED Mini by Stereolabs, onto the end effector of an industrial grade robotic arm, streaming the video feed into the Virtual Reality (VR) Meta Quest 2 (Quest 2) head-mounted display (HMD). Due to the nature of stereo vision, and the similar field-of-views between the stereo camera and the Quest 2, human-vision can be replicated on the HMD. The main advantage this type of camera provides over a traditional monocular camera is it gives the user wearing the HMD a sense of the depth of the camera scene, specifically, a first-person view of the robotic arm’s end effector. Utilizing the built-in cameras of the Quest 2 HMD, open-source hand-tracking libraries from OpenXR can be implemented to track the user’s hands in real-time. A mixed-reality (XR) Unity application can be developed to localize the operator's physical hand motions with the end-effector of the robotic arm. Implementing gesture controls will enable the user to move the robotic arm and control its end-effector by moving the operator’s arm and providing gesture inputs from a distant location. Given that the end effector of the robotic arm is a gripper tool, gripping and opening the operator’s hand will translate to the gripper of the robot arm grabbing or releasing an object. This human-robot interaction approach provides many benefits within the construction industry. First, the operator’s safety will be increased substantially as they can be away from the site-location while still being able perform complex tasks such as moving heavy objects from place to place or performing repetitive tasks such as painting walls and laying bricks. The immersive interface enables precision robotic arm control and requires minimal training and knowledge of robotic arm manipulation, which lowers the cost for operator training. This human-robot interface can be extended to many applications, such as handling nuclear accident/waste cleanup, underwater repairs, deep space missions, and manufacturing and fabrication within factories. Further, the robotic arm can be mounted onto existing mobile robots to provide access to hazardous environments, including power plants, burning buildings, and high-altitude repair sites.

Keywords: construction automation, human-robot interaction, hand-tracking, mixed reality

Procedia PDF Downloads 32