Search results for: nitrogen deficiency
1131 Determinants of Intensity of Greenhouse Gas Emission in Lithuanian Agriculture
Authors: D. Makuteniene
Abstract:
Agriculture, as one of the human activities, emits a significant amount of greenhouse gas emission and undoubtedly has an impact on climate change. The main gaseous products of agricultural greenhouse gases are carbon dioxide, methane, and nitroxadoxide. The sources and emission of these gases depend on land use, soil, crops, manure, livestock, and energy consumption. One of the indicators showing the agricultural impact on climate change is an intensity of GHG emission and its dynamics. This study analyzed the determinants of an intensity of greenhouse gas emission in Lithuanian agriculture using data decomposition. The research revealed that, although greenhouse gas emission increased during the research period, however, agricultural net value added grew more rapidly, which contributed to a reduction of intensity of greenhouse gas emission in Lithuania between 2000 and 2015. It was identified that during the research period intensity of greenhouse gas emission was mostly increased by the change of the use of nitrogen in agriculture, as compared to the change of the area of agricultural land, and by the change of the number of full-time employees, as compared to the change of net value added. Conversely, the change of energy consumption in agriculture, as compared to the change of the use of nitrogen in agriculture, had a bigger impact in decreasing intensity of greenhouse gas emission.Keywords: agriculture, determinants of intensity, greenhouse gas emission, intensity
Procedia PDF Downloads 1831130 Molecular Docking and Synthesis of Nitrogen-Containing Bisphosphonates
Authors: S. Ghalem, M. Mesmoudi, I. Daoudand, H. Allali
Abstract:
The nitrogen-containing bisphosphonates (N-BPs) are well established as the treatments of choice for disorders of excessive bone resorption, myeloma and bone metastases, and osteoporosis. They inhibit farnesyl pyrophosphate synthase (FFPS), a key enzyme in the mevalonate pathway, resulting in inhibition of the prenylation of small GTP-binding proteins in osteoclasts and disruption of their cytoskeleton, adhesion/spreading, and invasion of cancer cells. A very few examples for synthesis of α-amino bisphosphonates based on several amino acids are known from the literature. In the present work, esters of aminoacid react with ketophsophonate (or their analog acid or acyl) to afford the desired products, α-iminophosphonates. The reaction of imine with dimethyl phosphate in the presence of catalytic amount of I2 give ester of α-aminobisphosphonate as sole product in good yield. Finally, we used computational docking methods to predict how several α-aminobisphosphonates bind to FPPS and how R and X influence. Pamidronate, β-aminobisphosphonate already marketed, was used as reference. These results are of interest since they represent a new and simple way to sythesize α-aminobisphosphonates with a free COOH group increased by R2 functionalisable and opening up the possibility of using the molecular docking to facilitate the design of other, novel FFPS inhibitors.Keywords: drug research, cancer, α-amino bisphosphonates, molecular docking
Procedia PDF Downloads 2711129 Thermochemical Conversion: Jatropha Curcus in Fixed Bed Reactor Using Slow Pyrolysis
Authors: Vipan Kumar Sohpal, Rajesh Kumar Sharma
Abstract:
Thermo-chemical conversion of non-edible biomass offers an efficient and economically process to provide valuable fuels and prepare chemicals derived from biomass in the context of developing countries. Pyrolysis has advantages over other thermochemical conversion techniques because it can convert biomass directly into solid, liquid and gaseous products by thermal decomposition of biomass in the absence of oxygen. The present paper aims to focus on the slow thermochemical conversion processes for non-edible Jatropha curcus seed cake. The present discussion focuses on the effect of nitrogen gas flow rate on products composition (wt %). In addition, comparative analysis has been performed for different mesh size for product composition. Result shows that, slow pyrolysis experiments of Jatropha curcus seed cake in fixed bed reactor yield the bio-oil 18.42 wt % at a pyrolysis temperature of 500°C, particle size of -6+8 mesh number and nitrogen gas flow rate of 150 ml/min.Keywords: Jatropha curcus, thermo-chemical, pyrolysis, product composition, yield
Procedia PDF Downloads 4311128 Characterization and Optimization of Culture Conditions for Sulphur Oxidizing Bacteria after Isolation from Rhizospheric Mustard Soil, Decomposing Sites and Pit House
Authors: Suman Chaudhary, Rinku Dhanker, Tanvi, Sneh Goyal
Abstract:
Sulphur oxidizing bacteria (SOB) have marked their significant role in perspectives of maintaining healthy environment as researchers from all over the world tested and apply these in waste water treatment plants, bioleaching of heavy metals, deterioration of bridge structures, concrete and for bioremediation purposes, etc. Also, these SOB are well adapted in all kinds of environment ranging from normal soil, water habitats to extreme natural sources like geothermal areas, volcanic eruptions, black shale and acid rock drainage (ARD). SOB have been isolated from low pH environment of anthropogenic origin like acid mine drainage (AMD) and bioleaching heaps, hence these can work efficiently in different environmental conditions. Besides having many applications in field of environment science, they may be proven to be very beneficial in area of agriculture as sulphur is the fourth major macronutrients required for the growth of plants. More amount of sulphur is needed by pulses and oilseed crops with respect to the cereal grains. Due to continuous use of land for overproduction of more demanding sulphur utilizing crops and without application of sulphur fertilizers, its concentration is decreasing day by day, and thus, sulphur deficiency is becoming a great problem as it affects the crop productivity and quality. Sulphur is generally found in soils in many forms which are unavailable for plants (cannot be use by plants) like elemental sulphur, thiosulphate which can be taken up by bacteria and converted into simpler forms usable by plants by undergoing a series of transformations. So, keeping the importance of sulphur in view for various soil types, oilseed crops and role of microorganisms in making them available to plants, we made an effort to isolate, optimize, and characterize SOB. Three potential strains of bacteria were isolated, namely SSF7, SSA21, and SSS6, showing sulphate production of concentration, i.e. 2.268, 3.102, and 2.785 mM, respectively. Also, these were optimized for various culture conditions like carbon, nitrogen source, pH, temperature, and incubation time, and characterization was also done.Keywords: sulphur oxidizing bacteria, isolation, optimization, characterization, sulphate production
Procedia PDF Downloads 3371127 Considerations in Pregnancy Followed by Obesity Surgery
Authors: Maryam Nazari, Atefeh Ghanbari, Saghar Noorinia
Abstract:
Obesity, as an abnormal or excessive accumulation of fat, is caused by genetic, behavioral and environmental factors. Recently, obesity surgeries, such as bariatric surgery, as the last measure to control obesity, have attracted experts and society, especially women, attention, so knowing the possible complications of this major surgery and their control in reproductive age is of particular importance due to its effects on pregnancy outcomes. Bariatric surgery reduces the risk of diabetes and high blood pressure associated with pregnancy, premature birth, macrosomia, stillbirth and dumping syndrome. Although in the first months after surgery, nausea and vomiting caused by changes in intra-abdominal pressure are associated with an increased risk of malabsorption of micronutrients such as folic acid, iron, vitamin B1, D, calcium, selenium and phosphorus and finally, fetal growth disorder. Moreover, serum levels of micronutrients such as vitamin D, calcium, and iron in mothers who used to have bariatric surgery and their babies have been shown to be lower than in mothers without a history of bariatric surgery. Moreover, vitamin A deficiency is shown to be more widespread in pregnancies after bariatric surgery, which leads to visual problems in newborns and premature delivery. However, complications such as the duration of hospitalization of newborns in the NICU, disease rate in the first 28 days of life and congenital anomalies are not significantly different in babies born to mothers undergoing bariatric surgery compared to the control group. In spite of the vast advantages following obesity surgeries, due to the catabolic conditions and severe weight loss followed by such major intervention and the probability of nutrients malnutrition in a pregnant woman and her baby, after having surgery, at least 12 to 18 months should be considered to get pregnant as a recovery period. In addition, taking essential supplements before and at least 6 months after this approach is recommended.Keywords: bariatric surgery, pregnancy, malnutrition, vitamin and mineral deficiency
Procedia PDF Downloads 931126 Evaluating the effects of Gas Injection on Enhanced Gas-Condensate Recovery and Reservoir Pressure Maintenance
Authors: F. S. Alavi, D. Mowla, F. Esmaeilzadeh
Abstract:
In this paper, the Eclipse 300 simulator was used to perform compositional modeling of gas injection process for enhanced condensate recovery of a real gas condensate well in south of Iran here referred to as SA4. Some experimental data were used to tune the Peng-Robinson equation of state for this case. Different scenarios of gas injection at current reservoir pressure and at abandonment reservoir pressure had been considered with different gas compositions. Methane, carbon dioxide, nitrogen and two other gases with specified compositions were considered as potential gases for injection. According to the obtained results, nitrogen leads to highest pressure maintenance in the reservoir but methane results in highest condensate recovery among the selected injection gases. At low injection rates, condensate recovery percent is strongly affected by gas injection rate but this dependency shifts to zero at high injection rates. Condensate recovery is higher in all cases of injection at current reservoir pressure than injection at abandonment pressure. Using a constant injection rate, increasing the production well bottom hole pressure results in increasing the condensate recovery percent and time of gas breakthrough.Keywords: gas-condensate reservoir, case-study, compositional modelling, enhanced condensate recovery, gas injection
Procedia PDF Downloads 1951125 Safety Date Fruits for Human Being as Affected by Nitrogen Fertilization Applications in Egypt
Authors: A. M. Attalla, A. F. lbrahim, Laila Y. Mostaffa
Abstract:
This study was conducted during three seasons 2010, 2011 and 2012 on Zahhloul date palm cultivar grown in calcareous soil, Alexandria governorate, Egypt. The palms received recommended dose of mineral N only or plus different rates of organic N with or without bio fertilizer to study the effect of such treatments on date palm yield and fruit nitrate and nitrite content due to its negative influence on human, animal and environment. The obtained results clarified that all used treatments of organic and bio fertilizers were effective in improving date palm yield and decreased fruit content of NO2 and NO3 in comparison with 100 % mineral N. It was also noticed that combined treatments of 50 % mineral N + 50 % organic manure with bio fertilizer is the superior treatments for increasing the values of yield and decreasing its content of NO2 and NO3. Hence, it could be concluded that, minimizing the use of chemical nitrogen fertilizer to half of recommended dose through addition of 50 % mineral N + 50 % organic manure with bio fertilizer and also, the utilization of organic and bio fertilizers is considered as a promising alternative for chemical fertilizers to avoid pollution and reduce the costs of mineral fertilizers.Keywords: organic and bio fertilizers, mineral fertilizer, nitrate, nitrite, zaghloul date palm cv
Procedia PDF Downloads 4491124 Wastewater Treatment by Floating Macrophytes (Salvinia natans) under Algerian Semi-Arid Climate
Authors: Laabassi Ayache, Boudehane Asma
Abstract:
Macrophyte pond has developed strongly in the field of wastewater treatment for irrigation in rural areas and small communities. Their association allows, in some cases, to increase the hydraulic capacity while maintaining the highest level of quality. The present work is devoted to the treatment of domestic wastewater under climatic conditions of Algeria (semi-arid) through a system using two tanks planted with Salvinia natans. The performance study and treatment efficiency of the system overall shows that the latter provides a significant removal of nitrogen pollution: total Kjeldahl nitrogen NTK (85.2%), Ammonium NH₄⁺-N (79%), Nitrite NO₂⁻-N (40%) also, a major meaningful reduction of biochemical oxygen demand BOD₅ was observed at the output of the system (96.9 %). As BOD₅, the chemical oxygen demand (COD) removal was higher than 95% at the exit of the two tanks. A moderately low yield of phosphate-phosphorus (PO₄³-P) was achieved with values not exceeding 37%. In general, the quality of treated effluent meets the Algerian standard of discharge and which allows us to select a suitable species in constructed wetland treatment systems under semi-arid climate.Keywords: nutrient removal, Salvinia natans, semi-arid climate, wastewater treatment
Procedia PDF Downloads 1551123 Production of Poly-β-Hydroxybutyrate (PHB) by a Thermophilic Strain of Bacillus and Pseudomonas Species
Authors: Patience Orobosa Olajide
Abstract:
Five hydrocarbon degrading bacterial strains isolated from contaminated environment were investigated with respect to polyhydroxybutyrate (PHB) biosynthesis. Screening for bioplastic production was done on assay mineral salts agar medium containing 0.2% poly (3-hydroxybutyrate) as the sole carbon source. Two of the test bacteria were positive for PHB biosynthesis and were identified based on gram staining, biochemical tests, 16S rRNA gene sequence analysis as Pseudomonas aeruginosa and Bacillus licheniformis which grew at 37 and up to 65 °C respectively, thus suggesting the later to be thermotolerant. In this study, the effects of different carbon and nitrogen sources on PHB production in these strains were investigated. Maximum PHB production was obtained in 48 hr for the two strains and amounted to yields of 72.86 and 62.22 percentages for Bacillus licheniformis and Pseudomonas aeruginosa respectively. In these strains, glycine was the most efficient carbon sources for the production of PHB compared with other carbon (glucose, lactose, sucrose, Arabinose) and nitrogen (L- glycine, L-cysteine, DL-Tryptophan, and Potassium Nitrate) sources. The screening of microbial strains for industrial PHB production should be based on several factors including the cell’s capability to mineralize an inexpensive substrate, rate of growth and the extent of polymer accumulation.Keywords: bacteria, poly-3-hydroxybutyrate (PHB), hydrocarbon, thermotolerant
Procedia PDF Downloads 1981122 In vivo Iron Availability and Profile Lipid Composition in Anemic Rats Fed on Diets with Black Rice Bran Extract
Authors: Nurlaili E. P., Astuti M., Marsono Y., Naruki S.
