Search results for: poly(ethylene terephethalate) nonwoven fiber (NWPET)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1606

Search results for: poly(ethylene terephethalate) nonwoven fiber (NWPET)

1276 Experimental and Numerical Investigation of Hardness and Compressive Strength of Hybrid Glass/Steel Fiber Reinforced Polymer Composites

Authors: Amar Patnaik, Pankaj Agarwal

Abstract:

This paper investigates the experimental study of hardness and compressive strength of hybrid glass/steel fiber reinforced polymer composites by varying the glass and steel fiber layer in the epoxy matrix. The hybrid composites with four stacking sequences HSG-1, HSG-2, HSG-3, and HSG-4 were fabricated by the VARTM process under the controlled environment. The experimentally evaluated results of Vicker’s hardness of the fabricated composites increases with an increase in the fiber layers sequence showing the high resistance. The improvement of micro-structure ability has been observed from the SEM study, which governs in the enhancement of compressive strength. The finite element model was developed on ANSYS to predict the above said properties and further compared with experimental results. The results predicted by the numerical simulation are in good agreement with the experimental results. The hybrid composites developed in this study was identified as the preferred materials due to their excellent mechanical properties to replace the conventional materialsused in the marine structures.

Keywords: finite element method, interfacial strength, polymer composites, VARTM

Procedia PDF Downloads 122
1275 Ground Water Monitoring Using High-Resolution Fiber Optics Cable Sensors (FOCS)

Authors: Sayed Isahaq Hossain, K. T. Chang, Moustapha Ndour

Abstract:

Inference of the phreatic line through earth dams is of paramount importance because it could be directly associated with piping phenomena which may lead to the dam failure. Normally in the field, the instrumentations such as ‘diver’ and ‘standpipe’ are to be used to identify the seepage conditions which only provide point data with a fair amount of interpolation or assumption. Here in this paper, we employed high-resolution fiber optic cable sensors (FOCS) based on Raman Scattering in order to obtain a very accurate phreatic line and seepage profile. Unlike the above-mention devices which pinpoint the water level location, this kind of Distributed Fiber Optics Sensing gives us more reliable information due to its inherent characteristics of continuous measurement.

Keywords: standpipe, diver, FOCS, monitoring, Raman scattering

Procedia PDF Downloads 343
1274 Fiber Based Pushover Analysis of Reinforced Concrete Frame

Authors: Shewangizaw Tesfaye Wolde

Abstract:

The current engineering community has developed a method called performance based seismic design in which we design structures based on predefined performance levels set by the parties. Since we design our structures economically for the maximum actions expected in the life of structures they go beyond their elastic limit, in need of nonlinear analysis. In this paper conventional pushover analysis (nonlinear static analysis) is used for the performance assessment of the case study Reinforced Concrete (RC) Frame building located in Addis Ababa City, Ethiopia where proposed peak ground acceleration value by RADIUS 1999 project and others is more than twice as of EBCS-8:1995 (RADIUS 1999 project) by taking critical planar frame. Fiber beam-column model is used to control material nonlinearity with tension stiffening effect. The reliability of the fiber model and validation of software outputs are checked under verification chapter. Therefore, the aim of this paper is to propose a way for structural performance assessment of existing reinforced concrete frame buildings as well as design check.

Keywords: seismic, performance, fiber model, tension stiffening, reinforced concrete

Procedia PDF Downloads 59
1273 Flexural Behavior of Heat-Damaged Concrete Beams Reinforced with Fiber Reinforced Polymer (FRP) Bars

Authors: Mohammad R. Irshidat, Rami H. Haddad, Hanadi Al-Mahmoud

Abstract:

Reinforced concrete (RC) is the most common used material for construction in the world. In the past decades, fiber reinforced polymer (FRP) bars had been widely used to substitute the steel bars due to their high resistance to corrosion, high tensile capacity, and low weight in comparison with steel. Experimental studies on the behavior of FRP bar reinforced concrete beams had been carried out worldwide for a few decades. While the research on such structural members under elevated temperatures is still very limited. In this research, the flexural behavior of heat-damaged concrete beams reinforced with FRP bars is studied. Two types of FRP rebar namely, carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP), are used. The beams are subjected to four levels of temperature before tested to monitor their flexural behavior. The results are compared with other concrete beams reinforced with regular steel bars. The results show that the beams reinforced with CFRP bars and GFRP bars had higher flexural capacity than the beams reinforced with steel bars even if heated up to 400°C and 300°C, respectively. After that the beams reinforced with steel bars had the superiority.

