Search results for: infectious bronchitis virus
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1074

Search results for: infectious bronchitis virus

744 Comparative Vector Susceptibility for Dengue Virus and Their Co-Infection in A. aegypti and A. albopictus

Authors: Monika Soni, Chandra Bhattacharya, Siraj Ahmed Ahmed, Prafulla Dutta

Abstract:

Dengue is now a globally important arboviral disease. Extensive vector surveillance has already established A.aegypti as a primary vector, but A.albopictus is now accelerating the situation through gradual adaptation to human surroundings. Global destabilization and gradual climatic shift with rising in temperature have significantly expanded the geographic range of these species These versatile vectors also host Chikungunya, Zika, and yellow fever virus. Biggest challenge faced by endemic countries now is upsurge in co-infection reported with multiple serotypes and virus co-circulation. To foster vector control interventions and mitigate disease burden, there is surge for knowledge on vector susceptibility and viral tolerance in response to multiple infections. To address our understanding on transmission dynamics and reproductive fitness, both the vectors were exposed to single and dual combinations of all four dengue serotypes by artificial feeding and followed up to third generation. Artificial feeding observed significant difference in feeding rate for both the species where A.albopictus was poor artificial feeder (35-50%) compared to A.aegypti (95-97%) Robust sequential screening of viral antigen in mosquitoes was followed by Dengue NS1 ELISA, RT-PCR and Quantitative PCR. To observe viral dissemination in different mosquito tissues Indirect immunofluorescence assay was performed. Result showed that both the vectors were infected initially with all dengue(1-4)serotypes and its co-infection (D1 and D2, D1 and D3, D1 and D4, D2 and D4) combinations. In case of DENV-2 there was significant difference in the peak titer observed at 16th day post infection. But when exposed to dual infections A.aegypti supported all combinations of virus where A.albopictus only continued single infections in successive days. There was a significant negative effect on the fecundity and fertility of both the vectors compared to control (PANOVA < 0.001). In case of dengue 2 infected mosquito, fecundity in parent generation was significantly higher (PBonferroni < 0.001) for A.albopicus compare to A.aegypti but there was a complete loss of fecundity from second to third generation for A.albopictus. It was observed that A.aegypti becomes infected with multiple serotypes frequently even at low viral titres compared to A.albopictus. Possible reason for this could be the presence of wolbachia infection in A.albopictus or mosquito innate immune response, small RNA interference etc. Based on the observations it could be anticipated that transovarial transmission may not be an important phenomenon for clinical disease outcome, due to the absence of viral positivity by third generation. Also, Dengue NS1 ELISA can be used for preliminary viral detection in mosquitoes as more than 90% of the samples were found positive compared to RT-PCR and viral load estimation.

Keywords: co-infection, dengue, reproductive fitness, viral quantification

Procedia PDF Downloads 203
743 Qualitative Detection of HCV and GBV-C Co-infection in Cirrhotic Patients Using a SYBR Green Multiplex Real Time RT-PCR Technique

Authors: Shahzamani Kiana, Esmaeil Lashgarian Hamed, Merat Shahin

Abstract:

HCV and GBV-C belong to the Flaviviridae family of viruses and GBV-C is the closest virus to HCV genetically. Accumulative research is in progress all over the world to clarify clinical aspects of GBV-C. Possibility of interaction between HCV and GBV-C and also its consequence with other liver diseases are the most important clinical aspects which encourage researchers to develop a technique for simultaneous detection of these viruses. In this study a SYBR Green multiplex real time RT-PCR technique as a new economical and sensitive method was optimized for simultaneous detection of HCV/GBV-C in HCV positive plasma samples. After designing and selection of two pairs of specific primers for HCV and GBV-C, SYBR Green Real time RT-PCR technique optimization was performed separately for each virus. Establishment of multiplex PCR was the next step. Finally our technique was performed on positive and negative plasma samples. 89 cirrhotic HCV positive plasma samples (29 of genotype 3 a and 27 of genotype 1a) were collected from patients before receiving treatment. 14% of genotype 3a and 17.1% of genotype 1a showed HCV/GBV-C co-infection. As a result, 13.48% of 89 samples had HCV/GBV-C co-infection that was compatible with other results from all over the world. Data showed no apparent influence of HGV co-infection on the either clinical or virological aspect of HCV infection. Furthermore, with application of multiplex Real time RT-PCR technique, more time and cost could be saved in clinical-research settings.