Abstract:
Iron is an essential nutrient with limited bioavailability. Nutritional anemia caused mainly by iron deficiency is the most recognized nutritional problem in both countries as well as affluent societies. Rice (Oryza sativa L.) has become the most important cereal crop for the improvement of human health due to the starch, protein, oil, and the majority of micronutrients, particularly in Asian countries. In this study, the iron availability and profile lipid were evaluated for the extracts from Cibeusi varieties (black rices) of ancient rice brans. Results: The quality of K, B, R, E diets groups shows the same effect on the growth of rats. This indicate that groups is as efficiently utilized by the body as E diets. Hematocrit and MCHC levels of rats fed K, B, R and E diets were not significantly (P< 0.05). MCV and MCH levels of rats K, B, R were significantly (P< 0.05) with E groups but rats K, B, R were not significantly (P< 0.05). The iron content in the serum of rats fed with K, B, R and E diets were not significantly (P< 0.05). The highest level of iron in the serum was founded in the B group. The iron content in the liver of rats fed with K, B, R and E diets were not significantly (P< 0.05). The highest level of iron in the liver was founded in the R group. HDL cholesterol levels were significantly (P< 0.05) between rats of fed B, E with K, R, but K and R were not significantly (P< 0.05). LDL cholesterol levels of rats fed K and E significantly (P< 0.05) with B and R. Conclusions: the bran of pigmented rice varieties has, with some exceptions, greater antioxidant and free-radical scavenging activities. The results also show that pigmented rice extracts acted as pro-oxidants in the lipid peroxidation assay, possibly by mechanisms described for the pro-oxidant activities of tocopherol and ascorbic. Pigmented rice bran extracts more effectively increases iron stores and reduces the prevalence of iron deficiency. And reduces cholesterol, TG and LDL cholesterol and increses HDL cholesterol.Keywords: anemia, black rice bran extract, iron, profile lipid
Procedia PDF Downloads 4841121 Multiple Strategies in Prevention of Metabolic Syndrome Result from Vitamin D Deficiency in Children
Authors: Maryam Ghavam Sadri, Maryam Shahrooz
Abstract:
Background: Nowadays the prevalence of metabolic syndrome (Mets) has taken on a growing trend. Studies have shown the relationship between vitamin D deficiency (VDD) status and Mets in children. Also studies have recorded that exerting strategies for vitamin D status improvement can help prevent Mets in children. This study investigated multiple strategies of prevention of Mets resulting from VDD in children. Methods: This review study has been done by using keywords related to the topic and 54 articles were found (2000-2015) that 25 were selected according to the indicators of Mets, supplementation and fortification of foods with vitamin D and attention to children environment and life style. Results: Studies have suggested the correlation between serum levels of vitamin D with waist circumference (p < 0.0001), systolic blood pressure (p=0.01), HOMA-IR (p=0.001) and HDL cholesterol (p < 0.0001). An inverse correlation between serum 25 (OH) D and HOMA-IR (p = 0.006) and insulin (P = 0.002) has been proved in overweight group. Higher HOMASDS and triglycerides found in vitamin D deficient obese children compared to control group without VDD (p=0.04). After supplementation with vitamin D, serum TG concentration decreases significantly (p=0.04), and improves insulin resistance (p=0.02). The prevalence of VDD is associated with time of watching TV (P < 0.01), hours of physical activity per week (P = 0.01), skipping breakfast (P < 0.001) soda intake (P < 0.001), and milk intake per day (P < 0.01). Conclusion: According to the beneficial role of vitamin D in prevention of Mets and proven relationship between serum levels of vitamin D and Mets indicators, we can prevent childhood Mets through the application of appropriate strategies such as supplementation and food fortification with vitamin D and positive changes in children life style with especial attention to physical activity in exposure of sunlight and their environment condition.Keywords: children, metabolic syndrome, prevention strategies, vitamin D
Procedia PDF Downloads 5671120 Carbon, Nitrogen Doped TiO2 Macro/Mesoporous Monoliths with High Visible Light Absorption for Photocatalytic Wastewater Treatment
Authors: Paolo Boscaro, Vasile Hulea, François Fajula, Francis Luck, Anne Galarneau
Abstract:
TiO2 based monoliths with hierarchical macropores and mesopores have been synthesized following a novel one pot sol-gel synthesis method. Taking advantage of spinodal separation that occurs between titanium isopropoxide and an acidic solution in presence of polyethylene oxide polymer, monoliths with homogeneous interconnected macropres of 3 μm in diameter and mesopores of ca. 6 nm (surface area 150 m2/g) are obtained. Furthermore, these monoliths present some carbon and nitrogen (as shown by XPS and elemental analysis), which considerably reduce titanium oxide energy gap and enable light to be absorbed up to 700 nm wavelength. XRD shows that anatase is the dominant phase with a small amount of brookite. Enhanced light absorption and high porosity of the monoliths are responsible for a remarkable photocatalytic activity. Wastewater treatment has been performed in closed reactor under sunlight using orange G dye as target molecule. Glass reactors guarantee that most of UV radiations (to almost 300 nm) of solar spectrum are excluded. TiO2 nanoparticles P25 (usually used in photocatalysis under UV) and un-doped TiO2 monoliths with similar porosity were used as comparison. C,N-doped TiO2 monolith allowed a complete colorant degradation in less than 1 hour, whereas 10 h are necessary for 40% colorant degradation with P25 and un-doped monolith. Experiment performed in the dark shows that only 3% of molecules have been adsorbed in the C,N-doped TiO2 monolith within 1 hour. The much higher efficiency of C,N-doped TiO2 monolith in comparison to P25 and un-doped monolith, proves that doping TiO2 is an essential issue and that nitrogen and carbon are effective dopants. Monoliths offer multiples advantages in respect to nanometric powders: sample can be easily removed from batch (no needs to filter or to centrifuge). Moreover flow reactions can be set up with cylindrical or flat monoliths by simple sheathing or by locking them with O-rings.Keywords: C-N doped, sunlight photocatalytic activity, TiO2 monolith, visible absorbance
Procedia PDF Downloads 2301119 Linking the Genetic Signature of Free-Living Soil Diazotrophs with Process Rates under Land Use Conversion in the Amazon Rainforest
Authors: Rachel Danielson, Brendan Bohannan, S.M. Tsai, Kyle Meyer, Jorge L.M. Rodrigues
Abstract:
The Amazon Rainforest is a global diversity hotspot and crucial carbon sink, but approximately 20% of its total extent has been deforested- primarily for the establishment of cattle pasture. Understanding the impact of this large-scale disturbance on soil microbial community composition and activity is crucial in understanding potentially consequential shifts in nutrient or greenhouse gas cycling, as well as adding to the body of knowledge concerning how these complex communities respond to human disturbance. In this study, surface soils (0-10cm) were collected from three forests and three 45-year-old pastures in Rondonia, Brazil (the Amazon state with the greatest rate of forest destruction) in order to determine the impact of forest conversion on microbial communities involved in nitrogen fixation. Soil chemical and physical parameters were paired with measurements of microbial activity and genetic profiles to determine how community composition and process rates relate to environmental conditions. Measuring both the natural abundance of 15N in total soil N, as well as incorporation of enriched 15N2 under incubation has revealed that conversion of primary forest to cattle pasture results in a significant increase in the rate of nitrogen fixation by free-living diazotrophs. Quantification of nifH gene copy numbers (an essential subunit encoding the nitrogenase enzyme) correspondingly reveals a significant increase of genes in pasture compared to forest soils. Additionally, genetic sequencing of both nifH genes and transcripts shows a significant increase in the diversity of the present and metabolically active diazotrophs within the soil community. Levels of both organic and inorganic nitrogen tend to be lower in pastures compared to forests, with ammonium rather than nitrate as the dominant inorganic form. However, no significant or consistent differences in total, extractable, permanganate-oxidizable, or loss-on-ignition carbon are present between the two land-use types. Forest conversion is associated with a 0.5- 1.0 unit pH increase, but concentrations of many biologically relevant nutrients such as phosphorus do not increase consistently. Increases in free-living diazotrophic community abundance and activity appear to be related to shifts in carbon to nitrogen pool ratios. Furthermore, there may be an important impact of transient, low molecular weight plant-root-derived organic carbon on free-living diazotroph communities not captured in this study. Preliminary analysis of nitrogenase gene variant composition using NovoSeq metagenomic sequencing indicates that conversion of forest to pasture may significantly enrich vanadium-based nitrogenases. This indication is complemented by a significant decrease in available soil molybdenum. Very little is known about the ecology of diazotrophs utilizing vanadium-based nitrogenases, so further analysis may reveal important environmental conditions favoring their abundance and diversity in soil systems. Taken together, the results of this study indicate a significant change in nitrogen cycling and diazotroph community composition with the conversion of the Amazon Rainforest. This may have important implications for the sustainability of cattle pastures once established since nitrogen is a crucial nutrient for forage grass productivity.Keywords: free-living diazotrophs, land use change, metagenomic sequencing, nitrogen fixation
Procedia PDF Downloads 1941118 The Effect of Vitamin D Supplements and Aerobic Exercise on Hunger and Serum Insulin Levels in Adolescents With Metabolic Syndrome
Authors: Vahab Behmanesh
Abstract:
Metabolic syndrome is defined as having at least three of the five metabolic risk factors, including abdominal obesity, high blood pressure, high triglycerides, low HDL, and insulin resistance. Lifestyle changes towards reducing physical activity, unhealthy eating habits Especially the high-fat and high-carbohydrate diet is directly related to metabolic syndrome, and due to the epidemic of overweight and sedentary life, metabolic syndrome is a serious problem worldwide. On the other hand, vitamin D deficiency is considered as one of the most common problems in the world, which is related to the dysfunction of beta cells and insulin resistance, and therefore, vitamin D deficiency is considered as a factor in the occurrence of metabolic syndrome. 40 subjects (age: 16.12 ± 4.4 years and body mass index 25.61 ± 4.4 kg/m2) were randomly assigned to groups of aerobic exercise and placebo, aerobic exercise and vitamin D and placebo (no exercise) were divided. Vitamin D was taken at a dose of 50,000 units per week in a double-blind format for eight weeks, and the daily aerobic exercise program was performed for 50 to 60 minutes, three doses per week, with an intensity of 50-60% of the maximum heart rate. From one-way analysis of variance, Factorial variance analysis (2x2) repeated measurement and correlated t-test were used for data analysis. Aerobic exercise and vitamin D intake reduced all metabolic risk indicators and blood insulin (P < 0.05). However, the subjective feeling of hunger did not change significantly (P < 0.05). Regarding waist circumference and blood glucose, the effect of exercise combined with vitamin D consumption was greater than the corresponding effect in the vitamin D group (P < 0.05). Aerobic exercises and vitamin D intake are safe and effective for improving cardiometabolic health, Imam adds vitamin D to the exercise program has more benefits for weight and blood sugar control, which suggests prescribing it for patients with metabolic syndrome.Keywords: vitamin D, aerobic exercise, metabolic control, adolescents
Procedia PDF Downloads 1011117 Vitamin C Supplementation Modulates Zinc Levels and Antioxidant Values in Blood and Tissues of Diabetic Rats Fed Zinc-Deficient Diet
Authors: W. Fatmi, F. Kriba, Z. Kechrid
Abstract:
The aim of this study was to investigate the effect of vitamin C on blood biochemical parameters, tissue zinc, and antioxidants enzymes in diabetic rats fed a zinc-deficient diet. For that purpose, Alloxan-induced diabetic rats were divided into four groups. The first group was fed a zinc-sufficient diet while the second group was fed a zinc-deficient diet. The third and fourth groups received zinc-sufficient or zinc-deficient diets plus oral vitamin C (1mg/l) for 27 days. Body weight and food intake were recorded regularly during 27 days. On day 28, animals were killed and glucose, total lipids, triglycerides, protein, urea, serum zinc , tissues zinc concentrations, liver glycogen, GSH, TBARS concentrations and serum GOT, GPT, ALP and LDH, liver GSH-Px, GST and Catalase activities were determined. Body weight gain and food intake of zinc deficient diabetic animals at the end of experimental period was significantly lower than that of zinc adequate diabetic animals. Dietary zinc intake significantly increased glucose, lipids, triglycerides, urea, and liver TBARS levels of zinc deficient diabetic rats. In contrast, serum zinc, tissues zinc, protein, liver glycogen and GSH levels were decreased. The consumption of zinc deficient diet led also to an increase in serum GOT, GPT and liver GST accompanied with a decrease in serum ALP, LDH and liver GSH-Px, CAT activities. Meanwhile, vitamin C treatment was ameliorated all the previous parameters approximately to their normal levels. Vitamin C supplementation presumably acting as an antioxidant, and it probably led to an improvement of insulin activity, which significantly reduced the severity of zinc deficiency in diabetes.Keywords: antioxidant, experimental diabetes, liver enzymes, vitamin c, zinc deficiency
Procedia PDF Downloads 3651116 Inflation and Deflation of Aircraft's Tire with Intelligent Tire Pressure Regulation System
Authors: Masoud Mirzaee, Ghobad Behzadi Pour
Abstract:
An aircraft tire is designed to tolerate extremely heavy loads for a short duration. The number of tires increases with the weight of the aircraft, as it is needed to be distributed more evenly. Generally, aircraft tires work at high pressure, up to 200 psi (14 bar; 1,400 kPa) for airliners and higher for business jets. Tire assemblies for most aircraft categories provide a recommendation of compressed nitrogen that supports the aircraft’s weight on the ground, including a mechanism for controlling the aircraft during taxi, takeoff; landing; and traction for braking. Accurate tire pressure is a key factor that enables tire assemblies to perform reliably under high static and dynamic loads. Concerning ambient temperature change, considering the condition in which the temperature between the origin and destination airport was different, tire pressure should be adjusted and inflated to the specified operating pressure at the colder airport. This adjustment superseding the normal tire over an inflation limit of 5 percent at constant ambient temperature is required because the inflation pressure remains constant to support the load of a specified aircraft configuration. On the other hand, without this adjustment, a tire assembly would be significantly under/over-inflated at the destination. Due to an increase of human errors in the aviation industry, exorbitant costs are imposed on the airlines for providing consumable parts such as aircraft tires. The existence of an intelligent system to adjust the aircraft tire pressure based on weight, load, temperature, and weather conditions of origin and destination airports, could have a significant effect on reducing the aircraft maintenance costs, aircraft fuel and further improving the environmental issues related to the air pollution. An intelligent tire pressure regulation system (ITPRS) contains a processing computer, a nitrogen bottle with 1800 psi, and distribution lines. Nitrogen bottle’s inlet and outlet valves are installed in the main wheel landing gear’s area and are connected through nitrogen lines to main wheels and nose wheels assy. Controlling and monitoring of nitrogen will be performed by a computer, which is adjusted according to the calculations of received parameters, including the temperature of origin and destination airport, the weight of cargo loads and passengers, fuel quantity, and wind direction. Correct tire inflation and deflation are essential in assuring that tires can withstand the centrifugal forces and heat of normal operations, with an adequate margin of safety for unusual operating conditions such as rejected takeoff and hard landings. ITPRS will increase the performance of the aircraft in all phases of takeoff, landing, and taxi. Moreover, this system will reduce human errors, consumption materials, and stresses imposed on the aircraft body.Keywords: avionic system, improve efficiency, ITPRS, human error, reduced cost, tire pressure
Procedia PDF Downloads 2491115 Sensing Characteristics of Gold Nanoparticles Decorated Sputtered Tin Oxide Thin Films as Nitrogen Oxide Sensor
Authors: Qasem Drmosh, Zain Yamai, Amar Mohamedkhair, Abdulmajid Hendi
Abstract:
In recent years, there has been a growing interest in the reduction of the nitrogen oxides NOx (NO2, NO) gases resulting from automotive or combustion emissions. Recently, metal additives in nanometer dimension onto the surface of SnO2 nanorods, nanowires and nanotubes sensitizer to further increase the sensor response have been used. In contrast, there is a lack study focused on modifying the surface of SnO2 thin films by nanoparticles. The challenge in case of thin films is how to fabricate these nanoparticles on the surfaces in cost-effective method, high purity as well as without hampering electrical and topographical properties. Here in this report, a simple and facile strategy has been demonstrated to acquire high sensitive and fast response NO2 gas sensor. Structural, electrical, morphological, optical, and compositional properties of the fabricated sensors were investigated through different analytical technique including X-ray diffraction (XRD), Field emission scanning emission microscope (FESEM) and X-ray photoelectron spectroscopy (XPS). The sensing performance of the prepared sensors are studied at different temperatures for various concentrations of NO2 and compared with pristine SnO2 film.Keywords: NO2 sensor, SnO2, sputtering, thin films
Procedia PDF Downloads 2111114 Fertilizer Value of Nitrogen Captured from Poultry Facilities Using Ammonia Scrubbers
Authors: Philip A. Moore Jr., Jerry Martin, Hong Li
Abstract:
Research has shown that over half of the nitrogen (N) excreted from broiler chickens is emitted to the atmosphere before the manure is removed from the barns, resulting in air and water pollution, as well as the loss of a valuable fertilizer resource. The objective of this study was to determine the fertilizer efficiency of N captured from the exhaust air from poultry houses using acid scrubbers. This research was conducted using 24 plots located on a Captina silt loam soil. There were six treatments: (1) unfertilized control, (2) aluminum sulfate (alum) scrubber solution, (3) potassium bisulfate scrubber solution, (4) sodium bisulfate scrubber solution, (5) sulfuric acid scrubber solution and (6) ammonium nitrate fertilizer dissolved in water. There were four replications per treatment in a randomized block design. The scrubber solutions were obtained from acid scrubbers attached to exhaust fans on commercial broiler houses. All N sources were applied at an application rate equivalent to 112 kg N ha⁻¹. Forage yields were measured five times throughout the growing season. Five months after the fertilizer sources were applied, a rainfall simulation study was conducted to determine the potential effects on phosphorus (P) runoff. Forage yields were significantly higher in plots fertilized with scrubber solutions from potassium bisulfate and sodium bisulfate than plots fertilized with scrubber solutions made from alum or sulfuric acid or ammonium nitrate, which were higher than the controls (7.61, 7.46, 6.87, 6.72, 6.45, and 5.12 Mg ha ⁻¹, respectively). Forage N uptake followed similar trends as yields. Phosphorus runoff and water soluble P was significantly lower in plots fertilized with the scrubber solutions made from aluminum sulfate. This study demonstrates that N captured using ammonia scrubbers is as good or possibly better than commercial ammonium nitrate fertilizer.Keywords: air quality, ammonia emissions, nitrogen fertilizer, poultry
Procedia PDF Downloads 1991113 Insight into the Electrocatalytic Activities of Nitrogen-Doped Graphyne and Graphdiyne Families: A First-Principles Study
Authors: Bikram K. Das, Kalyan K. Chattopadhyay
Abstract:
The advent of 2-D materials in the last decade has induced a fresh spur of growth in fuel cell technology as these materials have some highly promising traits that can be exploited to felicitate Oxygen Reduction Reaction (ORR) in an efficient way. Among the various 2-D carbon materials, graphyne (Gy) and graphdiyne (Gdy)1 with their intrinsic non-uniform charge distribution holds promises in this purpose and it is expected2 that substitutional Nitrogen (N) doping could further enhance their efficiency. In this regard, dispersive force corrected density functional theory is used to map the oxygen reduction reaction (ORR) kinetics of five different kinds of N doped graphyne and graphdiyne systems (namely αGy, βGy, γGy, RGy and 6,6,12Gy and Gdy) in alkaline medium. The best doping site for each of the Gy/ Gdy system is determined comparing the formation energies of the possible doping configurations. Similarly, the best di-oxygen (O₂) adsorption sites for the doped systems are identified by comparing the adsorption energies. O₂ adsorption on all N doped Gy/ Gdy systems is found to be energetically favorable. ORR on a catalyst surface may occur either via the Eley-Rideal (ER) or the Langmuir–Hinschelwood (LH) pathway. Systematic studies performed on the considered systems reveal that all of them favor the ER pathway. Further, depending on the nature of di-oxygen adsorption ORR can follow either associative or dissociative mechanism; the possibility of occurrence of both the mechanisms is tested thoroughly for each N doped Gy/ Gdy. For the ORR process, all the Gy/Gdy systems are observed to prefer the efficient four-electron pathway but the expected monotonically exothermic reaction pathway is found only for N doped 6,6,12Gy and RGy following the associative pathway and for N doped βGy, γGy and Gdy following the dissociative pathway. Further computation performed for these systems reveals that for N doped 6,6,12Gy, RGy, βGy, γGy and Gdy the overpotentials are 1.08 V, 0.94 V, 1.17 V, 1.21 V and 1.04 V respectively depicting N doped RGy is the most promising material, to carry out ORR in alkaline medium, among the considered ones. The stability of the ORR intermediate states with the variation of pH and electrode potentials is further explored with Pourbiax diagrams and the activities of these systems in the alkaline medium are compared with the prior reported B/N doped identical systems for ORR in an acidic medium in terms of a common descriptor.Keywords: graphdiyne, graphyne, nitrogen-doped, ORR
