Search results for: medication error
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2300

Search results for: medication error

1970 Evaluation of Trabectedin Safety and Effectiveness at a Tertiary Cancer Center at Qatar: A Retrospective Analysis

Authors: Nabil Omar, Farah Jibril, Oraib Amjad

Abstract:

Purpose: Trabecatine is a is a potent marine-derived antineoplastic drug which binds to the minor groove of the DNA, bending DNA towards the major groove resulting in a changed conformation that interferes with several DNA transcription factors, repair pathways and cell proliferation. Trabectedin was approved by the European Medicines Agency (EMA; London, UK) for the treatment of adult patients with advanced stage soft tissue sarcomas in whom treatment with anthracyclines and ifosfamide has failed, or for those who are not candidates for these therapies. The recommended dosing regimen is 1.5 mg/m2 IV over 24 hours every 3 weeks. The purpose of this study was to comprehensively review available data on the safety and efficacy of trabectedin used as indicated for patients at a Tertiary Cancer Center at Qatar. Methods: A medication administration report generated in the electronic health record identified all patients who received trabectedin between November 1, 2015 and November 1, 2017. This retrospective chart review evaluated the indication of trabectedin use, compliance to administration protocol and the recommended monitoring parameters, number of patients improved on the drug and continued treatment, number of patients discontinued treatment due to side-effects and the reported side effects. Progress and discharged notes were utilized to report experienced side effects during trabectedin therapy. A total of 3 patients were reviewed. Results: Total of 2 out of 3 patients who received trabectedin were receiving it for non-FDA and non-EMA, approved indications; metastatic rhabdomyosarcoma and ovarian cancer stage IV with poor prognosis. And only one patient received it as indicated for leiomyosarcoma of left ureter with metastases to liver, lungs and bone. None of the patients has continued the therapy due to development of serious side effects. One patient had stopped the medication after one cycle due to disease progression and transient hepatic toxicity, the other one had disease progression and developed 12 % reduction in LVEF after 12 cycles of trabectedin, and the third patient deceased, had disease progression on trabectedin after the 10th cycle that was received through peripheral line which resulted in developing extravasation and left arm cellulitis requiring debridement. Regarding monitoring parameters, at baseline the three patients had ECHO, and Creatine Phosphokinase (CPK) but it was not monitored during treatment as recommended. Conclusion: Utilizing this medication as indicated with performing the appropriate monitoring parameters as recommended can benefit patients who are receiving it. It is important to reinforce the intravenous administration via central intravenous line, the re-assessment of left ventricular ejection fraction (LVEF) by echocardiogram or multigated acquisition (MUGA) scan at 2- to 3-month intervals thereafter until therapy is discontinued, and CPK and LFTs levels prior to each administration of trabectedin.

Keywords: trabectedin, drug-use evaluation, safety, effectiveness, adverse drug reaction, monitoring

Procedia PDF Downloads 145
1969 Dorsal Root Ganglion Neuromodulation as an Alternative to Opioids in the Evolving Healthcare Crisis

Authors: Adam J. Carinci

Abstract:

Background: The opioid epidemic is the most pressing healthcare crisis of our time. There is increasing recognition that opioids have limited long-term efficacy and are associated with hyperalgesia, addiction, and increased morbidity and mortality. Therefore, alternative strategies to combat chronic pain are paramount. We initiated a multicenter retrospective case series to review the efficacy of DRG stimulation in facilitating opioid tapering, opioid discontinuation and as a viable alternative to chronic opioid therapy. Purpose: The dorsal root ganglion (DRG) plays a key role in the development and maintenance of pain. Recent innovations in neuromodulation, specifically, dorsal root ganglion stimulation, offers an effective alternative to opioids in the treatment of chronic pain. This retrospective case series demonstrates preliminary evidence that DRG stimulation facilitates opioid tapering, opioid discontinuation and presents a viable alternative to chronic opioid therapy. Procedure: This small multicenter retrospective case series provides preliminary evidence that DRG stimulation facilitates opioid weaning, opioid tapering and is a viable option to opioid therapy in the treatment of chronic pain. A retrospective analysis was completed. Visual analog scale pain scores and pain medication usage were collected at the baseline visit and after four weeks, 3 months and 6 months of treatment. Ten consecutive patients across two study centers were included. The pain was rated 7.38 at baseline and decreased to 1.50 at the 4-week follow-up, a reduction of 79.5%. All patients significantly decreased their opioid pain medication use with an average > 30% reduction in morphine equivalents and four were able to discontinue their medications entirely. Conclusion: This Retrospective case series demonstrates preliminary evidence that DRG stimulation facilitates opioid tapering, opioid discontinuation and presents a viable alternative to chronic opioid therapy.

Keywords: dorsal root ganglion, neuromodulation, opioid sparing, stimulation

Procedia PDF Downloads 115
1968 Design and Performance Analysis of Advanced B-Spline Algorithm for Image Resolution Enhancement

Authors: M. Z. Kurian, M. V. Chidananda Murthy, H. S. Guruprasad

Abstract:

An approach to super-resolve the low-resolution (LR) image is presented in this paper which is very useful in multimedia communication, medical image enhancement and satellite image enhancement to have a clear view of the information in the image. The proposed Advanced B-Spline method generates a high-resolution (HR) image from single LR image and tries to retain the higher frequency components such as edges in the image. This method uses B-Spline technique and Crispening. This work is evaluated qualitatively and quantitatively using Mean Square Error (MSE) and Peak Signal to Noise Ratio (PSNR). The method is also suitable for real-time applications. Different combinations of decimation and super-resolution algorithms in the presence of different noise and noise factors are tested.

