Search results for: pressure management
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13105

Search results for: pressure management

12775 Evaluation and Fault Classification for Healthcare Robot during Sit-To-Stand Performance through Center of Pressure

Authors: Tianyi Wang, Hieyong Jeong, An Guo, Yuko Ohno

Abstract:

Healthcare robot for assisting sit-to-stand (STS) performance had aroused numerous research interests. To author’s best knowledge, knowledge about how evaluating healthcare robot is still unknown. Robot should be labeled as fault if users feel demanding during STS when they are assisted by robot. In this research, we aim to propose a method to evaluate sit-to-stand assist robot through center of pressure (CoP), then classify different STS performance. Experiments were executed five times with ten healthy subjects under four conditions: two self-performed STSs with chair heights of 62 cm and 43 cm, and two robot-assisted STSs with chair heights of 43 cm and robot end-effect speed of 2 s and 5 s. CoP was measured using a Wii Balance Board (WBB). Bayesian classification was utilized to classify STS performance. The results showed that faults occurred when decreased the chair height and slowed robot assist speed. Proposed method for fault classification showed high probability of classifying fault classes form others. It was concluded that faults for STS assist robot could be detected by inspecting center of pressure and be classified through proposed classification algorithm.

Keywords: center of pressure, fault classification, healthcare robot, sit-to-stand movement

Procedia PDF Downloads 192
12774 Computational Fluid Dynamics Modelling of the Improved Airflow on a Ballistic Grille Using a Porous Medium Approach

Authors: Mapula Mothomogolo, Anria Clarke

Abstract:

Ballistic grilles are adopted on military vehicles to mitigate the vulnerability of the radiator. The design of ballistic grilles needs to address conflicting requirements: shielding the surface area of the radiator from incoming projectile threats yet providing sufficient airflow through the radiator to yield adequate heat rejection. These conflicting requirements result in a unique and challenging design problem. In this paper, the airflow through a ballistic grille using a computational modelling approach is investigated. A comparative study was conducted between a standard grille and a ballistic grille of a military vehicle. The results were used as a benchmark study for optimizing the ballistic grille with pressure drop selected as the parameter for optimization. The grilles were modelled as a porous medium to account for the pressure drop in the porous region. The effects of the porous zone were accounted for in the source term of the momentum Navier Stokes equations. The source term defines the pressure drop in the porous region as a function of the velocity. A pressure drop curve approach was used to determine the Darcy coefficient and inertial resistance coefficients of the source terms. The empirically defined coefficients were used as simulation input for a more accurate pressure drop prediction in the porous region. Additionally, the ballistic grille was optimized using an adjoint solver (shape optimization module in Ansys Fluent) to reduce the pressure drop through the ballistic grille by 30%. Based on the simulation results, the optimized ballistic grille geometry needs to be experimentally tested to validate the numerical simulation data.

Keywords: ballistic grille, darcy coefficient, optimization, porous medium

Procedia PDF Downloads 27
12773 The Importance of the Fluctuation in Blood Sugar and Blood Pressure of Insulin-Dependent Diabetic Patients with Chronic Kidney Disease

Authors: Hitoshi Minakuchi, Izumi Takei, Shu Wakino, Koichi Hayashi, Hiroshi Itoh

Abstract:

Objectives: Among type 2 diabetics, patients with CKD(chronic kidney disease), insulin resistance, impaired glyconeogenesis in kidney and reduced degradation of insulin are recognized, and we observed different fluctuational patterns of blood sugar between CKD patients and non-CKD patients. On the other hand, non-dipper type blood pressure change is the risk of organ damage and mortality. We performed cross-sectional study to elucidate the characteristic of the fluctuation of blood glucose and blood pressure at insulin-treated diabetic patients with chronic kidney disease. Methods: From March 2011 to April 2013, at the Ichikawa General Hospital of Tokyo Dental College, we recruited 20 outpatients. All participants are insulin-treated type 2 diabetes with CKD. We collected serum samples, urine samples for several hormone measurements, and performed CGMS(Continuous glucose measurement system), ABPM (ambulatory blood pressure monitoring), brain computed tomography, carotid artery thickness, ankle brachial index, PWV, CVR-R, and analyzed these data statistically. Results: Among all 20 participants, hypoglycemia was decided blood glucose 70mg/dl by CGMS of 9 participants (45.0%). The event of hypoglycemia was recognized lower eGFR (29.8±6.2ml/min:41.3±8.5ml/min, P<0.05), lower HbA1c (6.44±0.57%:7.53±0.49%), higher PWV (1858±97.3cm/s:1665±109.2cm/s), higher serum glucagon (194.2±34.8pg/ml:117.0±37.1pg/ml), higher free cortisol of urine (53.8±12.8μg/day:34.8±7.1μg/day), and higher metanephrin of urine (0.162±0.031mg/day:0.076±0.029mg/day). Non-dipper type blood pressure change in ABPM was detected 8 among 9 participants with hypoglycemia (88.9%), 4 among 11 participants (36.4%) without hypoglycemia. Multiplex logistic-regression analysis revealed that the event of hypoglycemia is the independent factor of non-dipper type blood pressure change. Conclusions: Among insulin-treated type 2 diabetic patients with CKD, the events of hypoglycemia were frequently detected, and can associate with the organ derangements through the medium of non-dipper type blood pressure change.