Procedia PDF Downloads 1281112 Thermodynamic Analysis and Experimental Study of Agricultural Waste Plasma Processing
Authors: V. E. Messerle, A. B. Ustimenko, O. A. Lavrichshev
Abstract:
A large amount of manure and its irrational use negatively affect the environment. As compared with biomass fermentation, plasma processing of manure enhances makes it possible to intensify the process of obtaining fuel gas, which consists mainly of synthesis gas (CO + H₂), and increase plant productivity by 150–200 times. This is achieved due to the high temperature in the plasma reactor and a multiple reduction in waste processing time. This paper examines the plasma processing of biomass using the example of dried mixed animal manure (dung with a moisture content of 30%). Characteristic composition of dung, wt.%: Н₂О – 30, С – 29.07, Н – 4.06, О – 32.08, S – 0.26, N – 1.22, P₂O₅ – 0.61, K₂O – 1.47, СаО – 0.86, MgO – 0.37. The thermodynamic code TERRA was used to numerically analyze dung plasma gasification and pyrolysis. Plasma gasification and pyrolysis of dung were analyzed in the temperature range 300–3,000 K and pressure 0.1 MPa for the following thermodynamic systems: 100% dung + 25% air (plasma gasification) and 100% dung + 25% nitrogen (plasma pyrolysis). Calculations were conducted to determine the composition of the gas phase, the degree of carbon gasification, and the specific energy consumption of the processes. At an optimum temperature of 1,500 K, which provides both complete gasification of dung carbon and the maximum yield of combustible components (99.4 vol.% during dung gasification and 99.5 vol.% during pyrolysis), and decomposition of toxic compounds of furan, dioxin, and benz(a)pyrene, the following composition of combustible gas was obtained, vol.%: СО – 29.6, Н₂ – 35.6, СО₂ – 5.7, N₂ – 10.6, H₂O – 17.9 (gasification) and СО – 30.2, Н₂ – 38.3, СО₂ – 4.1, N₂ – 13.3, H₂O – 13.6 (pyrolysis). The specific energy consumption of gasification and pyrolysis of dung at 1,500 K is 1.28 and 1.33 kWh/kg, respectively. An installation with a DC plasma torch with a rated power of 100 kW and a plasma reactor with a dung capacity of 50 kg/h was used for dung processing experiments. The dung was gasified in an air (or nitrogen during pyrolysis) plasma jet, which provided a mass-average temperature in the reactor volume of at least 1,600 K. The organic part of the dung was gasified, and the inorganic part of the waste was melted. For pyrolysis and gasification of dung, the specific energy consumption was 1.5 kWh/kg and 1.4 kWh/kg, respectively. The maximum temperature in the reactor reached 1,887 K. At the outlet of the reactor, a gas of the following composition was obtained, vol.%: СO – 25.9, H₂ – 32.9, СO₂ – 3.5, N₂ – 37.3 (pyrolysis in nitrogen plasma); СO – 32.6, H₂ – 24.1, СO₂ – 5.7, N₂ – 35.8 (air plasma gasification). The specific heat of combustion of the combustible gas formed during pyrolysis and plasma-air gasification of agricultural waste is 10,500 and 10,340 kJ/kg, respectively. Comparison of the integral indicators of dung plasma processing showed satisfactory agreement between the calculation and experiment.Keywords: agricultural waste, experiment, plasma gasification, thermodynamic calculation
Procedia PDF Downloads 401111 Rental Housing May Address Affordable Housing Deficiency in India
Authors: Meha Singla, Shankhadeep Chaudhuri, Yadunandan Batchu
Abstract:
Rental Housing is a more cost effective and flexible housing solution for the low income families than home-ownership. While India is undergoing a new industrial metamorphosis with multiple government initiatives that emphasise on the growth of manufacturing sector through policy frameworks and corridor development proposals, there is going to be a huge influx of low-income working population to the upcoming urban centres. As per stats, about 70 per cent of the housing demand at these centres fall into the affordable segment. And in the midst of this rapid urbanisation and huge immigration of young population, there is a lack of proper rental housing framework in the country. A large number of immigrants will be unable to support home-ownership thereby leading to proliferation of slums in urban centres. As a result, there is a dire need for immediate articulation of a comprehensive rental housing policy and affordable housing initiatives. In this paper, CommonFloor attempts to analyse successful rental housing case studies of the world followed by establishing a correlation between the gap in urban rental housing stock and the per capita income statistics to devise rental housing affordability specific to major Indian cities (Delhi, Mumbai, Bangalore, Chennai). Further, with the corroboration of market price trends, it will try to locate feasible micro-markets for immediate rental housing action. Final research findings will provide key data points thereby helping to design the approach for efficient utilisation of unsold residential inventory in the country in order to compensate the rental housing deficiency. This data set is believed to express viable model(s) of the rental housing approach for the government and private participants.Keywords: housing prices, migration of population, real estate, rental housing, rental markets, residential property market, urbanisation
Procedia PDF Downloads 3061110 Dietary Intake, Serum Vitamin D Status, and Sun Exposure of Malaysian Women of Different Ethnicity
Authors: H. Z. M. Chong, M. E. Y. Leong, G. L. Khor, S. C. Loke
Abstract:
Vitamin D insufficiency is reported to be prevalent among women living in different altitudes including the equator where sunshine is available throughout the year. Multiple factors for vitamin D insufficiency include poor intake of vitamin D rich food and inadequate sun exposure, especially among women working indoor with a sedentary lifestyle. Furthermore, Muslim women in Malaysia whose attire covers the entire body are likely to receive poor sun exposure. This research determined serum vitamin D status, vitamin D intake and sun exposure of women aged 20-45 years of different ethnicity in Kuala Lumpur, Malaysia. Blood samples were collected from 106 women for determination of serum 25(OH)D levels. Information about vitamin D intake and sun exposure were obtained by interviewing the subjects using pre-tested questionnaires. The overall mean serum 25(OH)D was found to be 29.9 ± 14 nmol/L. Vitamin D deficiency and insufficiency was prevalent and highest among the Malay women. Less than ten percent of the subjects in this study met the sufficient vitamin D level recommendation of ≥50 nmol/L. Intake of vitamin D rich food such as oily fishes was poor across the different ethnicity. Other dietary sources of vitamin D in the diet were fortified bread and skim milk. On the other hand, the median sunlight exposure of the subjects was 3.9 hours per week. The Malay women reported to have the highest duration being exposed to the sun. Nevertheless, due to cultural clothing practices, these women had the least body surface area exposed to sunlight, resulting in the lowest calculated sun index score compared to the Chinese and the Indians. Low intake of vitamin D rich foods and sun exposure were negatively correlated with serum 25(OH)D level. In conclusion, intake of food sources rich in vitamin D and adequate body surface area exposed to the sun are essential to ensure healthy vitamin D level. Supplementation of vitamin D may be recommended to women whom unable to meet these recommendations.Keywords: serum 25-OH, sun exposure, vitamin D food frequency, vitamin D deficiency