Keywords: concrete beams, FRP rebar, flexural behavior, heat-damaged

Procedia PDF Downloads 433
1272 Numerical Study of Dynamic Buckling of Fiber Metal Laminates's Profile

Authors: Monika Kamocka, Radoslaw Mania

Abstract:

The design of Fiber Metal Laminates - combining thin aluminum sheets and prepreg layers, allows creating a hybrid structure with high strength to weight ratio. This feature makes FMLs very attractive for aerospace industry, where thin-walled structures are commonly used. Nevertheless, those structures are prone to buckling phenomenon. Buckling could occur also under static load as well as dynamic pulse loads. In this paper, the problem of dynamic buckling of open cross-section FML profiles under axial dynamic compression in the form of pulse load of finite duration is investigated. In the numerical model, material properties of FML constituents were assumed as nonlinear elastic-plastic aluminum and linear-elastic glass-fiber-reinforced composite. The influence of pulse shape was investigated. Sinusoidal and rectangular pulse loads of finite duration were compared in two ways, i.e. with respect to magnitude and force pulse. The dynamic critical buckling load was determined based on Budiansky-Hutchinson, Ari Gur, and Simonetta dynamic buckling criteria.

Keywords: dynamic buckling, dynamic stability, Fiber Metal Laminate, Finite Element Method

Procedia PDF Downloads 176
1271 Manufacturing Process of S-Glass Fiber Reinforced PEKK Prepregs

Authors: Nassier A. Nassir, Robert Birch, Zhongwei Guan

Abstract:

The aim of this study is to investigate the fundamental science/technology related to novel S-glass fiber reinforced polyether- ketone-ketone (GF/PEKK) composites and to gain insight into bonding strength and failure mechanisms. Different manufacturing techniques to make this high-temperature pre-impregnated composite (prepreg) were conducted i.e. mechanical deposition, electrostatic powder deposition, and dry powder prepregging techniques. Generally, the results of this investigation showed that it was difficult to control the distribution of the resin powder evenly on the both sides of the fibers within a specific percentage. Most successful approach was by using a dry powder prepregging where the fibers were coated evenly with an adhesive that served as a temporary binder to hold the resin powder in place onto the glass fiber fabric.

Keywords: sry powder technique, PEKK, S-glass, thermoplastic prepreg

Procedia PDF Downloads 196
1270 Rule-Of-Mixtures: Predicting the Bending Modulus of Unidirectional Fiber Reinforced Dental Composites

Authors: Niloofar Bahramian, Mohammad Atai, Mohammad Reza Naimi-Jamal

Abstract:

Rule of mixtures is the simple analytical model is used to predict various properties of composites before design. The aim of this study was to demonstrate the benefits and limitations of the Rule-of-Mixtures (ROM) for predicting bending modulus of a continuous and unidirectional fiber reinforced composites using in dental applications. The Composites were fabricated from light curing resin (with and without silica nanoparticles) and modified and non-modified fibers. Composite samples were divided into eight groups with ten specimens for each group. The bending modulus (flexural modulus) of samples was determined from the slope of the initial linear region of stress-strain curve on 2mm×2mm×25mm specimens with different designs: fibers corona treatment time (0s, 5s, 7s), fibers silane treatment (0%wt, 2%wt), fibers volume fraction (41%, 33%, 25%) and nanoparticles incorporation in resin (0%wt, 10%wt, 15%wt). To study the fiber and matrix interface after fracture, single edge notch beam (SENB) method and scanning electron microscope (SEM) were used. SEM also was used to show the nanoparticles dispersion in resin. Experimental results of bending modulus for composites made of both physical (corona) and chemical (silane) treated fibers were in reasonable agreement with linear ROM estimates, but untreated fibers or non-optimized treated fibers and poor nanoparticles dispersion did not correlate as well with ROM results. This study shows that the ROM is useful to predict the mechanical behavior of unidirectional dental composites but fiber-resin interface and quality of nanoparticles dispersion play important role in ROM accurate predictions.

Keywords: bending modulus, fiber reinforced composite, fiber treatment, rule-of-mixtures

Procedia PDF Downloads 264
1269 Performance Analysis of Vertical Cavity Surface Emitting Laser and Distributed Feedback Laser for Community Access Television

Authors: Ashima Rai

Abstract:

CATV transmission systems have altered from old cable based one-way analog video transmission to two ways hybrid fiber transmission. The use of optical fiber reduces the RF amplifiers in the transmission, high transmission power or lower fiber transmission losses are required to increase system capability. This paper evaluates and compares Distributed Feedback (DFB) laser and Vertical Cavity Surface Emitting Laser (VCSEL) for CATV transmission. The simulation results exhibit the better performer among both lasers taking into consideration the parameters chosen for evaluation.