Keywords: advanced b-spline, image super-resolution, mean square error (MSE), peak signal to noise ratio (PSNR), resolution down converter

Procedia PDF Downloads 399
1967 Statistical Time-Series and Neural Architecture of Malaria Patients Records in Lagos, Nigeria

Authors: Akinbo Razak Yinka, Adesanya Kehinde Kazeem, Oladokun Oluwagbenga Peter

Abstract:

Time series data are sequences of observations collected over a period of time. Such data can be used to predict health outcomes, such as disease progression, mortality, hospitalization, etc. The Statistical approach is based on mathematical models that capture the patterns and trends of the data, such as autocorrelation, seasonality, and noise, while Neural methods are based on artificial neural networks, which are computational models that mimic the structure and function of biological neurons. This paper compared both parametric and non-parametric time series models of patients treated for malaria in Maternal and Child Health Centres in Lagos State, Nigeria. The forecast methods considered linear regression, Integrated Moving Average, ARIMA and SARIMA Modeling for the parametric approach, while Multilayer Perceptron (MLP) and Long Short-Term Memory (LSTM) Network were used for the non-parametric model. The performance of each method is evaluated using the Mean Absolute Error (MAE), R-squared (R2) and Root Mean Square Error (RMSE) as criteria to determine the accuracy of each model. The study revealed that the best performance in terms of error was found in MLP, followed by the LSTM and ARIMA models. In addition, the Bootstrap Aggregating technique was used to make robust forecasts when there are uncertainties in the data.

Keywords: ARIMA, bootstrap aggregation, MLP, LSTM, SARIMA, time-series analysis

Procedia PDF Downloads 77
1966 Constructions of Linear and Robust Codes Based on Wavelet Decompositions

Authors: Alla Levina, Sergey Taranov

Abstract:

The classical approach to the providing noise immunity and integrity of information that process in computing devices and communication channels is to use linear codes. Linear codes have fast and efficient algorithms of encoding and decoding information, but this codes concentrate their detect and correct abilities in certain error configurations. To protect against any configuration of errors at predetermined probability can robust codes. This is accomplished by the use of perfect nonlinear and almost perfect nonlinear functions to calculate the code redundancy. The paper presents the error-correcting coding scheme using biorthogonal wavelet transform. Wavelet transform applied in various fields of science. Some of the wavelet applications are cleaning of signal from noise, data compression, spectral analysis of the signal components. The article suggests methods for constructing linear codes based on wavelet decomposition. For developed constructions we build generator and check matrix that contain the scaling function coefficients of wavelet. Based on linear wavelet codes we develop robust codes that provide uniform protection against all errors. In article we propose two constructions of robust code. The first class of robust code is based on multiplicative inverse in finite field. In the second robust code construction the redundancy part is a cube of information part. Also, this paper investigates the characteristics of proposed robust and linear codes.

Keywords: robust code, linear code, wavelet decomposition, scaling function, error masking probability

Procedia PDF Downloads 491
1965 Accurate Positioning Method of Indoor Plastering Robot Based on Line Laser

Authors: Guanqiao Wang, Hongyang Yu

Abstract:

There is a lot of repetitive work in the traditional construction industry. These repetitive tasks can significantly improve production efficiency by replacing manual tasks with robots. There- fore, robots appear more and more frequently in the construction industry. Navigation and positioning are very important tasks for construction robots, and the requirements for accuracy of positioning are very high. Traditional indoor robots mainly use radiofrequency or vision methods for positioning. Compared with ordinary robots, the indoor plastering robot needs to be positioned closer to the wall for wall plastering, so the requirements for construction positioning accuracy are higher, and the traditional navigation positioning method has a large error, which will cause the robot to move. Without the exact position, the wall cannot be plastered, or the error of plastering the wall is large. A new positioning method is proposed, which is assisted by line lasers and uses image processing-based positioning to perform more accurate positioning on the traditional positioning work. In actual work, filter, edge detection, Hough transform and other operations are performed on the images captured by the camera. Each time the position of the laser line is found, it is compared with the standard value, and the position of the robot is moved or rotated to complete the positioning work. The experimental results show that the actual positioning error is reduced to less than 0.5 mm by this accurate positioning method.

Keywords: indoor plastering robot, navigation, precise positioning, line laser, image processing

Procedia PDF Downloads 148
1964 A Cross-Sectional Study of Parents’ Knowledge, Attitude, and Health-Seeking Behaviour Towards Childhood Tuberculosis during COVID-19 Pandemic: Lessons Learned from Indonesia

Authors: Windy Rakhmawati, Suryani Suryani, Sri Hendrawati, Nenden Nur Asriyani Maryam

Abstract:

Tuberculosis (TB) is one of the leading causes of death in the world. Fear of COVID-19 has made people reluctant to visit health facilities, leading to disruptions to childhood TB control programs, which may increase household transmission and delay diagnosis and treatment. This study aimed to describe parents' knowledge, attitudes, and health-seeking behaviour towards childhood TB during the COVID-19 pandemic. This cross-sectional study was performed on 392 parents with TB children in three provinces with the highest proportion of TB cases in Indonesia. This study was conducted from February to December 2022. The inclusion criteria of respondents were parents with a child aged 0-14 years old with TB diagnosis who live with their parents. Data were collected using the Knowledge, Attitude, and Practice (KAP) survey guidelines from the World Health Organization and analyzed descriptively, as well as Spearman’s correlation. Overall, 392 parents of children with TB had poor knowledge (51.8%) including about causes, risk factors, transmission, symptoms, treatment, and prevention, which about 52.3%, 55.1%, 61.2%, 69.6%, 100%, 59.2%, respectively. Parents' health service-seeking behaviour towards Child TB was not normally distributed (P < 0.05) with knowledge test results (.000) and Seeking Health Services (.000). Health-seeking behaviour of parents in pediatric TB care was self-medication or self-treatment (86.2%), Traditional health seeking behaviour (4.8%), and modern health seeking behaviour (8.9%). The correlation between knowledge and seeking health services (Sig= .609) means there is no correlation between knowledge about TB and parents' health-seeking behaviour. Furthermore, 60.2% of the respondents would be shocked if their child had TB. More than half of the families in this study have poor knowledge and did self-medication or self-treatment regarding health-seeking behaviour for TB disease. Therefore, health workers, especially nurses, must provide TB-related education and health promotion and emphasize the importance of early detection. Health workers can also optimize their role in caring for and providing care to patients by increasing their trust in health workers, which will impact health-seeking behaviour in the future.