Keywords: chronic kidney disease, hypoglycemia, non-dipper type blood pressure change, diabetic patients

Procedia PDF Downloads 408
12772 Modeling and Analysis the Effects of Temperature and Pressure on the Gas-Crossover in Polymer Electrolyte Membrane Electrolyzer

Authors: Abdul Hadi Bin Abdol Rahim, Alhassan Salami Tijani

Abstract:

Hydrogen produced by means of polymer electrolyte membrane electrolyzer (PEME) is one of the most promising methods due to clean and renewable energy source. In the process, some energy loss due to mass transfer through a PEM is caused by diffusion, electro-osmotic drag, and the pressure difference between the cathode channel and anode channel. In PEME water molecules and ionic particles transferred between the electrodes from anode to cathode, Extensive mixing of the hydrogen and oxygen at anode channel due to gases cross-over must be avoided. In recent times the consciousness of safety issue in high pressure PEME where the oxygen mix with hydrogen at anode channel could create, explosive conditions have generated a lot of concern. In this paper, the steady state and simulation analysis of gases crossover in PEME on the temperature and pressure effect are presented. The simulations have been analysis in MATLAB based on the well-known Fick’s Law of molecular diffusion. The simulation results indicated that as temperature increases, there is a significant decrease in operating voltage.

Keywords: diffusion, gases crosover, steady state, Fick’s law

Procedia PDF Downloads 327
12771 Emotional Intelligence: A Panacea in the Management and Marketing of Hospitality and Tourism Good and Services

Authors: M. Azugama, P. Okoro Ugo Chigozie, A. O. Nnamocha

Abstract:

Emotional Intelligence constitutes powerful psychological forces that can strongly influence performance in behaviour, interaction and relationship management. Surprisingly how emotions are interpreted and employed in marketing of hospitality experience have had limited comprehension. Marketing of hospitality experiences have important emotional dimensions which the traditional marketing techniques tend to underplay. Guest and host relationship are challenged by mutual hospitableness obligations; suggesting that the commercial practice of delivering satisfactory guest experience has much to gain from traditional understanding of hospitality. By understanding the emotion-based hospitality transaction between guests and hosts, customers’ experiences can be delivered over and against competitor pressure. In this paper, marketing strategies and tactics in hospitality and tourism are principally concerned with adjusting each of the 6P & T elements (i.e. product, place, price and promotion; and adding people, processes and Time in service contexts), to provide a competitive offer (experience) to customers.

Keywords: Emotional intelligence, hospitality and tourism, relationship management, marketing

Procedia PDF Downloads 468
12770 Hypotensive effect of Cardiospermum halicacabum Linn. in Anesthetized Rats

Authors: Huma Shareef, Ghazala H. Rizwani, Ahsana Dar

Abstract:

In traditional medicine Cardiospermum halicacabum L. (Sapindeaceae) is used against various ailments. In current investigation searching a new remedy that will available easily, non expensive, able to lower hypertension and standardize blood pressure, made us to develop an herbal medicine. Crude ethanol extract of C. halicacabum and its various fractions ethyl acetate and butanol showed a dose-dependent hypotensive effect in anaesthetized rats. The trachea was exposed and freed from connective tissue and incubated by cannula to facilitate spontaneous respiration. The right carotid artery and left jugular vein were cannulated with polyethylene tubing PE-50 for monitoring blood pressure changes via pressure transducer (Gould P23 ID) connected to a Grass model 79D polygraph and for i.v. injection, respectively. Drugs or the plant extracts were administered at a constant volume of 0.5 ml/kg, followed by injection of 0.2 ml of saline that flushed the cannula. Systolic, diastolic and mean arterial blood pressure (MABP) was measured in mm Hg and heart rate in beats/min. Ethanol extract of C. halicacabum showed a significant activity at 50 mg/kg dose. Ethyl acetate fraction (10, 20, 30, 40, and 50 mg/kg) induced dose dependent fall in systolic and diastolic blood pressure, heart rate of rats. At 10-30 mg/kg the hypotensive effect was non significantly reduced by 10 -15%. However, the extract at 40 mg/kg induced significant hypotensive effect calculated as 30.95±3.2% MABP and this effect persists till 50 mg/kg. The higher polar fraction (butanol) of the whole plant failed to produce any significant response against MABP at all the tested doses (10-50 mg/kg). C. halicacabum lowers blood pressure, exerts a dose-dependent hypotensive effect, can be used as hypotensor.

Keywords: cardiospermum halicacabum, calcium channel blocker, hypotensive, various extracts

Procedia PDF Downloads 500
12769 Simulation Model for Optimizing Energy in Supply Chain Management

Authors: Nazli Akhlaghinia, Ali Rajabzadeh Ghatari

Abstract:

In today's world, with increasing environmental awareness, firms are facing severe pressure from various stakeholders, including the government and customers, to reduce their harmful effects on the environment. Over the past few decades, the increasing effects of global warming, climate change, waste, and air pollution have increased the global attention of experts to the issue of the green supply chain and led them to the optimal solution for greenery. Green supply chain management (GSCM) plays an important role in motivating the sustainability of the organization. With increasing environmental concerns, the main objective of the research is to use system thinking methodology and Vensim software for designing a dynamic system model for green supply chain and observing behaviors. Using this methodology, we look for the effects of a green supply chain structure on the behavioral dynamics of output variables. We try to simulate the complexity of GSCM in a period of 30 months and observe the complexity of behaviors of variables including sustainability, providing green products, and reducing energy consumption, and consequently reducing sample pollution.