Keywords: Distributed Feedback (DFB), Vertical Cavity Surface Emitting Laser (VCSEL), Community Access Television (CATV), Composite Second Order (CSO), Composite Triple Beat (CTB), RF

Procedia PDF Downloads 352
1268 The Influence of Zeolitic Spent Refinery Admixture on the Rheological and Technological Properties of Steel Fiber Reinforced Self- Compacting Concrete

Authors: Žymantas Rudžionis, Paulius Grigaliūnas, Danutė Vaičiukynienė

Abstract:

By planning this experimental work to investigate the effect of zeolitic waste on rheological and technological properties of self-compacting fiber reinforced concrete, we had an intention to draw attention to the environmental factor. Large amount of zeolitic waste, as a secondary raw materials are not in use properly and large amount of it is collected without a clear view of it’s usage in future. The principal aim of this work is to assure, that zeolitic waste admixture takes positive effect to the self-compacting fiber reinforced concrete mixes stability, flowability and other properties by using the experimental research methods. In addition to that a research on cement and zeolitic waste mortars were implemented to clarify the effect of zeolitic waste on properties of cement paste and stone. Primary studies indicates that zeolitic waste characterizes clear puzzolanic behavior, do not deteriorate and in some cases ensure positive rheological and mechanical characteristics of self-compacting concrete mixes.

Keywords: self compacting concrete, steel fiber reinforced concrete, zeolitic waste, rheological, properties of concrete, slump flow

Procedia PDF Downloads 354
1267 Numerical Simulation of Fiber Bragg Grating Spectrum for Mode-І Delamination Detection

Authors: O. Hassoon, M. Tarfoui, A. El Malk

Abstract:

Fiber Bragg optic sensor embedded in composite material to detect and monitor the damage which is occur in composite structure. In this paper we deal with the mode-Ι delamination to determine the resistance of material to crack propagation, and use the coupling mode theory and T-matrix method to simulating the FBGs spectrum for both uniform and non-uniform strain distribution. The double cantilever beam test which is modeling in FEM to determine the Longitudinal strain, there are two models which are used, the first is the global half model, and the second the sub-model to represent the FBGs with refine mesh. This method can simulate the damage in the composite structure and converting the strain to wavelength shifting of the FBG spectrum.

Keywords: fiber bragg grating, delamination detection, DCB, FBG spectrum, structure health monitoring

Procedia PDF Downloads 352
1266 Electric Field Analysis of XLPE, Cross-Linked Polyethylene Covered Aerial Line and Insulator Lashing

Authors: Jyh-Cherng Gu, Ming-Ta Yang, Dai-Ling Tsai

Abstract:

Both sparse lashing and dense lashing are applied to secure overhead XLPE (cross-linked polyethylene) covered power lines on ceramic insulators or HDPE polymer insulators. The distribution of electric field in and among the lashing wires, the XLPE power lines and insulators in normal clean condition and when conducting materials such as salt, metal particles, dust, smoke or acidic smog are present is studied in this paper. The ANSYS Maxwell commercial software is used in this study for electric field analysis. Although the simulation analysis is performed assuming ideal conditions due to the constraints of the simulation software, the result may not be the same as in real situation but still be of sufficient practical values.

Keywords: electric field intensity, insulator, XLPE covered aerial line, empty

Procedia PDF Downloads 257
1265 Raman Scattering Broadband Spectrum Generation in Compact Yb-Doped Fiber Laser

Authors: Yanrong Song, Zikai Dong, Runqin Xu, Jinrong Tian, Kexuan Li

Abstract:

Nonlinear polarization rotation (NPR) technique has become one of the main techniques to achieve mode-locked fiber lasers for its compactness, implementation, and low cost. In this paper, we demonstrate a compact mode-locked Yb-doped fiber laser based on NPR technique in the all normal dispersion (ANDi) regime. In the laser cavity, there are no physical filter and polarization controller in laser cavity. Mode-locked pulse train is achieved in ANDi regime based on NPR technique. The fiber birefringence induced filtering effect is the mainly reason for mode-locking. After that, an extra 20 m long single-mode fiber is inserted in two different positions, dissipative soliton operation and noise like pulse operations are achieved correspondingly. The nonlinear effect is obviously enhanced in the noise like pulse regime and broadband spectrum generated owing to enhanced stimulated Raman scattering effect. When the pump power is 210 mW, the central wavelength is 1030 nm, and the corresponding 1st order Raman scattering stokes wave generates and locates at 1075 nm. When the pump power is 370 mW, the 1st and 2nd order Raman scattering stokes wave generate and locate at 1080 nm, 1126 nm respectively. When the pump power is 600 mW, the Raman continuum is generated with cascaded multi-order stokes waves, and the spectrum extends to 1188 nm. The total flat spectrum is from 1000nm to 1200nm. The maximum output average power and pulse energy are 18.0W and 14.75nJ, respectively.