Keywords: HCV, GBV-C, cirrhotic patients, multiplex real time RT- PCR

Procedia PDF Downloads 295
742 Antimicrobial Effect of Essential Oil of Plant Schinus molle on Some Bacteria Pathogens

Authors: Mehani Mouna, Ladjel segni

Abstract:

Humans use plants for thousands of years to treat various ailments, In many developing countries, Much of the population relies on traditional doctors and their collections of medicinal plants to cure them. Essential oils have many therapeutic properties. In herbal medicine, They are used for their antiseptic properties against infectious diseases of fungal origin, Against dermatophytes, Those of bacterial origin. The aim of our study is to determine the antimicrobial effect of essential oils of the plant Schinus molle on some pathogenic bacteria. It is a medicinal plant used in traditional therapy. Essential oils have many therapeutic properties. In herbal medicine, They are used for their antiseptic properties against infectious diseases of fungal origin, Against dermatophytes, Those of bacterial origin. The test adopted is based on the diffusion method on solid medium (Antibiogram), This method allows to determine the susceptibility or resistance of an organism according to the sample studied. Our study reveals that the essential oil of the plant Schinus molle has a different effect on the resistance of germs: For Pseudomonas aeruginosa strain is a moderately sensitive with an inhibition zone of 10 mm, Further Antirobactere, Escherichia coli and Proteus are strains that represent a high sensitivity, A zone of inhibition equal to 14.66 mm.

Keywords: Essential oil, microorganism, antibiogram, shinus molle

Procedia PDF Downloads 347
741 Haplotypes of the Human Leukocyte Antigen-G Different HIV-1 Groups from the Netherlands

Authors: A. Alyami, S. Christmas, K. Neeltje, G. Pollakis, B. Paxton, Z. Al-Bayati

Abstract:

The Human leukocyte antigen-G (HLA-G) molecule plays an important role in immunomodulation. To date, 16 untranslated regions (UTR) HLA-G haplotypes have been previously defined by sequenced SNPs in the coding region. From these, UTR-1, UTR-2, UTR-3, UTR-4, UTR-5, UTR-6 and UTR-7 are the most frequent 3’UTR haplotypes at the global level. UTR-1 is associated with higher levels of soluble HLA-G and HLA-G expression, whereas UTR-5 and UTR-7 are linked with low levels of soluble HLA-G and HLA-G expression. Human immunodeficiency virus type 1 (HIV-1) infection results in the progressive loss of immune function in infected individuals. The virus escape mechanism typically includes T lymphocytes and NK cell recognition and lyses by classical HLA-A and B down-regulation, which has been associated with non-classical HLA-G molecule up-regulation, respectively. We evaluated the haplotypes of the HLA-G 3′ untranslated region frequencies observed in three HIV-1 groups from the Netherlands and their susceptibility to develop infection. The three groups are made up of mainly men who have sex with men (MSM), injection drug users (IDU) and a high-risk-seronegative (HRSN) group. DNA samples were amplified with published primers prior sequencing. According to our results, the low expresser frequencies show higher in HRSN compared to other groups. This is indicating that 3’UTR polymorphisms may be identified as potential prognostic biomarkers to determine susceptibility to HIV.

Keywords: Human leukocyte antigen-G (HLA-G) , men who have sex with men (MSM), injection drug users (IDU), high-risk-seronegative (HRSN) group, high-untranslated region (UTR)

Procedia PDF Downloads 154
740 Phylogenetic Analyses of Newcastle Disease Virus Isolated from Unvaccinated Chicken Flocks in Kyrgyzstan from 2015 to 2016

Authors: Giang Tran Thi Huong, Hieu Dong Van, Tung Dao Duy, Saadanov Iskender, Isakeev Mairambek, Tsutomu Omatsu, Yukie Katayama, Tetsuya Mizutani, Yuki Ozeki, Yohei Takeda, Haruko Ogawa, Kunitoshi Imai

Abstract:

Newcastle disease virus (NDV) is a contagious viral disease of the poultry industry and other birds throughout the world. At present, very little is known about molecular epidemiological data regarding the causes of ND outbreak in commercial poultry farms in Kyrgyzstan. In the current study, the NDV isolated from the one out of three samples from the unvaccinated flock was confirmed as NDV. Phylogenetic analysis indicated that this NDV strain is clustered in the Class II subgenotype VIId, and closely related to the Chinese NDV isolate. Phylogenetic analyses revealed that the isolated NDV strain has an origin different from the 4 NDV strains previously identified in Kyrgyzstan. According to the mean death time (MDT: 61.1 h) and a multibasic amino acid (aa) sequence at the F0 proteolytic cleavage site (¹¹²R-R-Q-K-R-F¹¹⁷), the NDV isolate was determined as mesogenic strain. Several mutations in the neutralizing epitopes (notably, ³⁴⁷E→K) and the global head were observed in the hemagglutinin-neuraminidase (HN) protein of the current isolate. The present study represents the molecular characterization of the coding gene region of NDV in Kyrgyzstan. Additionally, further study will be investigated on the antigenic characterization using monoclonal antibody.

Keywords: Kyrgyzstan, Newcastle disease, genotype, genome characterization

Procedia PDF Downloads 143
739 Soft Computing Approach for Diagnosis of Lassa Fever

Authors: Roseline Oghogho Osaseri, Osaseri E. I.

Abstract:

Lassa fever is an epidemic hemorrhagic fever caused by the Lassa virus, an extremely virulent arena virus. This highly fatal disorder kills 10% to 50% of its victims, but those who survive its early stages usually recover and acquire immunity to secondary attacks. One of the major challenges in giving proper treatment is lack of fast and accurate diagnosis of the disease due to multiplicity of symptoms associated with the disease which could be similar to other clinical conditions and makes it difficult to diagnose early. This paper proposed an Adaptive Neuro Fuzzy Inference System (ANFIS) for the prediction of Lass Fever. In the design of the diagnostic system, four main attributes were considered as the input parameters and one output parameter for the system. The input parameters are Temperature on admission (TA), White Blood Count (WBC), Proteinuria (P) and Abdominal Pain (AP). Sixty-one percent of the datasets were used in training the system while fifty-nine used in testing. Experimental results from this study gave a reliable and accurate prediction of Lassa fever when compared with clinically confirmed cases. In this study, we have proposed Lassa fever diagnostic system to aid surgeons and medical healthcare practictionals in health care facilities who do not have ready access to Polymerase Chain Reaction (PCR) diagnosis to predict possible Lassa fever infection.

Keywords: anfis, lassa fever, medical diagnosis, soft computing

Procedia PDF Downloads 271
738 Distribution of HLA-DQA1 and HLA-DQB1 Alleles in Thais: Genetics Database Insight for COVID-19 Severity

Authors: Jinu Phonamontham

Abstract:

Coronavirus, also referred to as COVID-19, is a virus caused by the SARS-Cov-2 virus. The pandemic has caused over 10 million cases and 500,000 deaths worldwide through the end of June 2020. In a previous study, HLA-DQA1*01:02 allele was associated with COVID-19 disease (p-value = 0.0121). Furthermore, there was a statistical significance between HLA- DQB1*06:02 and COVID-19 in the Italian population by Bonferroni’s correction (p-value = 0.0016). Nevertheless, there is no data describing the distribution of HLA alleles as a valid marker for prediction of COVID-19 in the Thai population. We want to investigate the prevalence of HLA-DQA1*01:02 and HLA-DQB1*06:02 alleles that are associated with severe COVID-19 in the Thai population. In this study, we recruited 200 healthy Thai individuals. Genomic DNA samples were isolated from EDTA blood using Genomic DNA Mini Kit. HLA genotyping was conducted using the Lifecodes HLA SSO typing kits (Immucor, West Avenue, Stamford, USA). The frequency of HLA-DQA1 alleles in Thai population, consisting of HLA-DQA1*01:01 (27.75%), HLA-DQA1*01:02 (24.50%), HLA-DQA1*03:03 (13.00%), HLA-DQA1*06:01 (10.25%) and HLA-DQA1*02:01 (6.75%). Furthermore, the distributions of HLA-DQB1 alleles were HLA-DQB1*05:02 (21.50%), HLA-DQB1*03:01 (15.75%), HLA-DQB1*05:01 (14.50%), HLA-DQB1*03:03 (11.00%) and HLA-DQB1*02:02 (8.25%). Particularly, HLA- DQA1*01:02 (29.00%) allele was the highest frequency in the NorthEast group, but there was not significant difference when compared with the other regions in Thais (p-value = 0.4202). HLA-DQB1*06:02 allele was similarly distributed in Thai population and there was no significant difference between Thais and China (3.8%) and South Korea (6.4%) and Japan (8.2%) with p-value > 0.05. Whereas, South Africa (15.7%) has a significance with Thais by p-value of 0.0013. This study supports the specific genotyping of the HLA-DQA1*01:02 and HLA-DQB1*06:02 alleles to screen severe COVID-19 in Thai and many populations.