Keywords: attitude, child, health seeking behaviour, knowledge, tuberculosis

Procedia PDF Downloads 70
1963 Signal Restoration Using Neural Network Based Equalizer for Nonlinear channels

Authors: Z. Zerdoumi, D. Benatia, , D. Chicouche

Abstract:

This paper investigates the application of artificial neural network to the problem of nonlinear channel equalization. The difficulties caused by channel distortions such as inter symbol interference (ISI) and nonlinearity can overcome by nonlinear equalizers employing neural networks. It has been shown that multilayer perceptron based equalizer outperform significantly linear equalizers. We present a multilayer perceptron based equalizer with decision feedback (MLP-DFE) trained with the back propagation algorithm. The capacity of the MLP-DFE to deal with nonlinear channels is evaluated. From simulation results it can be noted that the MLP based DFE improves significantly the restored signal quality, the steady state mean square error (MSE), and minimum Bit Error Rate (BER), when comparing with its conventional counterpart.

Keywords: Artificial Neural Network, signal restoration, Nonlinear Channel equalization, equalization

Procedia PDF Downloads 498
1962 Comparison of Various Classification Techniques Using WEKA for Colon Cancer Detection

Authors: Beema Akbar, Varun P. Gopi, V. Suresh Babu

Abstract:

Colon cancer causes the deaths of about half a million people every year. The common method of its detection is histopathological tissue analysis, it leads to tiredness and workload to the pathologist. A novel method is proposed that combines both structural and statistical pattern recognition used for the detection of colon cancer. This paper presents a comparison among the different classifiers such as Multilayer Perception (MLP), Sequential Minimal Optimization (SMO), Bayesian Logistic Regression (BLR) and k-star by using classification accuracy and error rate based on the percentage split method. The result shows that the best algorithm in WEKA is MLP classifier with an accuracy of 83.333% and kappa statistics is 0.625. The MLP classifier which has a lower error rate, will be preferred as more powerful classification capability.

Keywords: colon cancer, histopathological image, structural and statistical pattern recognition, multilayer perception

Procedia PDF Downloads 575
1961 Comparing Machine Learning Estimation of Fuel Consumption of Heavy-Duty Vehicles

Authors: Victor Bodell, Lukas Ekstrom, Somayeh Aghanavesi

Abstract:

Fuel consumption (FC) is one of the key factors in determining expenses of operating a heavy-duty vehicle. A customer may therefore request an estimate of the FC of a desired vehicle. The modular design of heavy-duty vehicles allows their construction by specifying the building blocks, such as gear box, engine and chassis type. If the combination of building blocks is unprecedented, it is unfeasible to measure the FC, since this would first r equire the construction of the vehicle. This paper proposes a machine learning approach to predict FC. This study uses around 40,000 vehicles specific and o perational e nvironmental c onditions i nformation, such as road slopes and driver profiles. A ll v ehicles h ave d iesel engines and a mileage of more than 20,000 km. The data is used to investigate the accuracy of machine learning algorithms Linear regression (LR), K-nearest neighbor (KNN) and Artificial n eural n etworks (ANN) in predicting fuel consumption for heavy-duty vehicles. Performance of the algorithms is evaluated by reporting the prediction error on both simulated data and operational measurements. The performance of the algorithms is compared using nested cross-validation and statistical hypothesis testing. The statistical evaluation procedure finds that ANNs have the lowest prediction error compared to LR and KNN in estimating fuel consumption on both simulated and operational data. The models have a mean relative prediction error of 0.3% on simulated data, and 4.2% on operational data.

Keywords: artificial neural networks, fuel consumption, friedman test, machine learning, statistical hypothesis testing

Procedia PDF Downloads 180
1960 MMSE-Based Beamforming for Chip Interleaved CDMA in Aeronautical Mobile Radio Channel

Authors: Sherif K. El Dyasti, Esam A. Hagras, Adel E. El-Hennawy

Abstract:

This paper addresses the performance of antenna array beam-forming on Chip-Interleaved Code Division Multiple Access (CI_CDMA) system based on Minimum Mean Square Error (MMSE) detector in aeronautical mobile radio channel. Multipath fading, Doppler shifts caused by the speed of the aircraft, and Multiple Access Interference (MAI) are the most important reasons that affect and reduce the performance of aeronautical system. In this paper, we suggested the CI-CDMA with antenna array to combat this fading and improve the bit error rate (BER) performance. We further evaluate the performance of the proposed system in the four standard scenarios in aeronautical mobile radio channel.