Procedia PDF Downloads 2661109 Neurological Complication of Bariatric Surgery: A Cross-sectional Study from Saudi Arabia
Authors: H. A. Algahtani, A. S. Khan, O. Alzahrani, N. Hussein, M. A. Khan, Loudhi Y. I. Soliman
Abstract:
Objective: To report on the Saudi experience (developing country) of neurological complications from bariatric surgery. The literature on the subject is reviewed. Method: This is a cross sectional study done in King Abdul Aziz Medical City Jeddah, WR, where we reviewed all charts of the patients who underwent bariatric surgery between January 1st, 2009 to December 31st , 2014. Personal and clinical data including age, sex, BMI, comorbidities, type of procedure, duration of stay in hospital, complications and postoperative follow up were collected. In addition follow up visit and remote complication if present were collected. All patients with neurological complications were reviewed in details including their clinical examination, laboratory and imaging results, treatment and prognosis. This report is essentially descriptive with no statistical analysis performed. Results: Fifteen cases were collected in this study (3%). Axonal polyneuropathy was the most frequent neurological complica¬tion, but cases of Wernicke syndrome, vitamin B12 deficiency, Guillain-Barre syndrome and cupper deficiency were also identified. Fourteen patients (93.3%) had full recovery from the neurological signs and symptoms but unfortunately one patient died. Conclusion: Bariatric surgery, a procedure that is continuously increasing in popularity, is not free of potential neurological complications. A clear education, guidelines and follow-up program should be planned and practiced. Facts should be clearly presented to the individual undergoing this type of surgery. Although a clear cause-effect relation cannot be established for the present cases, the cumulative literature on the subject makes it important to warn the patient of the potential risks of this procedure.Keywords: bariatric surgery, neurological complications, neuropathy, Wenicke syndrome
Procedia PDF Downloads 3291108 Eradication of Apple mosaic virus from Corylus avellana L. via Cryotherapy and Confirmation of Virus-Free Plants via Reverse Transcriptase Polymerase Chain Reaction
Authors: Ergun Kaya
Abstract:
Apple mosaic virus (ApMV) is an ilarvirus causing harmful damages and product loses in many plant species. Because of xylem and phloem vessels absence, plant meristem tissues used for meristem cultures are virus-free, but sometimes only meristem cultures are not sufficient for virus elimination. Cryotherapy, a new method based on cryogenic techniques, is used for virus elimination. In this technique, 0.1-0.3mm meristems are excised from organized shoot apex of a selected in vitro donor plant and these meristems are frozen in liquid nitrogen (-196 °C) using suitable cryogenic technique. The aim of this work was to develop an efficient procedure for ApMV-free hazelnut via cryotherapy technique and confirmation of virus-free plants using Reverse Transcriptase-PCR technique. 100% virus free plantlets were obtained using droplet-vitrification method involved cold hardening in vitro cultures of hazelnut, 24 hours sucrose preculture of meristems on MS medium supplemented with 0.4M sucrose, and a 90 min PVS2 treatment in droplets.Keywords: droplet vitrification, hazelnut, liquid nitrogen, PVS2
Procedia PDF Downloads 1601107 Nutrients Removal from Industrial Wastewater Using Constructed Wetland System
Authors: Christine Odinga, Fred Otieno, Josiah Adeyemo
Abstract:
A study was done to establish the effectiveness of wetland plants: Echinocloa pyramidalis (L) and Cyperus papyrus (L) in purifying wastewater from sugar factory stabilization pond effluent. A pilot-scale Free Water Surface Wetland (FWSCW) system was constructed in Chemelil sugar factory, Kenya for the study. The wetland was divided into 8 sections (cells) and planted with C. papyrus and E. pyramidalis in alternating sequence. Water samples and plant specimen were taken fortnightly at inlets and outlets of the cells and analysed for total phosphates and total nitrates. The data was analysed by use of Microsoft excel and SPSS computer packages. Water analysis recorded a reduction in the nutrient levels between the inlet pond nine and the final outlet channel to River Nyando. The plants grown in the wetland experienced varied increases and reductions in the level of total foliar nitrogen and phosphorous, indicating that though the nutrients were being removed from the wetland, the same were not those assimilated by the plants either. The control plants had higher folia phosphorous and nitrogen, an indication that the system of the constructed wetland was able to eliminate the nutrients effectively from the plants.Keywords: wetlands, constructed, plants, nutrients, wastewater, industrial
Procedia PDF Downloads 3011106 The Effect of Alternative Organic Fertilizer and Chemical Fertilizer on Nitrogen and Yield of Peppermint (Mentha peperita)
Authors: Seyed Ali Mohammad, Modarres Sanavy, Hamed Keshavarz, Ali Mokhtassi-Bidgoli
Abstract:
One of the biggest challenges for the current and future generations is to produce sufficient food for the world population with the existing limited available water resources. Peppermint is a specialty crop used for food and medicinal purposes. Its main component is menthol. It is used predominantly for oral hygiene, pharmaceuticals, and foods. Although drought stress is considered as a negative factor in agriculture, being responsible for severe yield losses; medicinal plants grown under semi-arid conditions usually produce higher concentrations of active substances than same species grown under moderate climates. Nitrogen (N) fertilizer management is central to the profitability and sustainability of forage crop production. Sub-optimal N supply will result in poor yields, and excess N application can lead to nitrate leaching and environmental pollution. In order to determine the response of peppermint to drought stress and different fertilizer treatments, a field experiment with peppermint was conducted in a sandy loam soil at a site of the Tarbiat Modares University, Agriculture Faculty, Tehran, Iran. The experiment used a complete randomized block design, with six rates of fertilizer strategies (F1: control, F2: Urea, F3: 75% urea + 25% vermicompost, F4: 50% urea + 50% vermicompost, F5: 25% urea + 75% vermicompost and F6: vermicompost) and three irrigation regime (S1: 45%, S2: 60% and S3: 75% FC) with three replication. The traits such as nitrogen, chlorophyll, carotenoids, anthocyanin, flavonoid and fresh biomass were studied. The results showed that the treatments had a significant effect on the studied traits as drought stress reduced photosynthetic pigment concentration. Also, drought stress reduced fresh yield of peppermint. Non stress condition had the greater amount of chlorophyll and fresh yield more than other irrigation treatments. The highest concentration of chlorophyll and the fresh biomass was obtained in F2 fertilizing treatments. Sever water stress (S1) produced decreased photosynthetic pigment content fresh yield of peppermint. Supply of N could improve photosynthetic capacity by enhancing photosynthetic pigment content. Perhaps application of vermicompost significantly improved the organic carbon, available N, P and K content in soil over urea fertilization alone. To get sustainable production of peppermint, application of vermicompost along with N through synthetic fertilizer is recommended for light textured sandy loam soils.Keywords: fresh yield, peppermint, synthetic nitrogen, vermicompost, water stress