Keywords: supply chain management, green supply chain management, system dynamics, energy consumption

Procedia PDF Downloads 135
12768 Optimization of Soybean Oil by Modified Supercritical Carbon Dioxide

Authors: N. R. Putra, A. H. Abdul Aziz, A. S. Zaini, Z. Idham, F. Idrus, M. Z. Bin Zullyadini, M. A. Che Yunus

Abstract:

The content of omega-3 in soybean oil is important in the development of infants and is an alternative for the omega-3 in fish oils. The investigation of extraction of soybean oil is needed to obtain the bioactive compound in the extract. Supercritical carbon dioxide extraction is modern and green technology to extract herbs and plants to obtain high quality extract due to high diffusivity and solubility of the solvent. The aim of this study was to obtain the optimum condition of soybean oil extraction by modified supercritical carbon dioxide. The soybean oil was extracted by using modified supercritical carbon dioxide (SC-CO2) under the temperatures of 40, 60, 80 °C, pressures of 150, 250, 350 Bar, and constant flow-rate of 10 g/min as the parameters of extraction processes. An experimental design was performed in order to optimize three important parameters of SC-CO2 extraction which are pressure (X1), temperature (X2) to achieve optimum yields of soybean oil. Box Behnken Design was applied for experimental design. From the optimization process, the optimum condition of extraction of soybean oil was obtained at pressure 338 Bar and temperature 80 °C with oil yield of 2.713 g. Effect of pressure is significant on the extraction of soybean oil by modified supercritical carbon dioxide. Increasing of pressure will increase the oil yield of soybean oil.

Keywords: soybean oil, SC-CO₂ extraction, yield, optimization

Procedia PDF Downloads 250
12767 A Conceptual Stakeholder Engagement Model for Change Management in the South African Public Sector

Authors: Mokgata Matjie, Sibo Mayime

Abstract:

The 4IR brought with it an inevitable need for change in all organisations, regardless of sector. As a member of the global community, South African organisations are bound to experience the 4IR pressure, and the need to digitize becomes unavoidable. The South African government sector has various departments, of which one of them is the land administration solely responsible for the registration, management, and maintenance of the property registry of South Africa. For the past many years, the registration of deeds was done manually, ranging from 7-10 days, with lots and loads of paperwork handled manually by conveyancers and Registry Clerks. Some information might get lost during the registration period, thus delaying the whole process. This conceptual paper proposes ways to digitalize the land administration office by consulting all relevant literature and ultimately developing a theoretical change management framework for all public sector organisations in South Africa. Change is inevitable, but careful consideration is necessary in terms of consulting all relevant stakeholders for their buy-in and successful implementation of digitalization. The developed framework will serve as a theoretical basis for the empirical research envisaged as a PhD study.

Keywords: stakeholders, engagement, change management, land administration, digitalisation, South African public sector

Procedia PDF Downloads 106
12766 Nonlinear Free Surface Flow Simulations Using Smoothed Particle Hydrodynamics

Authors: Abdelraheem M. Aly, Minh Tuan Nguyen, Sang-Wook Lee

Abstract:

The incompressible smoothed particle hydrodynamics (ISPH) is used to simulate impact free surface flows. In the ISPH, pressure is evaluated by solving pressure Poisson equation using a semi-implicit algorithm based on the projection method. The current ISPH method is applied to simulate dam break flow over an inclined plane with different inclination angles. The effects of inclination angle in the velocity of wave front and pressure distribution is discussed. The impact of circular cylinder over water in tank has also been simulated using ISPH method. The computed pressures on the solid boundaries is studied and compared with the experimental results.

Keywords: incompressible smoothed particle hydrodynamics, free surface flow, inclined plane, water entry impact

Procedia PDF Downloads 398
12765 Structural Performance Evaluation of Power Boiler for the Pressure Release Valve in Consideration of the Thermal Expansion

Authors: Young-Hun Lee, Tae-Gwan Kim, Jong-Kyu Kim, Young-Chul Park

Abstract:

In this study, Spring safety valve Heat - structure coupled analysis was carried out. Full analysis procedure and performing thermal analysis at a maximum temperature, them to the results obtained through to give an additional load and the pressure on the valve interior, and Disc holder Heat-Coupled structure Analysis was carried out. Modeled using a 3D design program Solidworks, For the modeling of the safety valve was used 3D finite element analysis program ANSYS. The final result to be obtained through the Analysis examined the stability of the maximum displacement and the maximum stress to the valve internal components occurring in the high-pressure conditions.

Keywords: finite element method, spring safety valve, gap, stress, strain, deformation

Procedia PDF Downloads 360
12764 Experimental Investigation on the Anchor Behavior of Planar Clamping Anchor for Carbon Fiber-Reinforced Polymer Plate

Authors: Yongyu Duo, Xiaogang Liu, Qingrui Yue

Abstract:

The anchor plays a critical role in the utilization of the tensile strength of carbon fiber-reinforced polymer (CFRP) plate when it is applied for the prestressed retrofitted and cable structures. In this paper, the anchor behavior of planar clamping anchor (PCA) under different interface treatment forms and normal pressures was investigated by the uniaxial static tensile test. Two interface treatment forms were adopted, including pure friction and the coupling action of friction and bonding. The results indicated that the load-bearing capacity of PCA could be obviously improved by the coupling action of friction and bonding compared with the action of pure friction. Under the normal pressure of 11 MPa, 22 MPa, and 33 MPa, the load-bearing capacity of PCA was enhanced by 164.61%, 68.40%, and 52.78%, respectively, and the tensile strength of the CFRP plate was fully exploited when the normal pressure reached 44 MPa. In addition, the experimental coefficient of static friction between the galling CFRP plate and a sandblasted steel plate was in the range of 0.28-0.30, corresponding to various normal pressure. Moreover, the failure mode was determined by the interface treatment form and normal pressure. The research in this paper has important guiding significance to optimize the design of the mechanical clamping anchor, contributing to promoting the application of CFRP plate in reinforcement and cable structure.