Keywords: fiber laser, mode-locking, nonlinear polarization rotation, Raman scattering

Procedia PDF Downloads 211
1264 Utilization of Discarded PET and Concrete Aggregates in Construction Causes: A Green Approach

Authors: Arjun, A. D. Singh

Abstract:

The purpose of this study is to resolve the solid waste problems caused by plastics and concrete demolition as well. In order to that mechanical properties of polymer concrete; in particular, polymer concrete made of unsaturated polyester resins from recycled polyethylene terephthalate (PET) plastic waste and recycled concrete aggregates is carried out. Properly formulated unsaturated polyester based on recycled PET is mixed with inorganic aggregates to produce polymer concrete. Apart from low manufacturing cost, polymer concrete blend has acceptable properties, to go through it. The prior objectives of the paper is to investigate the mechanical properties, i.e. compressive strength, splitting tensile strength, and the flexural strength of polymer concrete blend using an unsaturated polyester resin based on recycled PET. The relationships between the mechanical properties are also analyzed.

Keywords: polyethylene terephthalate (PET), concrete aggregates, compressive strength, splitting tensile strength

Procedia PDF Downloads 553
1263 Experimental Investigation and Constitutive Modeling of Volume Strain under Uniaxial Strain Rate Jump Test in HDPE

Authors: Rida B. Arieby, Hameed N. Hameed

Abstract:

In this work, tensile tests on high density polyethylene have been carried out under various constant strain rate and strain rate jump tests. The dependency of the true stress and specially the variation of volume strain have been investigated, the volume strain due to the phenomena of damage was determined in real time during the tests by an optical extensometer called Videotraction. A modified constitutive equations, including strain rate and damage effects, are proposed, such a model is based on a non-equilibrium thermodynamic approach called (DNLR). The ability of the model to predict the complex nonlinear response of this polymer is examined by comparing the model simulation with the available experimental data, which demonstrate that this model can represent the deformation behavior of the polymer reasonably well.

Keywords: strain rate jump tests, volume strain, high density polyethylene, large strain, thermodynamics approach

Procedia PDF Downloads 250
1262 A Thermographic and Energy Based Approach to Define High Cycle Fatigue Strength of Flax Fiber Reinforced Thermoset Composites

Authors: Md. Zahirul Islam, Chad A. Ulven

Abstract:

Fiber-reinforced polymer matrix composites have a wide range of applications in the sectors of automotive, aerospace, sports utilities, among others, due to their high specific strength, stiffness as well as reduced weight. In addition to those favorable properties, composites composed of natural fibers and bio-based resins (i.e., biocomposites) have eco-friendliness and biodegradability. However, the applications of biocomposites are limited due to the lack of knowledge about their long-term reliability under fluctuating loads. In order to explore the long-term reliability of flax fiber reinforced composites under fluctuating loads through high cycle fatigue strength (HCFS), fatigue test were conducted on unidirectional flax fiber reinforced thermoset composites at different percentage loads of ultimate tensile strength (UTS) with a loading frequency of 5 Hz. Change of temperature of the sample during cyclic loading was captured using an IR camera. Initially, the temperature increased rapidly, but after a certain time, it stabilized. A mathematical model was developed to predict the fatigue life from the data of stabilized temperature. Stabilized temperature and dissipated energy per cycle were compared with applied stress. Both showed bilinear behavior and the intersection of those curves were used to determine HCFS. HCFS for unidirectional flax fiber reinforced composites is around 45% of UTS for a loading frequency of 5Hz. Unlike fatigue life, stabilized temperature and dissipated energy-based models are convenient to define HCFS as they have little variation from sample to sample.

Keywords: energy method, fatigue, flax fiber reinforced composite, HCFS, thermographic approach

Procedia PDF Downloads 99
1261 Graphene Oxide Fiber with Different Exfoliation Time and Activated Carbon Particle

Authors: Nuray Uçar, Mervin Ölmez, Özge Alptoğa, Nilgün K. Yavuz, Ayşen Önen

Abstract:

In recent years, research on continuous graphene oxide fibers has been intensified. Therefore, many factors of production stages are being studied. In this study, the effect of exfoliation time and presence of activated carbon particle (ACP) on graphene oxide fiber’s properties has been analyzed. It has been seen that cross-sectional appearance of sample with ACP is harsh and porous because of ACP. The addition of ACP did not change the electrical conductivity. However, ACP results in an enormous decrease of mechanical properties. Longer exfoliation time results to higher crystallinity degree, C/O ratio and less d space between layers. The breaking strength and electrical conductivity of sample with less exfoliation time is some higher than sample with high exfoliation time.

Keywords: activated carbon, coagulation by wet spinning, exfoliation, graphene oxide fiber

Procedia PDF Downloads 329
1260 The Effect of Immobilization Conditions on Hydrogen Production from Palm Oil Mill Effluent

Authors: A. W. Zularisam, Lakhveer Singh, Mimi Sakinah Abdul Munaim

Abstract:

In this study, the optimization of hydrogen production using polyethylene glycol (PEG) immobilized sludge was investigated in batch tests. Palm oil mill effluent (POME) is used as a substrate that can act as a carbon source. Experiment focus on the effect of some important affecting factors on fermentative hydrogen production. Results showed that immobilized sludge demonstrated the maximum hydrogen production rate of 340 mL/L-POME/h under follow optimal condition: amount of biomass 10 mg VSS/ g bead, PEG concentration 10%, and cell age 24 h or 40 h. More importantly, immobilized sludge not only enhanced hydrogen production but can also tolerate the harsh environment and produce hydrogen at the wide ranges of pH. The present results indicate the potential of PEG-immobilized sludge for large-scale operations as well; these factors play an important role in stable and continuous hydrogen production.