Keywords: aeronautical channel, CI-CDMA, beamforming, communication, information

Procedia PDF Downloads 419
1959 Tripeptide Inhibitor: The Simplest Aminogenic PEGylated Drug against Amyloid Beta Peptide Fibrillation

Authors: Sutapa Som Chaudhury, Chitrangada Das Mukhopadhyay

Abstract:

Alzheimer’s disease is a well-known form of dementia since its discovery in 1906. Current Food and Drug Administration approved medications e.g. cholinesterase inhibitors, memantine offer modest symptomatic relief but do not play any role in disease modification or recovery. In last three decades many small molecules, chaperons, synthetic peptides, partial β-secretase enzyme blocker have been tested for the development of a drug against Alzheimer though did not pass the 3rd clinical phase trials. Here in this study, we designed a PEGylated, aminogenic, tripeptidic polymer with two different molecular weights based on the aggregation prone amino acid sequence 17-20 in amyloid beta (Aβ) 1-42. Being conjugated with poly-ethylene glycol (PEG) which self-assembles into hydrophilic nanoparticles, these PEGylated tripeptides constitute a very good drug delivery system crossing the blood brain barrier while the peptide remains protected from proteolytic degradation and non-specific protein interactions. Moreover, being completely aminogenic they would not raise any side effects. These peptide inhibitors were evaluated for their effectiveness against Aβ42 fibrillation at an early stage of oligomer to fibril formation as well as preformed fibril clearance via Thioflavin T (ThT) assay, dynamic light scattering analyses, atomic force microscopy and scanning electron microscopy. The inhibitors were proved to be safe at a higher concentration of 20µM by the reduction assay of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) dye. Moreover, SHSY5Y neuroblastoma cells have shown a greater survivability when treated with the inhibitors following Aβ42 fibril and oligomer treatment as compared with the control Aβ42 fibril and/or oligomer treated neuroblastoma cells. These make the peptidic inhibitors a promising compound in the aspect of the discovery of alternative medication for Alzheimer’s disease.

Keywords: Alzheimer’s disease, alternative medication, amyloid beta, PEGylated peptide

Procedia PDF Downloads 209
1958 Machine Learning Models for the Prediction of Heating and Cooling Loads of a Residential Building

Authors: Aaditya U. Jhamb

Abstract:

Due to the current energy crisis that many countries are battling, energy-efficient buildings are the subject of extensive research in the modern technological era because of growing worries about energy consumption and its effects on the environment. The paper explores 8 factors that help determine energy efficiency for a building: (relative compactness, surface area, wall area, roof area, overall height, orientation, glazing area, and glazing area distribution), with Tsanas and Xifara providing a dataset. The data set employed 768 different residential building models to anticipate heating and cooling loads with a low mean squared error. By optimizing these characteristics, machine learning algorithms may assess and properly forecast a building's heating and cooling loads, lowering energy usage while increasing the quality of people's lives. As a result, the paper studied the magnitude of the correlation between these input factors and the two output variables using various statistical methods of analysis after determining which input variable was most closely associated with the output loads. The most conclusive model was the Decision Tree Regressor, which had a mean squared error of 0.258, whilst the least definitive model was the Isotonic Regressor, which had a mean squared error of 21.68. This paper also investigated the KNN Regressor and the Linear Regression, which had to mean squared errors of 3.349 and 18.141, respectively. In conclusion, the model, given the 8 input variables, was able to predict the heating and cooling loads of a residential building accurately and precisely.

Keywords: energy efficient buildings, heating load, cooling load, machine learning models

Procedia PDF Downloads 97
1957 Management of Severe Asthma with Omalizumab in United Arab Emirates

Authors: Shanza Akram, Samir Salah, Imran Saleem, Jassim Abdou, Ashraf Al Zaabi

Abstract:

Estimated prevalence of asthma in UAE is around 10% (900,000 people). Patients with persistent symptoms despite using high dose ICS plus a second controller +/- Oral steroids are considered to have severe asthma. Omalizumab (Xolair) is an anti-IgE monoclonal antibody approved as add-on therapy for severe allergic asthma. The objective of our study was to obtain baseline characteristics of our local cohort, to determine the efficacy of omalizumab based on clinical outcomes pre and post 52 weeks of treatment and to assess safety and tolerability. Medical records of patients receiving omalizumab therapy for asthma at Zayed Military Hospital, Abu Dhabi were retrospectively reviewed. Patients fulfilling the criteria for severe allergic asthma as per GINA guidelines were included. Asthma control over 12 months pre and post omalizumab were analyzed by taking into account the number of exacerbations, hospitalizations, maintenance of medication dosages, the need for reliever therapy and PFT’s. 21 patients (5 females) with mean age 41 years were included. The mean duration of therapy was 22 months. 19 (91%) patients had Allergic Rhinitis/Sinusitis. Mean serum total IgE level was 648 IU/ml (65-1859). 11 (52%) patients were on oral maintenance steroids pre-treatment. 7 patients managed to stop steroids on treatment while 4 were able to decrease the dosage. Mean exacerbation rate decreased from 5 per year pre-treatment to 1.36 while on treatment. The number of hospitalizations decreased from a mean of 2 per year to 0.9 per year. Reliever inhaler usage decreased from mean of 40 to 15 puffs per week.2 patients discontinued therapy, 1 due to lack of benefit (2 doses) and 2nd due to severe persistent side effects. Patient compliance was poor in some cases. Treatment with omalizumab reduced the number of exacerbations, hospitalizations, maintenance and reliever medications, and is generally well tolerated. Our results show that there is room for improved documentation in terms of symptom recording and use of rescue medication at our institution. There is also need for better patient education and counseling in order to improve compliance.