Keywords: PCA, CFRP plate, interface treatment form, normal pressure, friction, coupling action

Procedia PDF Downloads 77
12763 Structural Design of a Relief Valve Considering Strength

Authors: Nam-Hee Kim, Jang-Hoon Ko, Kwon-Hee Lee

Abstract:

A relief valve is a mechanical element to keep safety by controlling high pressure. Usually, the high pressure is relieved by using the spring force and letting the fluid to flow from another way out of system. When its normal pressure is reached, the relief valve can return to initial state. The relief valve in this study has been applied for pressure vessel, evaporator, piping line, etc. The relief valve should be designed for smooth operation and should satisfy the structural safety requirement under operating condition. In general, the structural analysis is performed by following fluid flow analysis. In this process, the FSI (Fluid-Structure Interaction) is required to input the force obtained from the output of the flow analysis. Firstly, this study predicts the velocity profile and the pressure distribution in the given system. In this study, the assumptions for flow analysis are as follows: • The flow is steady-state and three-dimensional. • The fluid is Newtonian and incompressible. • The walls of the pipe and valve are smooth. The flow characteristics in this relief valve does not induce any problem. The commercial software ANSYS/CFX is utilized for flow analysis. On the contrary, very high pressure may cause structural problem due to severe stress. The relief valve is made of body, bonnet, guide, piston and nozzle, and its material is stainless steel. To investigate its structural safety, the worst case loading is considered as the pressure of 700 bar. The load is applied to inside the valve, which is greater than the load obtained from FSI. The maximum stress is calculated as 378 MPa by performing the finite element analysis. However, the value is greater than its allowable value. Thus, an alternative design is suggested to improve the structural performance through case study. We found that the sensitive design variable to the strength is the shape of the nozzle. The case study is to vary the size of the nozzle. Finally, it can be seen that the suggested design satisfy the structural design requirement. The FE analysis is performed by using the commercial software ANSYS/Workbench.

Keywords: relief valve, structural analysis, structural design, strength, safety factor

Procedia PDF Downloads 299
12762 Thermo-Mechanical Approach to Evaluate Softening Behavior of Polystyrene: Validation and Modeling

Authors: Salah Al-Enezi, Rashed Al-Zufairi, Naseer Ahmad

Abstract:

A Thermo-mechanical technique was developed to determine softening point temperature/glass transition temperature (Tg) of polystyrene exposed to high pressures. The design utilizes the ability of carbon dioxide to lower the glass transition temperature of polymers and acts as plasticizer. In this apparatus, the sorption of carbon dioxide to induce softening of polymers as a function of temperature/pressure is performed and the extent of softening is measured in three-point-flexural-bending mode. The polymer strip was placed in the cell in contact with the linear variable differential transformer (LVDT). CO2 was pumped into the cell from a supply cylinder to reach high pressure. The results clearly showed that full softening point of the samples, accompanied by a large deformation on the polymer strip. The deflection curves are initially relatively flat and then undergo a dramatic increase as the temperature is elevated. It was found that increasing the pressure of CO2 causes the temperature curves to shift from higher to lower by increment of about 45 K, over the pressure range of 0-120 bars. The obtained experimental Tg values were validated with the values reported in the literature. Finally, it is concluded that the defection model fits consistently to the generated experimental results, which attempts to describe in more detail how the central deflection of a thin polymer strip affected by the CO2 diffusions in the polymeric samples.

Keywords: softening, high-pressure, polystyrene, CO₂ diffusions

Procedia PDF Downloads 124
12761 Numerical Investigation of Flow Characteristics inside the External Gear Pump Using Urea Liquid Medium

Authors: Kumaresh Selvakumar, Man Young Kim

Abstract:

In selective catalytic reduction (SCR) unit, the injection system is provided with unique dosing pump to govern the urea injection phenomenon. The urea based operating liquid from the AdBlue tank links up directly with the dosing pump unit to furnish appropriate high pressure for examining the flow characteristics inside the liquid pump. This work aims in demonstrating the importance of external gear pump to provide pertinent high pressure and respective mass flow rate for each rotation. Numerical simulations are conducted using immersed solid method technique for better understanding of unsteady flow characteristics within the pump. Parametric analyses have been carried out for the gear speed and mass flow rate to find the behavior of pressure fluctuations. In the simulation results, the outlet pressure achieves maximum magnitude with the increase in rotational speed and the fluctuations grow higher.

Keywords: AdBlue tank, external gear pump, immersed solid method, selective catalytic reduction

Procedia PDF Downloads 277
12760 Pressure Distribution, Load Capacity, and Thermal Effect with Generalized Maxwell Model in Journal Bearing Lubrication

Authors: M. Guemmadi, A. Ouibrahim

Abstract:

This numerical investigation aims to evaluate how a viscoelastic lubricant described by a generalized Maxwell model, affects the pressure distribution, the load capacity and thermal effect in a journal bearing lubrication. We use for the purpose the CFD package software completed by adapted user define functions (UDFs) to solve the coupled equations of momentum, of energy and of the viscoelastic model (generalized Maxwell model). Two parameters, viscosity and relaxation time are involved to show how viscoelasticity substantially affect the pressure distribution, the load capacity and the thermal transfer by comparison to Newtonian lubricant. These results were also compared with the available published results.