Procedia PDF Downloads 2171105 Enhanced Exchange Bias in Poly-crystalline Compounds through Oxygen Vacancy and B-site Disorder
Authors: Koustav Pal, Indranil Das
Abstract:
In recent times, perovskite and double perovskite (DP) systems attracts lot of interest as they provide a rich material platform for studying emergent functionalities like near-room-temperature ferromagnetic (FM) insulators, exchange bias (EB), magnetocaloric effects, colossal magnetoresistance, anisotropy, etc. These interesting phenomena emerge because of complex couplings between spin, charge, orbital, and lattice degrees of freedom in these systems. Various magnetic phenomena such as exchange bias, spin glass, memory effect, colossal magneto-resistance, etc. can be modified and controlled through antisite (B-site) disorder or controlling oxygen concentration of the material. By controlling oxygen concentration in SrFe0.5Co0.5O3 – δ (SFCO) (δ ∼ 0.3), we achieve intrinsic exchange bias effect with a large exchange bias field (∼1.482 Tesla) and giant coercive field (∼1.454 Tesla). Now we modified the B-site by introducing 10% iridium in the system. This modification give rise to the exchange bias field as high as 1.865 tesla and coercive field 1.863 tesla. Our work aims to investigate the effect of oxygen deficiency and B-site effect on exchange bias in oxide materials for potential technological applications. Structural characterization techniques including X-ray diffraction, scanning tunneling microscopy, and transmission electron microscopy were utilized to determine crystal structure and particle size. X-ray photoelectron spectroscopy was used to identify valence states of the ions. Magnetic analysis revealed that oxygen deficiency resulted in a large exchange bias due to a significant number of ionic mixtures. Iridium doping was found to break interaction paths, resulting in various antiferromagnetic and ferromagnetic surfaces that enhance exchange bias.Keywords: coercive field, disorder, exchange bias, spin glass
Procedia PDF Downloads 771104 Enhanced Iron Accumulation in Chickpea Though Expression of Iron-Regulated Transport and Ferritin Genes
Authors: T. M. L. Hoang, G. Tan, S. D. Bhowmik, B. Williams, A. Johnson, M. R. Karbaschi, Y. Cheng, H. Long, S. G. Mundree
Abstract:
Iron deficiency is a worldwide problem affecting both developed and developing countries. Currently, two major approaches namely iron supplementation and food fortification have been used to combat this issue. These measures, however, are limited by the economic status of the targeted demographics. Iron biofortification through genetic modification to enhance the inherent iron content and bioavailability of crops has been employed recently. Several important crops such as rice, wheat, and banana were reported successfully improved iron content via this method, but there is no known study in legumes. Chickpea (Cicer arietinum) is an important leguminous crop that is widely consumed, particularly in India where iron deficiency anaemia is prevalent. Chickpea is also an ideal pulse in the formulation of complementary food between pulses and cereals to improve micronutrient contents. This project aims at generating enhanced ion accumulation and bioavailability chickpea through the exogenous expression of genes related to iron transport and iron homeostasis in chickpea plants. Iron-Regulated Transport (IRT) and Ferritin genes in combination were transformed into chickpea half-embryonic axis by agrobacterium–mediated transformation. Transgenic independent event was confirmed by Southern Blot analysis. T3 leaves and seeds of transgenic chickpea were assessed for iron contents using LA-ICP-MS (Laser Ablation – Inductively Coupled Plasma Mass Spectrometry) and ICP-OES (Inductively Coupled Plasma Optical Emission Spectrometry). The correlation between transgene expression levels and iron content in T3 plants and seeds was assessed using qPCR. Results show that iron content in transgenic chickpea expressing the above genes significantly increased compared to that in non-transgenic controls.Keywords: iron biofortification, chickpea, IRT, ferritin, Agrobacterium-mediated transformation, LA-ICP-MS, ICP-OES
Procedia PDF Downloads 4411103 Growth Studies and Leaf Mineral Composition of Amaranthus hybridus L. in Soil Medium Supplemended with Palm Bunch Ash Extract from Elaeis Guineensis jacq. in Abak Agricultural Zone of Akwa Ibom State, Nigeria
Authors: Etukudo, M. Mbosowo, Nyananyo, L. Bio, Negbenebor, A. Charles
Abstract:
An aqueous extract of palm bunch ash from Elaeis guineensis Jacq., equilibrated with water was used to assess the growth and minerals composition of Amaranthus hybridus L. in agricultural soil of Abak, Akwa Ibom State, nigeria. Various concentrations, 0 (control), 10, 20, 30, 40, and 50% of palm bunch extract per 4kg of sandy-loam soil were used for the study. Chemical characteristics of the extract, Growth parameters (Plant height, root length, fresh weight, dry weight and moisture content), leaf minerals composition (Nitrogen, phosphorus, potassium, calcium and magnesium) of the crop and soil chemical composition before and after harvest (pH, organic matter, nitrogen, phosphorus, potassium, calcium and magnesium) were examined. The results showed that palm bunch ash extract significantly (P < 0.05) increased the soil pH at all levels of treatments compared to the control. Similarly, the soil and leaf minerals component (N, P, K. Ca, and Mg) of the crop increased with increase in the concentration of palm bunch extract, except at 40 and 50% for leaf minerals composition, Soil organic matter, nitrogen and phosphorus J(before and after harvest). In addition, The plant height, Root length, fresh weight, dry weight and moisture content of the crop increased significantly (P < 0.05) with increase in the concentration of the extract, Except at 30, 40 and 50% where these growth parameters decreased in relation to the control treatment. Therefore, this study suggests that palm bunch ash extract could be utilized at lower concentration as a nutrient supplement for both Amaranthus hubridus L. and soil medium, most especially in the tropical soils of the Niger Delta region of Nigeria.Keywords: Amaranthus hybridus L., growth, leaf minerals composition, palm bunch ash extract
Procedia PDF Downloads 4451102 Combination of Artificial Neural Network Model and Geographic Information System for Prediction Water Quality
Authors: Sirilak Areerachakul
Abstract:
Water quality has initiated serious management efforts in many countries. Artificial Neural Network (ANN) models are developed as forecasting tools in predicting water quality trend based on historical data. This study endeavors to automatically classify water quality. The water quality classes are evaluated using 6 factor indices. These factors are pH value (pH), Dissolved Oxygen (DO), Biochemical Oxygen Demand (BOD), Nitrate Nitrogen (NO3N), Ammonia Nitrogen (NH3N) and Total Coliform (T-Coliform). The methodology involves applying data mining techniques using multilayer perceptron (MLP) neural network models. The data consisted of 11 sites of Saen Saep canal in Bangkok, Thailand. The data is obtained from the Department of Drainage and Sewerage Bangkok Metropolitan Administration during 2007-2011. The results of multilayer perceptron neural network exhibit a high accuracy multilayer perception rate at 94.23% in classifying the water quality of Saen Saep canal in Bangkok. Subsequently, this encouraging result could be combined with GIS data improves the classification accuracy significantly.Keywords: artificial neural network, geographic information system, water quality, computer science
Procedia PDF Downloads 343