Keywords: bioydrogen, immobilization, polyethylene glycol, palm oil mill effluent, dark fermentation

Procedia PDF Downloads 332
1259 Mechanical Properties of the Palm Fibers Reinforced HDPE Composites

Authors: Daniella R. Mulinari, Araujo J. F. Marina, Gabriella S. Lopes

Abstract:

Natural fibers are used in polymer composites to improve mechanical properties, substituting inorganic reinforcing agents produced by non-renewable resources. The present study investigates the tensile, flexural and impact behaviors of palm fibers-high density polyethylene (HDPE) composite as a function of volume fraction. The surface of the fibers was modified by mercerization treatments to improve the wetting behavior of the apolar HDPE. The treatment characterization was obtained by scanning electron microscopy, X-Ray diffraction and infrared spectroscopy. Results evidence that a good adhesion interfacial between fibers-matrix causing an increase strength and modulus flexural as well as impact strength in the modified fibers/HDPE composites when compared to the pure HDPE and unmodified fibers reinforced composites.

Keywords: palm fibers, polymer composites, mechanical properties, high density polyethylene (HDPE)

Procedia PDF Downloads 381
1258 Micromechanical Investigation on the Influence of Thermal Stress on Elastic Properties of Fiber-Reinforced Composites

Authors: Arber Sejdiji, Jan Schmitz-Huebsch, Christian Mittelstedt

Abstract:

Due to its use in a broad range of temperatures, the prediction of elastic properties of fiber composite materials under thermal load is significant. Especially the transversal stiffness dominates the potential of use for fiber-reinforced composites (FRC). A numerical study on the influence of thermal stress on transversal stiffness of fiber-reinforced composites is presented. In the numerical study, a representative volume element (RVE) is used to estimate the elastic properties of a unidirectional ply with finite element method (FEM). For the investigation, periodic boundary conditions are applied to the RVE. Firstly, the elastic properties under pure mechanical load are derived numerically and compared to results, which are obtained by analytical methods. Thereupon thermo-mechanical load is implemented into the model to investigate the influence of temperature change with low temperature as a key aspect. Regarding low temperatures, the transversal stiffness increases intensely, especially when thermal stress is dominant over mechanical stress. This paper outlines the employed numerical methods as well as the derived results.

Keywords: elastic properties, micromechanics, thermal stress, representative volume element

Procedia PDF Downloads 95
1257 Radial Variation of Anatomical Characteristics in Three Native Fast-Growing Species Growing in South Kalimantan, Indonesia

Authors: Wiwin Tyas Istikowati, Futoshi Ishiguri, Haruna Aisho, Budi Sutiya, Imam Wahyudi, Kazuya Iizuka, Shinso Yokota

Abstract:

The objective of this study was to investigate the anatomical characteristics of three native fast-growing species, terap (Artocarpus elasticus Reinw. ex Blume), medang (Neolitsea latifolia (Blume) S. Moore), and balik angin (Alphitonia excelsa (Fenzel) Reissek ex Benth) growing in the secondary forest in South Kalimantan, Indonesia for evaluating the possibility of tree breeding for wood quality. Cell lengths were investigated for 5 trees in each species at several different height positions (1.0, 3.0, 5.0, 7.0, 9.0, and 11.0 m above the ground). The mean values of fiber and vessel element lengths in terap, medang, and balik angin were 1.52 and 0.44, 1.16 and 0.53, and 1.02 and 0.49 mm, respectively. Fiber length in terap and balik angin gradually increased from pith to bark, whereas it increased up to 2 cm and then became nearly constant to the bark in medang. Vessel element length was almost constant from pith to bark in terap and balik angin, while slightly increased from pith to bark in medang. Fiber length in terap has a fluctuation pattern from ground level to top of the tree. It decreased up to 3 m above the ground, increased up to 5 m, and then decreased to the top of the tree. On the other hand, vessel element length slightly increased up to 5 m above the ground, and then decreased to the top of the tree. Both fiber and vessel element lengths in medang were almost constant from ground level to top of the tree, whereas decreased from ground level to top of the tree in balik angin. Significant difference at 1% level among trees was found in both fiber and vessel element length in both radial and longitudinal directions for terap and medang. Based on obtained results, it is concluded that the wood quality in fiber and vessel element lengths of terap and medang can be improved by tree breeding programs.