Keywords: journal bearing, lubrication, Maxwell model, viscoelastic fluids, computational modelling, load capacity

Procedia PDF Downloads 539
12759 Numerical Investigation of the Effect of Blast Pressure on Discrete Model in Shock Tube

Authors: Aldin Justin Sundararaj, Austin Lord Tennyson, Divya Jose, A. N. Subash

Abstract:

Blast waves are generated due to the explosions of high energy materials. An explosion yielding a blast wave has the potential to cause severe damage to buildings and its personnel. In order to understand the physics of effects of blast pressure on buildings, studies in the shock tube on generic configurations are carried out at various pressures on discrete models. The strength of shock wave is systematically varied by using different driver gases and diaphragm thickness. The basic material of the diaphragm is Aluminum. To simulate the effect of shock waves on discrete models a shock tube was used. Generic models selected for this study are suitably scaled cylinder, cone and cubical blocks. The experiments were carried out with 2mm diaphragm with burst pressure ranging from 28 to 31 bar. Numerical analysis was carried out over these discrete models. A 3D model of shock-tube with different discrete models inside the tube was used for CFD computation. It was found that cone has dissipated most of the shock pressure compared to cylinder and cubical block. The robustness and the accuracy of the numerical model were validation with the analytical and experimental data.

Keywords: shock wave, blast wave, discrete models, shock tube

Procedia PDF Downloads 325
12758 Effect of Acute Ingestion of Ice Water on Blood Pressure in Relation to Body Mass Index

Authors: Savitri Siddanagoudra, Shantala Herlekar, Priya Arjunwadekar

Abstract:

Background: The physiological response to water drinking in healthy subjects is an integrated response with an increase in sympathetic vasoconstrictor activity with induced bradycardia. Obesity is a modern pandemic, implicated in the pathogenesis of cardiovascular disease. In autonomic failure patients, water drinking has been shown the increased high blood pressure and bradycardia. Acute effects of ice water ingestion on blood pressure (BP) in relation to body mass index (BMI) is not addressed in literature. Objectives: Objective of this study is to evaluate BP before and after ingestion of cold water in all the three groups. Methods and Material: 60 healthy subjects between the age group of 18-24 yrs were selected and assigned into 3 groups based on BMI. BMI less than and equal to 25 kg/m2 is selected as Normal BMI group ,between 25- 29 kg/m2 as Overweight and BMI more than and equal to 30 kg/m2 as Obese. Procedure: Basal and after ingestion of 250 ml of cold water (7 0C ± 0.5 0C)BP was recorded in all the 3 groups. Results: Basal and after ice water ingestion BP increased statistically in all 3 groups. Conclusion: On acute ingestion of ice water overweight, obese may have more sympathoexcitaion compared to normal subjects.

Keywords: blood pressure, body mass index, ice water, symathoexcitation

Procedia PDF Downloads 158
12757 The Moveable Cathode Water Cold Atmospheric Pressure Plasma Jet for Titanium Surface Treatment of Dental Implant

Authors: Nazanin Gerami, Shirin Adlparvar

Abstract:

In the present time in the laboratory, one can create an ionized gas, that is to say, plasma from room temperature up to ten times more than the temperature of the sun center (150,000,000). All these temperature spectrums of plasma have applications in different disciplines, including dentistry, medicine, science, surface treatment, nuclear waste disinfection, nuclear fusion technology, etc. However, for the sick of simplicity, all these plasma temperature spectrums are classified as cold or low-pressure non-thermal plasma and warm or high-pressure equilibrium plasma. The cold plasma, as we are interested in this paper, exists at lower ion and neutral temperatures with respect to electron temperature, but in the equilibrium plasma, the temperatures of ion and electron are fairly equal. The cold plasma is a partially ionized gas comprising ions, electrons, ultraviolet photons and reactive neutrals such as radicals, excited and ground-state molecules. Cold atmospheric pressure plasmas are widely used in diverse fields of dental medicine, such as the titanium surface of dental implants, which helps in reducing contact angle and supporting the spread of osteoblastic cells and is known to aid in osteoblastic proliferation and osseointegration, thus increasing the success rates of implants. This article focuses on the anticipated uses of a newly designed water-cooled adjustable cathode cold atmospheric pressure plasma Jet (CAPPJ) for titanium surface treatment in dental implant placement.

Keywords: CAPPJ, surface modification, osseointegration, plasma medicine, dentistry

Procedia PDF Downloads 141
12756 Waste Management in Africa

Authors: Peter Ekene Egwu

Abstract:

Waste management is of critical importance in Africa for reasons related to public health, human dignity, climate resilience and environmental preservation. However, delivering waste management services requires adequate funding, which has generally been lacking in a context where the generation of waste is outpacing the development of waste management infrastructure in most cities. The sector represents a growing percentage of cities’ greenhouse gas (GHG) emissions, and some of the African cities profiled in this study are now designing waste management strategies with emission reduction in mind.