Keywords: HLA-DQA1*01:02, HLA-DQB1*06:02, Asian, Thai population

Procedia PDF Downloads 99
737 Rapid Detection and Differentiation of Camel Pox, Contagious Ecthyma and Papilloma Viruses in Clinical Samples of Camels Using a Multiplex PCR

Authors: A. I. Khalafalla, K. A. Al-Busada, I. M. El-Sabagh

Abstract:

Pox and pox-like diseases of camels are a group of exanthematous skin conditions that have become increasingly important economically. They may be caused by three distinct viruses: camelpox virus (CMPV), camel contagious ecthyma virus (CCEV) and camel papillomavirus (CAPV). These diseases are difficult to differentiate based on clinical presentation in disease outbreaks. Molecular methods such as PCR targeting species-specific genes have been developed and used to identify CMPV and CCEV, but not simultaneously in a single tube. Recently, multiplex PCR has gained reputation as a convenient diagnostic method with cost- and time–saving benefits. In the present communication, we describe the development, optimization and validation a multiplex PCR assays able to detect simultaneously the genome of the three viruses in one single test allowing for rapid and efficient molecular diagnosis. The assay was developed based on the evaluation and combination of published and new primer sets, and was applied to the detection of 110 tissue samples. The method showed high sensitivity, and the specificity was confirmed by PCR-product sequencing. In conclusion, this rapid, sensitive and specific assay is considered a useful method for identifying three important viruses in specimens from camels and as part of a molecular diagnostic regime.

Keywords: multiplex PCR, diagnosis, pox and pox-like diseases, camels

Procedia PDF Downloads 470
736 Strategies to Combat the Covid-19 Epidemic

Authors: Marziye Hadian, Alireza Jabbari

Abstract:

Background: The World Health Organization has identified COVID-19 as a public health emergency and is urging governments to stop the virus transmission by adopting appropriate policies. In this regard, the countries have taken different approaches to cutting the chain or controlling the spread of the disease. Methods: The present study was a systematize review of publications relating to prevention strategies for covid-19 disease. The study was carried out based on the PRISMA guidelines and CASP for articles and AACODS for grey literature. Finding: The study findings showed that in order to confront the COVID-19 epidemic, in general, there are three approaches of "mitigation", "active control" and "suppression" and four strategies of "quarantine", "isolation", "social distance" as well as "lockdown" in both individual and social dimensions to deal with epidemics that the choice of each approach requires specific strategies and has different effects when it comes to controlling and inhibiting the disease. Conclusion: The only way to control the disease is to change your behavior and lifestyle. In addition to prevention strategies, use of masks, observance of personal hygiene principles such as regular hand washing and non-contact of contaminated hands with the face, as well as observance of public health principles such as control of sneezing and coughing, safe extermination of personal protective equipment, etc. have not been included in the category of prevention tools. However, it has a great impact on controlling the epidemic, especially the new coronavirus epidemic.

Keywords: novel corona virus, COVID-19, prevention tools, prevention strategies

Procedia PDF Downloads 142
735 Computational Prediction of the Effect of S477N Mutation on the RBD Binding Affinity and Structural Characteristic, A Molecular Dynamics Study

Authors: Mohammad Hossein Modarressi, Mozhgan Mondeali, Khabat Barkhordari, Ali Etemadi

Abstract:

The COVID-19 pandemic, caused by SARS-CoV-2, has led to significant concerns worldwide due to its catastrophic effects on public health. The SARS-CoV-2 infection is initiated with the binding of the receptor-binding domain (RBD) in its spike protein to the ACE2 receptor in the host cell membrane. Due to the error-prone entity of the viral RNA-dependent polymerase complex, the virus genome, including the coding region for the RBD, acquires new mutations, leading to the appearance of multiple variants. These variants can potentially impact transmission, virulence, antigenicity and evasive immune properties. S477N mutation located in the RBD has been observed in the SARS-CoV-2 omicron (B.1.1. 529) variant. In this study, we investigated the consequences of S477N mutation at the molecular level using computational approaches such as molecular dynamics simulation, protein-protein interaction analysis, immunoinformatics and free energy computation. We showed that displacement of Ser with Asn increases the stability of the spike protein and its affinity to ACE2 and thus increases the transmission potential of the virus. This mutation changes the folding and secondary structure of the spike protein. Also, it reduces antibody neutralization, raising concern about re-infection, vaccine breakthrough and therapeutic values.