Keywords: asthma, exacerbations, omalizumab, IgE

Procedia PDF Downloads 371
1956 Proportional and Integral Controller-Based Direct Current Servo Motor Speed Characterization

Authors: Adel Salem Bahakeem, Ahmad Jamal, Mir Md. Maruf Morshed, Elwaleed Awad Khidir

Abstract:

Direct Current (DC) servo motors, or simply DC motors, play an important role in many industrial applications such as manufacturing of plastics, precise positioning of the equipment, and operating computer-controlled systems where speed of feed control, maintaining the position, and ensuring to have a constantly desired output is very critical. These parameters can be controlled with the help of control systems such as the Proportional Integral Derivative (PID) controller. The aim of the current work is to investigate the effects of Proportional (P) and Integral (I) controllers on the steady state and transient response of the DC motor. The controller gains are varied to observe their effects on the error, damping, and stability of the steady and transient motor response. The current investigation is conducted experimentally on a servo trainer CE 110 using analog PI controller CE 120 and theoretically using Simulink in MATLAB. Both experimental and theoretical work involves varying integral controller gain to obtain the response to a steady-state input, varying, individually, the proportional and integral controller gains to obtain the response to a step input function at a certain frequency, and theoretically obtaining the proportional and integral controller gains for desired values of damping ratio and response frequency. Results reveal that a proportional controller helps reduce the steady-state and transient error between the input signal and output response and makes the system more stable. In addition, it also speeds up the response of the system. On the other hand, the integral controller eliminates the error but tends to make the system unstable with induced oscillations and slow response to eliminate the error. From the current work, it is desired to achieve a stable response of the servo motor in terms of its angular velocity subjected to steady-state and transient input signals by utilizing the strengths of both P and I controllers.

Keywords: DC servo motor, proportional controller, integral controller, controller gain optimization, Simulink

Procedia PDF Downloads 110
1955 Variable Tree Structure QR Decomposition-M Algorithm (QRD-M) in Multiple Input Multiple Output-Orthogonal Frequency Division Multiplexing (MIMO-OFDM) Systems

Authors: Jae-Hyun Ro, Jong-Kwang Kim, Chang-Hee Kang, Hyoung-Kyu Song

Abstract:

In multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM) systems, QR decomposition-M algorithm (QRD-M) has suboptimal error performance. However, the QRD-M has still high complexity due to many calculations at each layer in tree structure. To reduce the complexity of the QRD-M, proposed QRD-M modifies existing tree structure by eliminating unnecessary candidates at almost whole layers. The method of the elimination is discarding the candidates which have accumulated squared Euclidean distances larger than calculated threshold. The simulation results show that the proposed QRD-M has same bit error rate (BER) performance with lower complexity than the conventional QRD-M.

Keywords: complexity, MIMO-OFDM, QRD-M, squared Euclidean distance

Procedia PDF Downloads 335
1954 Mathematical Modeling for Diabetes Prediction: A Neuro-Fuzzy Approach

Authors: Vijay Kr. Yadav, Nilam Rathi

Abstract:

Accurate prediction of glucose level for diabetes mellitus is required to avoid affecting the functioning of major organs of human body. This study describes the fundamental assumptions and two different methodologies of the Blood glucose prediction. First is based on the back-propagation algorithm of Artificial Neural Network (ANN), and second is based on the Neuro-Fuzzy technique, called Fuzzy Inference System (FIS). Errors between proposed methods further discussed through various statistical methods such as mean square error (MSE), normalised mean absolute error (NMAE). The main objective of present study is to develop mathematical model for blood glucose prediction before 12 hours advanced using data set of three patients for 60 days. The comparative studies of the accuracy with other existing models are also made with same data set.

Keywords: back-propagation, diabetes mellitus, fuzzy inference system, neuro-fuzzy

Procedia PDF Downloads 259
1953 A Comparative Study on a Tilt-Integral-Derivative Controller with Proportional-Integral-Derivative Controller for a Pacemaker

Authors: Aysan Esgandanian, Sabalan Daneshvar

Abstract:

The study is done to determine the comparison between proportional-integral-derivative controller (PID controller) and tilt-integral-derivative (TID controller) for cardiac pacemaker systems, which can automatically control the heart rate to accurately track a desired preset profile. The controller offers good adaption of heart to the physiological needs of the patient. The parameters of the both controllers are tuned by particle swarm optimization (PSO) algorithm which uses the integral of time square error as a fitness function to be minimized. Simulation results are performed on the developed cardiovascular system of humans and results demonstrate that the TID controller produces superior control performance than PID controllers. In this paper, all simulations were performed in Matlab.

Keywords: integral of time square error, pacemaker systems, proportional-integral-derivative controller, PSO algorithm, tilt-integral-derivative controller

Procedia PDF Downloads 463
1952 High-Resolution Spatiotemporal Retrievals of Aerosol Optical Depth from Geostationary Satellite Using Sara Algorithm

Authors: Muhammad Bilal, Zhongfeng Qiu

Abstract:

Aerosols, suspended particles in the atmosphere, play an important role in the earth energy budget, climate change, degradation of atmospheric visibility, urban air quality, and human health. To fully understand aerosol effects, retrieval of aerosol optical properties such as aerosol optical depth (AOD) at high spatiotemporal resolution is required. Therefore, in the present study, hourly AOD observations at 500 m resolution were retrieved from the geostationary ocean color imager (GOCI) using the simplified aerosol retrieval algorithm (SARA) over the urban area of Beijing for the year 2016. The SARA requires top-of-the-atmosphere (TOA) reflectance, solar and sensor geometry information and surface reflectance observations to retrieve an accurate AOD. For validation of the GOCI retrieved AOD, AOD measurements were obtained from the aerosol robotic network (AERONET) version 3 level 2.0 (cloud-screened and quality assured) data. The errors and uncertainties were reported using the root mean square error (RMSE), relative percent mean error (RPME), and the expected error (EE = ± (0.05 + 0.15AOD). Results showed that the high spatiotemporal GOCI AOD observations were well correlated with the AERONET AOD measurements with a correlation coefficient (R) of 0.92, RMSE of 0.07, and RPME of 5%, and 90% of the observations were within the EE. The results suggested that the SARA is robust and has the ability to retrieve high-resolution spatiotemporal AOD observations over the urban area using the geostationary satellite.