Keywords: management waste material, Africa, uses of new technology to manage waste, waste management

Procedia PDF Downloads 69
12755 Research on Ultrafine Particles Classification Using Hydrocyclone with Annular Rinse Water

Authors: Tao Youjun, Zhao Younan

Abstract:

The separation effect of fine coal can be improved by the process of pre-desliming. It was significantly enhanced when the fine coal was processed using Falcon concentrator with the removal of -45um coal slime. Ultrafine classification tests using Krebs classification cyclone with annular rinse water showed that increasing feeding pressure can effectively avoid the phenomena of heavy particles passing into overflow and light particles slipping into underflow. The increase of rinse water pressure could reduce the content of fine-grained particles while increasing the classification size. The increase in feeding concentration had a negative effect on the efficiency of classification, meanwhile increased the classification size due to the enhanced hindered settling caused by high underflow concentration. As a result of optimization experiments with response indicator of classification efficiency which based on orthogonal design using Design-Expert software indicated that the optimal classification efficiency reached 91.32% with the feeding pressure of 0.03MPa, the rinse water pressure of 0.02MPa and the feeding concentration of 12.5%. Meanwhile, the classification size was 49.99 μm which had a good agreement with the predicted value.

Keywords: hydrocyclone, ultrafine classification, slime, classification efficiency, classification size

Procedia PDF Downloads 163
12754 Transport of Analytes under Mixed Electroosmotic and Pressure Driven Flow of Power Law Fluid

Authors: Naren Bag, S. Bhattacharyya, Partha P. Gopmandal

Abstract:

In this study, we have analyzed the transport of analytes under a two dimensional steady incompressible flow of power-law fluids through rectangular nanochannel. A mathematical model based on the Cauchy momentum-Nernst-Planck-Poisson equations is considered to study the combined effect of mixed electroosmotic (EO) and pressure driven (PD) flow. The coupled governing equations are solved numerically by finite volume method. We have studied extensively the effect of key parameters, e.g., flow behavior index, concentration of the electrolyte, surface potential, imposed pressure gradient and imposed electric field strength on the net average flow across the channel. In addition to study the effect of mixed EOF and PD on the analyte distribution across the channel, we consider a nonlinear model based on general convective-diffusion-electromigration equation. We have also presented the retention factor for various values of electrolyte concentration and flow behavior index.

Keywords: electric double layer, finite volume method, flow behavior index, mixed electroosmotic/pressure driven flow, non-Newtonian power-law fluids, numerical simulation

Procedia PDF Downloads 307
12753 Gas Lift Optimization to Improve Well Performance

Authors: Mohamed A. G. H. Abdalsadig, Amir Nourian, G. G. Nasr, Meisam Babaie

Abstract:

Gas lift optimization is becoming more important now a day in petroleum industry. A proper lift optimization can reduce the operating cost, increase the net present value (NPV) and maximize the recovery from the asset. A widely accepted definition of gas lift optimization is to obtain the maximum output under specified operating conditions. In addition, gas lift, a costly and indispensable means to recover oil from high depth reservoir entails solving the gas lift optimization problems. Gas lift optimization is a continuous process; there are two levels of production optimization. The total field optimization involves optimizing the surface facilities and the injection rate that can be achieved by standard tools softwares. Well level optimization can be achieved by optimizing the well parameters such as point of injection, injection rate, and injection pressure. All these aspects have been investigated and presented in this study by using experimental data and PROSPER simulation program. The results show that the well head pressure has a large influence on the gas lift performance and also proved that smart gas lift valve can be used to improve gas lift performance by controlling gas injection from down hole. Obtaining the optimum gas injection rate is important because excessive gas injection reduces production rate and consequently increases the operation cost.

Keywords: optimization, production rate, reservoir pressure effect, gas injection rate effect, gas injection pressure

Procedia PDF Downloads 408
12752 Determination of Safety Distance Around Gas Pipelines Using Numerical Methods

Authors: Omid Adibi, Nategheh Najafpour, Bijan Farhanieh, Hossein Afshin

Abstract:

Energy transmission pipelines are one of the most vital parts of each country which several strict laws have been conducted to enhance the safety of these lines and their vicinity. One of these laws is the safety distance around high pressure gas pipelines. Safety distance refers to the minimum distance from the pipeline where people and equipment do not confront with serious damages. In the present study, safety distance around high pressure gas transmission pipelines were determined by using numerical methods. For this purpose, gas leakages from cracked pipeline and created jet fires were simulated as continuous ignition, three dimensional, unsteady and turbulent cases. Numerical simulations were based on finite volume method and turbulence of flow was considered using k-ω SST model. Also, the combustion of natural gas and air mixture was applied using the eddy dissipation method. The results show that, due to the high pressure difference between pipeline and environment, flow chocks in the cracked area and velocity of the exhausted gas reaches to sound speed. Also, analysis of the incident radiation results shows that safety distances around 42 inches high pressure natural gas pipeline based on 5 and 15 kW/m2 criteria are 205 and 272 meters, respectively.

Keywords: gas pipelines, incident radiation, numerical simulation, safety distance

Procedia PDF Downloads 330
12751 Exploring Hydrogen Embrittlement and Fatigue Crack Growth in API 5L X52 Steel Pipeline Under Cyclic Internal Pressure

Authors: Omar Bouledroua, Djamel Zelmati, Zahreddine Hafsi, Milos B. Djukic

Abstract:

Transporting hydrogen gas through the existing natural gas pipeline network offers an efficient solution for energy storage and conveyance. Hydrogen generated from excess renewable electricity can be conveyed through the API 5L steel-made pipelines that already exist. In recent years, there has been a growing demand for the transportation of hydrogen through existing gas pipelines. Therefore, numerical and experimental tests are required to verify and ensure the mechanical integrity of the API 5L steel pipelines that will be used for pressurized hydrogen transportation. Internal pressure loading is likely to accelerate hydrogen diffusion through the internal pipe wall and consequently accentuate the hydrogen embrittlement of steel pipelines. Furthermore, pre-cracked pipelines are susceptible to quick failure, mainly under a time-dependent cyclic pressure loading that drives fatigue crack propagation. Meanwhile, after several loading cycles, the initial cracks will propagate to a critical size. At this point, the remaining service life of the pipeline can be estimated, and inspection intervals can be determined. This paper focuses on the hydrogen embrittlement of API 5L steel-made pipeline under cyclic pressure loading. Pressurized hydrogen gas is transported through a network of pipelines where demands at consumption nodes vary periodically. The resulting pressure profile over time is considered a cyclic loading on the internal wall of a pre-cracked pipeline made of API 5L steel-grade material. Numerical modeling has allowed the prediction of fatigue crack evolution and estimation of the remaining service life of the pipeline. The developed methodology in this paper is based on the ASME B31.12 standard, which outlines the guidelines for hydrogen pipelines.

Keywords: hydrogen embrittlement, pipelines, transient flow, cyclic pressure, fatigue crack growth

Procedia PDF Downloads 83
12750 High Temperature and High Pressure Purification of Hydrogen from Syngas Using Metal Organic Framework Adsorbent

Authors: Samira Rostom, Robert Symonds, Robin W. Hughes

Abstract:

Hydrogen is considered as one of the most important clean and renewable energy carriers for a sustainable energy future. However, its efficient and cost-effective purification remains challenging. This paper presents the potential of using metal–organic frameworks (MOFs) in combination with pressure swing adsorption (PSA) technology for syngas based H2 purification. PSA process analysis is done considering high pressure and elevated temperature process conditions, it reduces the demand for off-gas recycle to the fuel reactor and simultaneously permits higher desorption pressure, thereby reducing the parasitic load on the hydrogen compressor. The elevated pressure and temperature adsorption we present here is beneficial to minimizing overall process heating and cooling demand compared to existing processes. Here, we report the comparative performance of zeolite-5A, Cu-BTC, and the mix of zeolite-5A/Cu-BTC for H2 purification from syngas typical of those exiting water-gas-shift reactors. The MOFs were synthesized hydrothermally and then mixed systematically at different weight ratios to find the optimum composition based on the adsorption performance. The formation of different compounds were characterized by XRD, N2 adsorption and desorption, SEM, FT-IR, TG, and water vapor adsorption technologies. Single-component adsorption isotherms of CO2, CO, CH4, N2, and H2 over single materials and composites were measured at elevated pressures and different temperatures to determine their equilibrium adsorption capacity. The examination of the stability and regeneration performance of metal–organic frameworks was carried out using a gravimetric system at temperature ranges of 25-150℃ for a pressure range of 0-30 bar. The studies of adsorption/desorption on the MOFs showed selective adsorption of CO2, CH4, CO, and N2 over H2. Overall, the findings of this study suggest that the Ni-MOF-74/Cu-BTC composites are promising candidates for industrial H2 purification processes.

Keywords: MOF, H2 purification, high T, PSA

Procedia PDF Downloads 89
12749 Role of Hyperbaric Oxygen Therapy in Management of Diabetic Foot

Authors: Magdy Al Shourbagi

Abstract:

Diabetes mellitus is the commonest cause of neuropathy. The common pattern is a distal symmetrical sensory polyneuropathy, associated with autonomic disturbances. Less often, Diabetes mellitus is responsible for a focal or multifocal neuropathy. Common causes for non-healing of diabetic foot are the infection and ischemia. Diabetes mellitus is associated with a defective cellular and humoral immunity. Particularly, decreased phagocytosis, decreased chemotaxis, impaired bacterial killing and abnormal lymphocytic function resulting in a reduced inflammatory reaction and defective wound healing. Hyperbaric oxygen therapy is defined by the Undersea and Hyperbaric Medical Society as a treatment in which a patient intermittently breathes 100% oxygen and the treatment chamber is pressurized to a pressure greater than sea level (1 atmosphere absolute). The pressure increase may be applied in mono-place (single person) or multi-place chambers. Multi-place chambers are pressurized with air, with oxygen given via face mask or endotracheal tube; while mono-place chambers are pressurized with oxygen. Oxygen gas plays an important role in the physiology of wound healing. Hyperbaric oxygen therapy can raise tissue oxygen tensions to levels where wound healing can be expected. HBOT increases the killing ability of leucocytes also it is lethal for certain anaerobic bacteria and inhibits toxin formation in many other anaerobes. Multiple anecdotal reports and studies in HBO therapy in diabetic patients report that HBO can be an effective adjunct therapy in the management of diabetic foot wounds and is associated with better functional outcomes.

Keywords: hyperbari oxygen therapy, diabetic foot, neuropathy, multiplace chambers

Procedia PDF Downloads 287
12748 Inelastic and Elastic Taping in Plantar Pressure of Runners Pronators: Clinical Trial

Authors: Liana Gomide, Juliana Rodrigues

Abstract:

The morphology of the foot defines its mode of operation and a biomechanical reform indispensable for a symmetrical distribution of plantar pressures in order not to overload some of its components in isolation. High plantar pressures at specific points in the foot may be a causal factor in several orthopedic disorders that affect the feet such as pain and stress fracture. With digital baro-podometry equipment one can observe an intensity of pressures along the entire foot and quantify some of the movements, such as a subtalar pronation present in the midfoot region. Although, they are involved in microtraumas. In clinical practice, excessive movement has been limited with the use of different taping techniques applied on the plantar arch. Thus, the objective of the present study was to analyze and compare the influence of the inelastic and elastic taping on the distribution of plantar pressure of runners pronators. This is a randomized clinical trial and blind-crossover. Twenty (20) male subjects, mean age 33 ± 7 years old, mean body mass of 71 ± 7 kg, mean height of 174 ± 6 cm, were included in the study. A data collection was carried out by a single research through barop-odometry equipment - Tekscan, model F-scan mobile. The tests were performed at three different times. In the first, an initial barop-odometric evaluation was performed, without a bandage application, with edges at a speed of 9.0 km/h. In the second and third moments, the inelastic or elastic taping was applied consecutively, according to the definition defined in the randomization. As results, it was observed that both as inelastic and elastic taping, provided significant reductions in contact pressure and peak pressure values when compared to the moment without a taping. However, an elastic taping was more effective in decreasing contact pressure (no bandage = 714 ± 201, elastic taping = 690 ± 210 and inelastic taping = 716 ± 180) and no peak pressure in the midfoot region (no bandage = 1490 ± 42, elastic taping = 1273 ± 323 and inelastic taping = 1487 ± 437). It is possible to conclude that it is an elastic taping provided by pressure in the middle region, thereby reducing the subtalar pronunciation event during the run.

Keywords: elastic taping, inelastic taping, running, subtalar pronation

Procedia PDF Downloads 151
12747 Changes in Blood Pressure in a Longitudinal Cohort of Vietnamese Women

Authors: Anh Vo Van Ha, Yun Zhao, Luat Cong Nguyen, Tan Khac Chu, Phung Hoang Nguyen, Minh Ngoc Pham, Colin W. Binns, Andy H. Lee

Abstract:

This study aims to study longitudinal changes in blood pressure (BP) during the 1-year postpartum period and to evaluate the influence of parity, maternal age at delivery, prepregnancy BMI, gestational weight gain, gestational age at delivery and postpartum maternal weight. A prospective longitudinal cohort study of 883 singleton Vietnamese women was conducted in Hanoi, Haiphong, and Ho Chi Minh City, Vietnam during 2015-2017. Women diagnosed with gestational diabetes mellitus at 24-28 weeks of gestation, pre-eclampsia, and hypoglycemia was excluded from analysis. BP was repeatedly measured at discharge, 6 and 12 months postpartum using automatic blood pressure monitors. Linear mixed model with repeated measures was used to describe changes occurring during pregnancy to 1-year postpartum. Parity, self-reported prepregnancy BMI, gestational weight gain, maternal age and gestational age at delivery will be treated as time-invariant variables and measured maternal weight will be treated as a time-varying variable in models. Women with higher measured postpartum weight had higher mean systolic blood pressure (SBP), 0.20 mmHg, 95% CI [0.12, 0.28]. Similarly, women with higher measured postpartum weight had higher mean diastolic blood pressure (DBP), 0.15 mmHg, 95% CI [0.08, 0.23]. These differences were both statistically significant, P < 0.001. There were no differences in SBP and DBP depending on parity, maternal age at delivery, prepregnancy BMI, gestational weight gain and gestational age at delivery. Compared with discharge measurement, SBP was significantly higher in 6 months postpartum, 6.91 mmHg, 95% CI [6.22, 7.59], and 12 months postpartum, 6.39 mmHg, 95% CI [5.64, 7.15]. Similarly, DBP was also significantly higher in 6 and months postpartum than at discharge, 10.46 mmHg 95% CI [9.75, 11.17], and 11.33 mmHg 95% CI [10.54, 12.12]. In conclusion, BP measured repeatedly during the postpartum period (6 and 12 months postpartum) showed a statistically significant increase, compared with after discharge from the hospital. Maternal weight was a significant predictor of postpartum blood pressure over the 1-year postpartum period.

Keywords: blood pressure, maternal weight, postpartum, Vietnam

Procedia PDF Downloads 199
12746 Comparison of the Glidescope Visualization and Neck Flexion with Lateral Neck Pressure Nasogastric Tube Insertion Techniques in Anaesthetized Patients: A Prospective Randomized Clinical Study

Authors: Pitchaporn Purngpiputtrakul, Suttasinee Petsakul, Sunisa Chatmongkolchart

Abstract:

Nasogastric tube (NGT) insertion in anaesthetized and intubated patients can be challenging even for experienced anesthesiologists. Various techniques have been proposed to facilitate NGT insertion in these patients. This study aimed to compare the success rate and time required for NGT insertion between the GlideScope visualization and neck flexion with lateral neck pressure techniques. This randomized clinical trial was performed at a teaching hospital on 86 adult patients undergoing abdominal surgery under relaxant general anaesthesia who required intraoperative NGT insertion. The patients were randomized into two groups, the GlideScope group (group G) and the neck flexion with lateral neck pressure group (group F). The success rate of first and second attempts, duration of insertion, and complications were recorded. The total success rate was 79.1% in Group G compared with 76.7% in Group F (P=1) The median time required for NGT insertion was significantly longer in Group G, for both first and second attempts (97 vs 42 seconds P<0.001) and (70 vs 48.5 seconds P=0.015), respectively. Complications were reported in 23 patients (53.5%) in group G and 13 patients (30.2%) in group F. Bleeding and kinking were the most common complications in both techniques. Using GlideScope visualization to facilitate NGT insertion was comparable to neck flexion with lateral neck pressure technique in degree of success rate of insertion, while neck flexion with lateral neck pressure technique had fewer complications and was less time-consuming.

Keywords: anaesthesia, nasogastric tube, GlideScope, intubation

Procedia PDF Downloads 160