Keywords: S477N, COVID-19, molecular dynamic, SARS-COV2 mutations

Procedia PDF Downloads 177
734 Hepatitis B Prevalence in Institutionalized Intellectually Disabled Children

Authors: Maryam Vaezjalali, Foad Davoodbeglou, Mehrnaz Mesdaghi, Hossein Goudarzi, Fariba Shojaei, Hourieh Aram

Abstract:

Introduction: Hepatitis B virus (HBV) infection causes chronic infection in human population, with high mortality. Some people are more susceptible to this infection. One of the high risk communities is mentally retarded children, who are institutionalized. Special conditions in these centers predispose children for HBV infection and transmission to healthy people. In this study our objective was to determine the prevalence of HBV infection among institutionalized mentally retarded children and study its associated risk factors. Materials and methods: In this study, 250 mentally retarded children (younger than 14 years old) were included. They were living in 5 nursing institutions, located in different parts of Tehran. HBsAg was measured in the sera of these patients by ELISA method. Results: Among 250 children, 20 children (8%) were HBsAg positive. HBV infection in girls was more than boys (11% to 5.6%). Among the types of mental retardation, children with cerebral palsy had the highest positive result for HBsAg. The most HBV infection (28.5%) was seen in children with longest duration of being institutionalized (10 to 11 years). Vaccinated children were more HBsAg positive (8.7%) than non-vaccinated children (5.3%). However, no significant relationship was observed between any of these factors and HBsAg positivity. Conclusion: Despite improvement of people’s health condition and implementation of HBV vaccination, the prevalence of HBV infection is high in institutionalized mentally retarded children, which highlights the need for active measures to reduce this infection among this high risk population.

Keywords: hepatitis B virus, HBV vaccine, intellectually disabled children, mentally retarded

Procedia PDF Downloads 483
733 Financial Markets Performance: From COVID-19 Crisis to Hopes of Recovery with the Containment Polices

Authors: Engy Eissa, Dina M. Yousri

Abstract:

COVID-19 has hit massively the world economy, financial markets and even societies’ livelihood. The infectious disease caused by the most recently discovered coronavirus was claimed responsible for a shrink in the global economy by 4.4% in 2020. Shortly after the first case in Wuhan was identified, a quick surge in the number of confirmed cases in China was evident and a vast spread worldwide is recorded with cases surpassing the 500,000 cases. Irrespective of the disease’s trajectory in each country, a call for immediate action and prompt government intervention was needed. Given that there is no one-size-fits-all approach across the world, a number of containment and adoption policies were embraced. It was starting by enforcing complete lockdown like China to even stricter policies targeted containing the spread of the virus, augmenting the efficiency of health systems, and controlling the economic outcomes arising from this crisis. Hence, this paper has three folds; first, it examines the impact of containment policies taken by governments on controlling the number of cases and deaths in the given countries. Second, to assess the ramifications of COVID-19 on financial markets measured by stock returns. Third, to study the impact of containment policies measured by the government response index, the stringency index, the containment health index, and the economic support index on financial markets performance. Using a sample of daily data covering the period 31st of January 2020 to 15th of April 2021 for the 10 most hit countries in wave one by COVID-19 namely; Brazil, India, Turkey, Russia, UK, USA, France, Germany, Spain, and Italy. The aforementioned relationships were tested using Panel VAR Regression. The preliminary results showed that the number of daily deaths had an impact on the stock returns; moreover, the health containment policies and the economic support provided by the governments had a significant effect on lowering the impact of COVID-19 on stock returns.

Keywords: COVID-19, government policies, stock returns, VAR

Procedia PDF Downloads 182
732 Use of Nanosensors in Detection and Treatment of HIV

Authors: Sayed Obeidullah Abrar

Abstract:

Nanosensor is the combination of two terms nanoparticles and sensors. These are chemical or physical sensor constructed using nanoscale components, usually microscopic or submicroscopic in size. These sensors are very sensitive and can detect single virus particle or even very low concentrations of substances that could be potentially harmful. Nanosensors have a large scope of research especially in the field of medical sciences, military applications, pharmaceuticals etc.