Keywords: AEORNET, AOD, SARA, GOCI, Beijing

Procedia PDF Downloads 172
1951 Exploring the Impact of Mobility-Related Treatments (Drug and Non-Pharmacological) on Independence and Wellbeing in Parkinson’s Disease - A Qualitative Synthesis

Authors: Cameron Wilson, Megan Hanrahan, Katie Brittain, Riona McArdle, Alison Keogh, Lynn Rochester

Abstract:

Background: The loss of mobility and functional dependence is a significant marker in the progression of neurodegenerative diseases such as Parkinson’s Disease (PD). Pharmacological, surgical, and therapeutic treatments are available that can help in the management and amelioration of PD symptoms; however, these only prolong more severe symptoms. Accordingly, ensuring people with PD can maintain independence and a healthy wellbeing are essential in establishing an effective treatment option for those afflicted. Existing literature reviews have examined experiences in engaging with PD treatment options and the impact of PD on independence and wellbeing. Although, the literature fails to explore the influence of treatment options on independence and wellbeing and therefore misses what people value in their treatment. This review is the first that synthesises the impact of mobility-related treatments on independence and wellbeing in people with PD and their carers, offering recommendations to clinical practice and provides a conceptual framework (in development) for future research and practice. Objectives: To explore the impact of mobility-related treatment (both pharmacological and non-pharmacological) on the independence and wellbeing of people with PD and their carers. To propose a conceptual framework to patients, carers and clinicians which captures the qualities people with PD value as part of their treatment. Methods: We performed a critical interpretive synthesis of qualitative evidence, searching six databases for reports that explored the impact of mobility-related treatments (both drug and non-pharmacological) on independence and wellbeing in Parkinson’s Disease. The types of treatments included medication (Levodopa and Amantadine), dance classes, Deep-Brain Stimulation, aquatic therapies, physical rehabilitation, balance training and foetal transplantation. Data was extracted, and quality was assessed using an adapted version of the NICE Quality Appraisal Tool Appendix H before being synthesised according to the critical interpretive synthesis framework and meta-ethnography process. Results: From 2301 records, 28 were eligible. Experiences and impact of treatment pathway on independence and wellbeing was similar across all types of treatments and are described by five inter-related themes: (i) desire to maintain independence, (ii) treatment as a social experience during and after, (iii) medication to strengthen emotional health, (iv) recognising physical capacity and (v) emphasising the personal journey of Parkinson’s treatments. Conclusion: There is a complex and inter-related experience and effect of PD treatments common across all types of treatment. The proposed conceptual framework (in development) provides patients, carers, and clinicians recommendations to personalise the delivery of PD treatment, thereby potentially improving adherence and effectiveness. This work is vital to disseminate as PD treatment transitions from subjective and clinically captured assessments to a more personalised process supplemented using wearable technology.

Keywords: parkinson's disease, medication, treatment, dance, review, healthcare, delivery, levodopa, social, emotional, psychological, personalised healthcare

Procedia PDF Downloads 92
1950 Major Factors That Enhance Economic Growth in South Africa: A Re-Examination Using a Vector Error Correction Mechanism

Authors: Temitope L. A. Leshoro

Abstract:

This study explored several variables that enhance economic growth in South Africa, based on different growth theories while using the vector error correction model (VECM) technique. The impacts and contributions of each of these variables on GDP in South Africa were investigated. The motivation for this study was as a result of the weak economic growth that the country has been experiencing lately, as well as the continuous increase in unemployment rate and deteriorating health care system. Annual data spanning over the period 1974 to 2013 was employed. The results showed that the major determinants of GDP are trade openness, government spending, and health indicator; as these variables are not only economically significant but also statistically significant in explaining the changes in GDP in South Africa. Policy recommendations for economic growth enhancement are suggested based on the findings of this study.

Keywords: economic growth, GDP, investment, health indicator, VECM

Procedia PDF Downloads 276
1949 Glycemic Control on Self-Efficacy and Self-Care Behaviors among Omani Adults with Type 2 Diabetes

Authors: Melba Sheila D'Souza, Anandhi Amirtharaj, Shreedevi Balachandran

Abstract:

Background: Type 2 diabetes has a significant impact on individuals’ health and well-being. Glycemic control may influence self-efficacy and self-care behaviors, and reduce the risk of complications among adults with type 2 diabetes. Type 2 diabetes has substantial morbidity and mortality and 60% of adults’ poor self-care. Glycemic control is associated with reported self-efficacy and self-care behavior. Adults with type 2 diabetes with less information were less likely to take diabetes self-care. Aim: To examine the relationship between glycemic control, demographic factors, clinical factors on self-efficacy, self-care behaviors among Omani adults with type 2 diabetes. Methods: A correlational, descriptive study was used. Omani adults with type 2 diabetes (n=140) were recruited from a public hospital in Oman. The data were collected during January-March 2015. Ethical approval was given by the college research and ethics committee, College of Nursing, and the Hospital, Sultan Qaboos University Data was collected on self-efficacy, self-care behaviors and glycemic control. The study was approved by the Institution Ethics and Research Committee. Bivariate and multivariate analyses were conducted. Results: Most adults had a fasting blood glucose >7.2mmol/L (90.7%), with the majority demonstrating ‘uncontrolled or poor HbA1c of > 8%’ (65%). Variance of self-care behavior (20.6%) and 31.3% of the variance of the self-efficacy was explained by the age, duration of diabetes, medication, HbA1c and prevention of activities of living. Adults with type 2 diabetes with poor glycemic control were more likely to have poor self-efficacy and poor self-care behaviors. Conclusion: This study confirms that self-efficacy model on outcome predicts self-efficacy and self-care behavior. Higher understanding of diabetes, prevention of normal daily activities, higher ability to fit diabetes life in a positive manner and high patient-physician communication were significant with self-efficacy and self-care behaviors. Hence, glycemic control has a high effect on improving self-care behaviors like diet, exercise, medication, foot care and self-efficacy among type 2 diabetes. Implications: Using these findings to improve self-efficacy, individualized self-care management is recommended for better self-efficacy and self-care behaviors among adults with type 2 diabetes.