Keywords: anatomical properties, fiber length, vessel elements length, fast-growing species

Procedia PDF Downloads 330
1256 Optimization of the Flexural Strength of Biocomposites Samples Reinforced with Resin for Engineering Applications

Authors: Stephen Akong Takim

Abstract:

This study focused on the optimization of the flexural strength of bio-composite samples of palm kernel, whelks, clams, periwinkles shells and bamboo fiber reinforced with resin for engineering applications. The aim of the study was to formulate different samples of bio-composite reinforced with resin for engineering applications and to evaluate the flexural strength of the fabricated composite. The hand lay-up technique was used for the composites produced by incorporating different percentage compositions of the shells/fiber (10%, 15%, 20%, 25% and 30%) into varied proportions of epoxy resin and catalyst. The cured samples, after 24 hours, were subjected to tensile, impact, flexural and water absorption tests. The experiments were conducted using the Taguchi optimization method L25 (5x5) with five design parameters and five level combinations in Minitab 18 statistical software. The results showed that the average value of flexural was 114.87MPa when compared to the unreinforced 72.33MPa bio-composite. The study recommended that agricultural waste, like palm kernel shells, whelk shells, clams, periwinkle shells and bamboo fiber, should be converted into important engineering applications.

Keywords: bio-composite, resin, palm kernel shells, welk shells, periwinkle shells, bamboo fiber, Taguchi techniques and engineering application

Procedia PDF Downloads 65
1255 Microplastics in Two Bivalves of The Bay of Bengal Coast, Bangladesh

Authors: Showmitra Chowdhury, M. Shahadat Hossain, S. M. Sharifuzzaman, Sayedur Rahman Chowdhury, Subrata Sarker, M. Shah Nawaz Chowdhury

Abstract:

Microplastics were identified in mussel (Pernaviridis) and Oyster (Crassostrea madrasensis) from the south east coast of Bangladesh. Samples were collected from four sites of the coast based on their availability, and gastrointestinal tracts were assessed following isolation, floatation, filtration, microscopic observation, and polymer identification by micro-Fourier Transformed Infrared Spectroscope (μ-FTIR) for microplastics determination. A total of 1527 microplastics were identified from 130 samples. The amount of microplastics varied from 0.66 to 3.10 microplastics/g and from 3.20 to 27.60 items/individual. Crassostrea madrasensiscontained on average 1.64 items/g and exhibited the highest level of microplastics by weight. Fiber was the most dominant type, accounting for 72% of total microplastics. Polyethylene, polypropylene, polystyrene, polyester, and nylon were the major polymer types. In both species, transparent/ black color and filamentous shape was dominant. The most common size ranges from 0.005 to 0.25mm and accounted for 39% to 67%. The study revealed microplastics pollution is widespread and relatively high in the bivalves of Bangladesh.

Keywords: microplastics, bivalves, mussel, oyster, bay of bengal, Bangladesh

Procedia PDF Downloads 97
1254 Agronomic Evaluation of Flax Cultivars (Linum Usitatissimum L.) in Response to Irrigation Intervals

Authors: Emad Rashwan, M. Mousa, Ayman EL Sabagh, Celaleddin Barutcular

Abstract:

Flax is a potential winter crop for Egypt that can be grown for both seed and fiber. The study was conducted during two successive winter seasons of 2013/2014, and 2014/2015 in the experimental farm of El-Gemmeiza Agricultural Research Station, Agriculture research Centre, Egypt. The objective of this work was to evaluate the effect of irrigation intervals (25, 35 and 45) on the seed yield and quality of flax cultivars (Sakha1, Giza9 and Giza10). Obtained results indicate that highly significant for all studied traits among irrigation intervals except oil percentage that was not significant in both seasons. Irrigated flax plants every 35 days gave the maximum values for all characters. In contrast, irrigation every 45 days gave the minimum values for all studied characters under this study. In respect to cultivars, significant differences in most yield and quality characters were found. Furthermore, the performance of Sakha1 cultivar was superior in total plant height, main stem diameter, seed index, seed, oil, biological and straw yield /ha as well as fiber length and fiber fineness. Meanwhile, Giza9 and Giza10 cultivars were surpassed in fiber yield/hand fiber percentage, respectively. The interactions between irrigation intervals and flax cultivars were highly significant for total plant height, main stem diameter, seed, oil, biological and straw yields /ha. Based on the results, all flax cultivars recorded the maximum values for major traits were measured under irrigation of flax plants every 35 days.