Keywords: HIV/AIDS, nanosensors, DNA, RNA

Procedia PDF Downloads 299
731 Monitoring of Humoral Immune Response of Monovalent and Combined PPR and FMD Serotype 'O' Virus Vaccines in Goats

Authors: Mudassar Hameed, Khushi Muhammad, Aamir Ghafoor, Masood Rabbani, Momena Habib, Jawad Nazir

Abstract:

Comparative efficacy of three formulations (non-adjuvant, gel, and oil adjuvant) of monovalent and combined PPR and FMD virus vaccines was evaluated in goats. All kinds of monovalent PPRV vaccines elicited protective antibody titers at one-month post vaccination (PV) that remained so till six months PV. Monovalent non-adjuvant (NA) FMDV vaccine provoked non-protective antibody titers that declined to undetectable levels after three months. In case of combined vaccines, all of the formulations elicited protective antibody titers against PPRV in vaccinated animals which remained above that limit for six months. However, an exceptional immune response against FMDV was observed in combined NA vaccine group where antibody titers were extremely high and remained above protective level till 4 months PV in animals who received a single vaccine shot and till six months PV in booster group. Although, adjuvant or NA combined vaccines can induce protective antibody titers against both of the viruses within one month PV, but a booster vaccine shot is needed to retain protective antibody level for 6 months duration. Immune response elicited by combined vaccines is comparable or superior to the monovalent vaccines. Hence combined vaccine can be effectively used for the control and prevention of both of the diseases.

Keywords: antibody titer, protective, combined vaccine, non adjuvant

Procedia PDF Downloads 205
730 Failing to Protect Bare Life During the COVID-19 Pandemic: Forced Migrants as Carriers of the Virus

Authors: Claudia Donoso

Abstract:

This study compares the restriction of mobility of migrants and asylum seekers during the COVID-19 pandemic in the United States and Ecuador. Based on the discourse analysis of anti-migrant rhetoric in press articles, migrant stories in the press, reports, and border control practices, the study examines the Ecuadorian government’s response to the migration flow of Venezuelans and the United States enforcement practices against Latin American asylum seekers. By exploring Giorgio Agamben’s concept of bare life, the article argues that this failure to protect mobility rights is due to the United States and Ecuador’s views of forced migrants as bare life and carriers of the virus, justifying xenophobia, resistance to humanitarian international law, and exceptionalism. By drawing on a feminist intersectional approach, the study adds to recent research on the securitization of forced migration and challenge the race/ethnicity, immigration status, class, and nationality-based discrimination of the measures undertaken during the pandemic. The article illustrates how the treatment of forced migrants as bare life was aggravated by their intersectional inequalities. It concludes by providing recommendations that could be enforced by the US and Ecuadorian governments to protect the right to freedom of mobility.

Keywords: bare life, intersectionality, mobility rights, COVID-19, Ecuador, United States

Procedia PDF Downloads 78
729 A Novel Peptide Showing Universal Effect against Multiple Viruses in Vitro and in Vivo

Authors: Hanjun Zhao, Ke Zhang, Bojian Zheng

Abstract:

Background: So far, there is no universal antiviral agent which can inhibit multiple viral infections. More and more drug-resistant viral strains emerge after the antiviral drug application for treatment. Defensins are the front line of host innate immunity and have broad spectrum antibacterial and antiviral effects. However, there is limited data to show if these defensins have good antiviral activity in vivo and what the antiviral mechanism is. Subjects: To investigate a peptide with widespread antivirus activity in vitro and in vivo and illustrate the antiviral mechanism. Methods: Antiviral peptide library designed from mouse beta defensins was synthesized by the company. Recombinant beta defensin was obtained from E. coli. Antiviral activity in vitro was assayed by plaque assay, qPCR. Antiviral activity in vivo was detected by animal challenge with 2009 pandemic H1N1 influenza A virus. The antiviral mechanism was assayed by western blot, ELISA, and qPCR. Conclusions: We identify a new peptide which has widespread effects against multiple viruses (H1N1, H5N1, H7N9, MERS-CoV) in vitro and has efficient antivirus activity in vivo. This peptide inhibits viral entry into target cells and subsequently blocks viral replication. The in vivo study of the antiviral peptide against other viral infections and the investigation of its more detail antiviral mechanism are ongoing.