Keywords: self-efficacy, self-care behaviors, self-care management, glycemic control, type 2 diabetes, nurse

Procedia PDF Downloads 411
1948 Investigate the Side Effects of Patients With Severe COVID-19 and Choose the Appropriate Medication Regimens to Deal With Them

Authors: Rasha Ahmadi

Abstract:

In December 2019, a coronavirus, currently identified as SARS-CoV-2, produced a series of acute atypical respiratory illnesses in Wuhan, Hubei Province, China. The sickness induced by this virus was named COVID-19. The virus is transmittable between humans and has caused pandemics worldwide. The number of death tolls continues to climb and a huge number of countries have been obliged to perform social isolation and lockdown. Lack of focused therapy continues to be a problem. Epidemiological research showed that senior patients were more susceptible to severe diseases, whereas children tend to have milder symptoms. In this study, we focus on other possible side effects of COVID-19 and more detailed treatment strategies. Using bioinformatics analysis, we first isolated the gene expression profile of patients with severe COVID-19 from the GEO database. Patients' blood samples were used in the GSE183071 dataset. We then categorized the genes with high and low expression. In the next step, we uploaded the genes separately to the Enrichr database and evaluated our data for signs and symptoms as well as related medication regimens. The results showed that 138 genes with high expression and 108 genes with low expression were observed differentially in the severe COVID-19 VS control group. Symptoms and diseases such as embolism and thrombosis of the abdominal aorta, ankylosing spondylitis, suicidal ideation or attempt, regional enteritis were observed in genes with high expression and in genes with low expression of acute and subacute forms of ischemic heart, CNS infection and poliomyelitis, synovitis and tenosynovitis. Following the detection of diseases and possible signs and symptoms, Carmustine, Bithionol, Leflunomide were evaluated more significantly for high-expression genes and Chlorambucil, Ifosfamide, Hydroxyurea, Bisphenol for low-expression genes. In general, examining the different and invisible aspects of COVID-19 and identifying possible treatments can help us significantly in the emergency and hospitalization of patients.

Keywords: phenotypes, drug regimens, gene expression profiles, bioinformatics analysis, severe COVID-19

Procedia PDF Downloads 143
1947 Fractional Euler Method and Finite Difference Formula Using Conformable Fractional Derivative

Authors: Ramzi B. Albadarneh

Abstract:

In this paper, we use the new definition of fractional derivative called conformable fractional derivative to derive some finite difference formulas and its error terms which are used to solve fractional differential equations and fractional partial differential equations, also to derive fractional Euler method and its error terms which can be applied to solve fractional differential equations. To provide the contribution of our work some applications on finite difference formulas and Euler Method are given.

Keywords: conformable fractional derivative, finite difference formula, fractional derivative, finite difference formula

Procedia PDF Downloads 439
1946 Corrective Feedback and Uptake Patterns in English Speaking Lessons at Hanoi Law University

Authors: Nhac Thanh Huong

Abstract:

New teaching methods have led to the changes in the teachers’ roles in an English class, in which teachers’ error correction is an integral part. Language error and corrective feedback have been the interest of many researchers in foreign language teaching. However, the techniques and the effectiveness of teachers’ feedback have been a question of much controversy. This present case study has been carried out with a view to finding out the patterns of teachers’ corrective feedback and their impact on students’ uptake in English speaking lessons of legal English major students at Hanoi Law University. In order to achieve those aims, the study makes use of classroom observations as the main method of data collection to seeks answers to the two following questions: 1. What patterns of corrective feedback occur in English speaking lessons for second- year legal English major students in Hanoi Law University?; 2. To what extent does that corrective feedback lead to students’ uptake? The study provided some important findings, among which was a close relationship between corrective feedback and uptake. In particular, recast was the most commonly used feedback type, yet it was the least effective in terms of students’ uptake and repair, while the most successful feedback, namely meta-linguistic feedback, clarification requests and elicitation, which led to students’ generated repair, was used at a much lower rate by teachers. Furthermore, it revealed that different types of errors needed different types of feedback. Also, the use of feedback depended on the students’ English proficiency level. In the light of findings, a number of pedagogical implications have been drawn in the hope of enhancing the effectiveness of teachers’ corrective feedback to students’ uptake in foreign language acquisition process.

Keywords: corrective feedback, error, uptake, speaking English lesson

Procedia PDF Downloads 265
1945 Multi Response Optimization in Drilling Al6063/SiC/15% Metal Matrix Composite

Authors: Hari Singh, Abhishek Kamboj, Sudhir Kumar

Abstract:

This investigation proposes a grey-based Taguchi method to solve the multi-response problems. The grey-based Taguchi method is based on the Taguchi’s design of experimental method, and adopts Grey Relational Analysis (GRA) to transfer multi-response problems into single-response problems. In this investigation, an attempt has been made to optimize the drilling process parameters considering weighted output response characteristics using grey relational analysis. The output response characteristics considered are surface roughness, burr height and hole diameter error under the experimental conditions of cutting speed, feed rate, step angle, and cutting environment. The drilling experiments were conducted using L27 orthogonal array. A combination of orthogonal array, design of experiments and grey relational analysis was used to ascertain best possible drilling process parameters that give minimum surface roughness, burr height and hole diameter error. The results reveal that combination of Taguchi design of experiment and grey relational analysis improves surface quality of drilled hole.