Keywords: flax, fiber, irrigation intervals, oil, seed yield

Procedia PDF Downloads 245
1253 Experimental Analysis on the Thermal Performance of Vacuum Membrane Distillation Module Using Polyvinylidene Fluoride Hollow Fiber Membrane

Authors: Hong-Jin Joo, Hee-Yoel Kwak

Abstract:

Vacuum Membrane Distillation (VMD) uses pressure lower than the atmospheric pressure. The feed seawater is capable of producing more vapor at the same temperature than Direct Contact Membrane Distillation (DCMD), Air Gap Membrane Distillation (AGMD) or Sweep Gas Membrane Distillation (SGMD). It is advantageous because it is operable at a lower temperature than other membrane distillations. However, no commercial product is available that uses the VMD method, as it is still in the study stage. In this study, therefore, thermal performance test according to the feed water conditions was performed prior to both construction of the demonstration plant, which uses VMD module of the capacity of 400m³/d in South Korea, and commercialization of VMD module with hollow fiber membrane. Such study was performed by designing and constructing the VMD module of the capacity of 2 m³/day which utilizes the polyvinylidene fluoride (PVDF) hollow fiber membrane. The results obtained from the VMD module manufactured by ECONITY Co., Ltd in South Korea, showed that the maximum performance ratio (PR) value of 0.904, feed water temperature of 75 ℃, and the flow rate of 8 m3/h. As the temperature of and flow rate of the feed water increased, the PR value of the VMD module also increased.

Keywords: membrane distillation, vacuum membrane distillation, hollow fiber membrane, desalination

Procedia PDF Downloads 197
1252 AI-based Optimization Model for Plastics Biodegradable Substitutes

Authors: Zaid Almahmoud, Rana Mahmoud

Abstract:

To mitigate the environmental impacts of throwing away plastic waste, there has been a recent interest in manufacturing and producing biodegradable plastics. Here, we study a new class of biodegradable plastics which are mixed with external natural additives, including catalytic additives that lead to a successful degradation of the resulting material. To recommend the best alternative among multiple materials, we propose a multi-objective AI model that evaluates the material against multiple objectives given the material properties. As a proof of concept, the AI model was implemented in an expert system and evaluated using multiple materials. Our findings showed that Polyethylene Terephalate is potentially the best biodegradable plastic substitute based on its material properties. Therefore, it is recommended that governments shift the attention to the use of Polyethylene Terephalate in the manufacturing of bottles to gain a great environmental and sustainable benefits.

Keywords: plastic bottles, expert systems, multi-objective model, biodegradable substitutes

Procedia PDF Downloads 103
1251 Study of the Mega–Landslide at the Community of Ropoto, Central Greece, and of the Design of Mitigation and Early Warning System Using the Fiber Bragg Grating Technology

Authors: Michael Bellas, George Voulgaridis

Abstract:

This paper refers to the world known mega - landslide induced at the community of Ropoto, belonging to the Municipality of Trikala, in the Central part of Greece. The landslide affected the debris as well as the colluvium mantle of the flysch, and makes up a special case of study in engineering geology and geotechnical engineering not only because of the size of the domain affected by the landslide (approximately 750m long), but also because of the geostructure’s global behavior. Due to the landslide, the whole community’s infrastructure massively collapsed and human lives were put in danger. After the complete simulation of the coupled Seepage - Deformation phenomenon due to the extreme rainfall, and by closely examining the slope’s global behavior, both the mitigation of the landslide, as well as, an advanced surveillance method (Fiber Bragg Grating) using fiber optics were further studied, in order both to retain the geostructure and to monitor its health by creating an early warning system, which would serve as a complete safety net for saving both the community’s infrastructure as well as the lives of its habitats.

Keywords: landslide, remediation measures, the finite element method (FEM), Fiber Bragg Grating (FBG) sensing method

Procedia PDF Downloads 315
1250 Optical Switching Based On Bragg Solitons in A Nonuniform Fiber Bragg Grating

Authors: Abdulatif Abdusalam, Mohamed Shaban

Abstract:

In this paper, we consider the nonlinear pulse propagation through a nonuniform birefringent fiber Bragg grating (FBG) whose index modulation depth varies along the propagation direction. Here, the pulse propagation is governed by the nonlinear birefringent coupled mode (NLBCM) equations. To form the Bragg soliton outside the photonic bandgap (PBG), the NLBCM equations are reduced to the well known NLS type equation by multiple scale analysis. As we consider the pulse propagation in a nonuniform FBG, the pulse propagation outside the PBG is governed by inhomogeneous NLS (INLS) rather than NLS. We, then, discuss the formation of soliton in the FBG known as Bragg soliton whose central frequency lies outside but close to the PBG of the grating structure. Further, we discuss Bragg soliton compression due to a delicate balance between the SPM and the varying grating induced dispersion. In addition, Bragg soliton collision, Bragg soliton switching and possible logic gates have also been discussed.