Keywords: metal matrix composite, drilling, optimization, step drill, surface roughness, burr height, hole diameter error

Procedia PDF Downloads 319
1944 GIS Application in Surface Runoff Estimation for Upper Klang River Basin, Malaysia

Authors: Suzana Ramli, Wardah Tahir

Abstract:

Estimation of surface runoff depth is a vital part in any rainfall-runoff modeling. It leads to stream flow calculation and later predicts flood occurrences. GIS (Geographic Information System) is an advanced and opposite tool used in simulating hydrological model due to its realistic application on topography. The paper discusses on calculation of surface runoff depth for two selected events by using GIS with Curve Number method for Upper Klang River basin. GIS enables maps intersection between soil type and land use that later produces curve number map. The results show good correlation between simulated and observed values with more than 0.7 of R2. Acceptable performance of statistical measurements namely mean error, absolute mean error, RMSE, and bias are also deduced in the paper.

Keywords: surface runoff, geographic information system, curve number method, environment

Procedia PDF Downloads 282
1943 Perceptual Image Coding by Exploiting Internal Generative Mechanism

Authors: Kuo-Cheng Liu

Abstract:

In the perceptual image coding, the objective is to shape the coding distortion such that the amplitude of distortion does not exceed the error visibility threshold, or to remove perceptually redundant signals from the image. While most researches focus on color image coding, the perceptual-based quantizer developed for luminance signals are always directly applied to chrominance signals such that the color image compression methods are inefficient. In this paper, the internal generative mechanism is integrated into the design of a color image compression method. The internal generative mechanism working model based on the structure-based spatial masking is used to assess the subjective distortion visibility thresholds that are visually consistent to human eyes better. The estimation method of structure-based distortion visibility thresholds for color components is further presented in a locally adaptive way to design quantization process in the wavelet color image compression scheme. Since the lowest subband coefficient matrix of images in the wavelet domain preserves the local property of images in the spatial domain, the error visibility threshold inherent in each coefficient of the lowest subband for each color component is estimated by using the proposed spatial error visibility threshold assessment. The threshold inherent in each coefficient of other subbands for each color component is then estimated in a local adaptive fashion based on the distortion energy allocation. By considering that the error visibility thresholds are estimated using predicting and reconstructed signals of the color image, the coding scheme incorporated with locally adaptive perceptual color quantizer does not require side information. Experimental results show that the entropies of three color components obtained by using proposed IGM-based color image compression scheme are lower than that obtained by using the existing color image compression method at perceptually lossless visual quality.

Keywords: internal generative mechanism, structure-based spatial masking, visibility threshold, wavelet domain

Procedia PDF Downloads 248
1942 Iterative Method for Lung Tumor Localization in 4D CT

Authors: Sarah K. Hagi, Majdi Alnowaimi

Abstract:

In the last decade, there were immense advancements in the medical imaging modalities. These advancements can scan a whole volume of the lung organ in high resolution images within a short time. According to this performance, the physicians can clearly identify the complicated anatomical and pathological structures of lung. Therefore, these advancements give large opportunities for more advance of all types of lung cancer treatment available and will increase the survival rate. However, lung cancer is still one of the major causes of death with around 19% of all the cancer patients. Several factors may affect survival rate. One of the serious effects is the breathing process, which can affect the accuracy of diagnosis and lung tumor treatment plan. We have therefore developed a semi automated algorithm to localize the 3D lung tumor positions across all respiratory data during respiratory motion. The algorithm can be divided into two stages. First, a lung tumor segmentation for the first phase of the 4D computed tomography (CT). Lung tumor segmentation is performed using an active contours method. Then, localize the tumor 3D position across all next phases using a 12 degrees of freedom of an affine transformation. Two data set where used in this study, a compute simulate for 4D CT using extended cardiac-torso (XCAT) phantom and 4D CT clinical data sets. The result and error calculation is presented as root mean square error (RMSE). The average error in data sets is 0.94 mm ± 0.36. Finally, evaluation and quantitative comparison of the results with a state-of-the-art registration algorithm was introduced. The results obtained from the proposed localization algorithm show a promising result to localize alung tumor in 4D CT data.

Keywords: automated algorithm , computed tomography, lung tumor, tumor localization

Procedia PDF Downloads 605
1941 Hierarchical Operation Strategies for Grid Connected Building Microgrid with Energy Storage and Photovoltatic Source

Authors: Seon-Ho Yoon, Jin-Young Choi, Dong-Jun Won

Abstract:

This paper presents hierarchical operation strategies which are minimizing operation error between day ahead operation plan and real time operation. Operating power systems between centralized and decentralized approaches can be represented as hierarchical control scheme, featured as primary control, secondary control and tertiary control. Primary control is known as local control, featuring fast response. Secondary control is referred to as microgrid Energy Management System (EMS). Tertiary control is responsible of coordinating the operations of multi-microgrids. In this paper, we formulated 3 stage microgrid operation strategies which are similar to hierarchical control scheme. First stage is to set a day ahead scheduled output power of Battery Energy Storage System (BESS) which is only controllable source in microgrid and it is optimized to minimize cost of exchanged power with main grid using Particle Swarm Optimization (PSO) method. Second stage is to control the active and reactive power of BESS to be operated in day ahead scheduled plan in case that State of Charge (SOC) error occurs between real time and scheduled plan. The third is rescheduling the system when the predicted error is over the limited value. The first stage can be compared with the secondary control in that it adjusts the active power. The second stage is comparable to the primary control in that it controls the error in local manner. The third stage is compared with the secondary control in that it manages power balancing. The proposed strategies will be applied to one of the buildings in Electronics and Telecommunication Research Institute (ETRI). The building microgrid is composed of Photovoltaic (PV) generation, BESS and load and it will be interconnected with the main grid. Main purpose of that is minimizing operation cost and to be operated in scheduled plan. Simulation results support validation of proposed strategies.

Keywords: Battery Energy Storage System (BESS), Energy Management System (EMS), Microgrid (MG), Particle Swarm Optimization (PSO)

Procedia PDF Downloads 249