Keywords: Bragg grating, non uniform fiber, non linear pulse

Procedia PDF Downloads 302
1249 Time Temperature Dependence of Long Fiber Reinforced Polypropylene Manufactured by Direct Long Fiber Thermoplastic Process

Authors: K. A. Weidenmann, M. Grigo, B. Brylka, P. Elsner, T. Böhlke

Abstract:

In order to reduce fuel consumption, the weight of automobiles has to be reduced. Fiber reinforced polymers offer the potential to reach this aim because of their high stiffness to weight ratio. Additionally, the use of fiber reinforced polymers in automotive applications has to allow for an economic large-scale production. In this regard, long fiber reinforced thermoplastics made by direct processing offer both mechanical performance and processability in injection moulding and compression moulding. The work presented in this contribution deals with long glass fiber reinforced polypropylene directly processed in compression moulding (D-LFT). For the use in automotive applications both the temperature and the time dependency of the materials properties have to be investigated to fulfill performance requirements during crash or the demands of service temperatures ranging from -40 °C to 80 °C. To consider both the influence of temperature and time, quasistatic tensile tests have been carried out at different temperatures. These tests have been complemented by high speed tensile tests at different strain rates. As expected, the increase in strain rate results in an increase of the elastic modulus which correlates to an increase of the stiffness with decreasing service temperature. The results are in good accordance with results determined by dynamic mechanical analysis within the range of 0.1 to 100 Hz. The experimental results from different testing methods were grouped and interpreted by using different time temperature shift approaches. In this regard, Williams-Landel-Ferry and Arrhenius approach based on kinetics have been used. As the theoretical shift factor follows an arctan function, an empirical approach was also taken into consideration. It could be shown that this approach describes best the time and temperature superposition for glass fiber reinforced polypropylene manufactured by D-LFT processing.

Keywords: composite, dynamic mechanical analysis, long fibre reinforced thermoplastics, mechanical properties, time temperature superposition

Procedia PDF Downloads 187
1248 Fresh State Properties of Steel Fiber Reinforced Self Compacting Concrete

Authors: Anil Nis, Nilufer Ozyurt Zihnioglu

Abstract:

The object of the study is to investigate fresh state properties of the steel fiber reinforced self-compacting concrete (SFR-SCC). Three different steel fibers; straight (Vf:0.5%), hooked-end long (Vf:0.5% and 1%) and hybrid fibers (0.5%short+0.5%long) were used in the research aiming to obtain flow properties of non-fibrous self-compacting concrete. Fly ash was used as a supplementary with an optimum dosage of 30% of the total cementitious materials. Polycarboxylic ether based high-performance concrete superplasticizer was used to get high flowability with percentages ranging from 0.81% (non-fibrous SCC) to 1.07% (hybrid SF-SCC) of the cement weight. The flowability properties of SCCs were measured via slump flow and V-funnel tests; passing ability properties of SCCs were measured with J-Ring, L-Box, and U-Box tests. Workability results indicate that small increase on the superplasticizer dosages compensate the adverse effects of steel fibers on flowability properties of SSC. However, higher dosage fiber addition has a negative effect on passing ability properties, causing blocking of the mixes. In addition, compressive strength, tensile strength, and four point bending results were given. Results indicate that SCCs including steel fibers have superior performances on tensile and bending strength of concrete. Crack bridging capability of steel fibers prevents concrete from splitting, yields higher deformation and energy absorption capacities than non-fibrous SCCs.

Keywords: fiber reinforced self-compacting concrete, fly ash, fresh state properties, steel fiber

Procedia PDF Downloads 213
1247 Microplastic Migration from Food Packaging on Cured Meat Products

Authors: Klytaimnistra Katsara, George Kenanakis, Eleftherios Alissandrakis, Vassilis M. Papadakis

Abstract:

In recent decades, microplastics (MPs) attracted the interest of the research community as the level of environmental plastic pollution has increased over the years. Through air inhalation and food consumption, MPs enter the human body, creating a series of possible health issues. The majority of MPs enter through the digestive tract; they migrate from the plastic packaging of the foodstuffs. Several plastics, such as Polyethylene (PE), are commonly used as food packaging material due to their preservation and storage capabilities. In this work, the surfaces of three different cured meat products with varied fat compositions were studied (bacon, mortadella, and salami) to determine the migration of MPs from plastic packaging. Micro-Raman spectroscopic measurements were performed in an experimental set lasting 28 days, where the meat samples were stored in vacuum-sealed low-density polyethylene (LDPE) pouches under refrigeration conditions at 4°C. Specific measurement days (0, 3, 9, 12, 15, and 28 days of storage) were chosen to obtain comparative results. Raman micro-spectroscopy was used to monitor the MPs migration, where the Raman spectral profile of LDPE first appeared on day 9 in Bacon, day 15 in Salami, and finally, on day 28 in Mortadella. All the meat samples on day 28 were tainted because a layer of bacterial outgrowth had developed on their surface. In conclusion, MP migration from food packaging to the surface of the cured meat samples was proven. To minimize the consumption of MPs in cured meat products that are stored in plastic packaging, a short period of storage time under refrigeration conditions is advised.

Keywords: cured meat, food packaging, low-density polyethylene, microplastic migration, micro-Raman spectroscopy

Procedia PDF Downloads 61