Keywords: antiviral peptide, defensin, Influenza A virus, mechanism

Procedia PDF Downloads 400
728 A Review on Biological Control of Mosquito Vectors

Authors: Asim Abbasi, Muhammad Sufyan, Iqra, Hafiza Javaria Ashraf

Abstract:

The share of vector-borne diseases (VBDs) in the global burden of infectious diseases is almost 17%. The advent of new drugs and latest research in medical science helped mankind to compete with these lethal diseases but still diseases transmitted by different mosquito species, including filariasis, malaria, viral encephalitis and dengue are serious threats for people living in disease endemic areas. Injudicious and repeated use of pesticides posed selection pressure on mosquitoes leading to development of resistance. Hence biological control agents are under serious consideration of scientific community to be used in vector control programmes. Fish have a history of predating immature stages of different aquatic insects including mosquitoes. The noteworthy examples in Africa and Asia includes, Aphanius discolour and a fish in the Panchax group. Moreover, common mosquito fish, Gambusia affinis predates mostly on temporary water mosquitoes like anopheline as compared to permanent water breeders like culicines. Mosquitoes belonging to genus Toxorhynchites have a worldwide distribution and are mostly associated with the predation of other mosquito larvae habituating with them in natural and artificial water containers. These species are harmless to humans as their adults do not suck human blood but feeds on floral nectar. However, their activity is mostly temperature dependent as Toxorhynchites brevipalpis consume 359 Aedes aegypti larvae at 30-32 ºC in contrast to 154 larvae at 20-26 ºC. Although many bacterial species were isolated from mosquito cadavers but those belonging to genus Bacillus are found highly pathogenic against them. The successful species of this genus include Bacillus thuringiensis and Bacillus sphaericus. The prime targets of B. thuringiensis are mostly the immatures of genus Aedes, Culex, Anopheles and Psorophora while B. sphaericus is specifically toxic against species of Culex, Psorophora and Culiseta. The entomopathogenic nematodes belonging to family, mermithidae are also pathogenic to different mosquito species. Eighty different species of mosquitoes including Anopheles, Aedes and Culex proved to be highly vulnerable to the attack of two mermithid species, Romanomermis culicivorax and R. iyengari. Cytoplasmic polyhedrosis virus was the first described pathogenic virus, isolated from the cadavers of mosquito specie, Culex tarsalis. Other viruses which are pathogenic to culicine includes, iridoviruses, cytopolyhedrosis viruses, entomopoxviruses and parvoviruses. Protozoa species belonging to division microsporidia are the common pathogenic protozoans in mosquito populations which kill their host by the chronic effects of parasitism. Moreover, due to their wide prevalence in anopheline mosquitoes and transversal and horizontal transmission from infected to healthy host, microsporidia of the genera Nosema and Amblyospora have received much attention in various mosquito control programmes. Fungal based mycopesticides are used in biological control of insect pests with 47 species reported virulent against different stages of mosquitoes. These include both aquatic fungi i.e. species of Coelomomyces, Lagenidium giganteum and Culicinomyces clavosporus, and the terrestrial fungi Metarhizium anisopliae and Beauveria bassiana. Hence, it was concluded that the integrated use of all these biological control agents can be a healthy contribution in mosquito control programmes and become a dire need of the time to avoid repeated use of pesticides.

Keywords: entomopathogenic nematodes, protozoa, Toxorhynchites, vector-borne

Procedia PDF Downloads 268
727 Molecular Farming: Plants Producing Vaccine and Diagnostic Reagent

Authors: Katerina H. Takova, Ivan N. Minkov, Gergana G. Zahmanova

Abstract:

Molecular farming is the production of recombinant proteins in plants with the aim to use the protein as a purified product, crude extract or directly in the planta. Plants gain more attention as expression systems compared to other ones due to the cost effective production of pharmaceutically important proteins, appropriate post-translational modifications, assembly of complex proteins, absence of human pathogens to name a few. In addition, transient expression in plant leaves enables production of recombinant proteins within few weeks. Hepatitis E virus (HEV) is a causative agent of acute hepatitis. HEV causes epidemics in developing countries and is primarily transmitted through the fecal-oral route. Presently, all efforts for development of Hepatitis E vaccine are focused on the Open Read Frame 2 (ORF2) capsid protein as it contains epitopes that can induce neutralizing antibodies. For our purpose, we used the CMPV-based vector-pEAQ-HT for transient expression of HEV ORF2 in Nicotiana benthamina. Different molecular analysis (Western blot and ELISA) showed that HEV ORF2 capsid protein was expressed in plant tissue in high-yield up to 1g/kg of fresh leaf tissue. Electron microscopy showed that the capsid protein spontaneously assembled in low abundance virus-like particles (VLPs), which are highly immunogenic structures and suitable for vaccine development. The expressed protein was recognized by both human and swine HEV positive sera and can be used as a diagnostic reagent for the detection of HEV infection. Production of HEV capsid protein in plants is a promising technology for further HEV vaccine investigations. Here, we reported for a rapid high-yield transient expression of a recombinant protein in plants suitable for vaccine production as well as a diagnostic reagent. Acknowledgments -The authors’ research on HEV is supported with grants from the Project PlantaSYST under the Widening Program, H2020 as well as under the UK Biotechnological and Biological Sciences Research Council (BBSRC) Institute Strategic Programme Grant ‘Understanding and Exploiting Plant and Microbial Secondary Metabolism’ (BB/J004596/1). The authors want to thank Prof. George Lomonossoff (JIC, Norwich, UK) for his contribution.

Keywords: hepatitis E virus, plant molecular farming, transient expression, vaccines

Procedia PDF Downloads 154
726 Identification of Active Phytocomponents in the Ethyl Acetate Extract of Glycosmis pentaphylla Retz. DC by Using GC-MS

Authors: M. Sivakumar, D. Chamundeeswari

Abstract:

Glycosmis pentaphylla is one of the medicinally important plants belonging to the family Rutaceae, commonly known as “Anam or Panal” in Tamil. Traditionally, leaves are useful in fever, hepatopathy, eczema, skin disease, helminthiasis, wounds, and erysipelas. The fruits are sweet and are useful in vitiated conditions of vata, kapha, cough, and bronchitis. The roots are good for facial inflammations, rheumatism, jaundice, and anemia. The preliminary phytochemical investigations indicated the presence of alkaloids, terpenoids, flavonoids, tannins, sugar, glycoside, and phenolic compounds. In the present study, the root part of Glycosmis pentaphylla was used, and the root was collected from Western Ghats of South India. The root was sun/shade dried and pulverized to powder in a mechanical grinder. The powder was successively extracted with various solvents, and the ethyl acetate extract of Glycosmis pentaphylla has been subjected to the GC-MS analysis. Amongst the 46 chemical constituents identified from this plant, three major phytoconstituents were reported for the first time. Marmesin, a furanocumarin compound with the chemical structure 7H-Furo (3,2-G) (1)Benzopyran-7-one,2,3–dihydro–2 - (1-Hydroxy-1methylethyl)-(s) is one of the three compounds identified for the first time at the concentration of 11-60% in ethyl acetate extract of Glycosmis pentaphylla. Others include, Beta.-Fagarine (4.71%) and Paverine (13.08%).

Keywords: ethyl acetate extract, Glycosmis pentaphylla, GC-MS analysis, Phytochemicals

Procedia PDF Downloads 303
725 Prevalence of Hepatitis B Virus Infection and Its Determinants among Pregnant Women in East Africa: Systematic Review and Meta-Analysis

Authors: Bantie Getnet Yirsaw, Muluken Chanie Agimas, Gebrie Getu Alemu, Tigabu Kidie Tesfie, Nebiyu Mekonnen Derseh, Habtamu Wagnew Abuhay, Meron Asmamaw Alemayehu, Getaneh Awoke Yismaw

Abstract:

Introduction: Hepatitis B virus (HBV) is one of the major public health problems globally and needs an urgent response. It is one of the most responsible causes of mortality among the five hepatitis viruses, and it affects almost every class of individuals. Thus, the main objective of this study was to determine the pooled prevalence and its determinants among pregnant women in East Africa. Methods: We searched studies using PubMed, Scopus, Embase, ScienceDirect, Google Scholar, and grey literature that were published between January 01/2020 to January 30/2024. The studies were assessed using the Newcastle Ottawa Scale (NOS) quality assessment scale. The random-effect (DerSimonian) model was used to determine the pooled prevalence and associated factors of HBV among pregnant women. Heterogeneity was assessed by I² statistic, sub-group analysis, and sensitivity analysis. Publication bias was assessed by the Egger test, and the analysis was done using STATA version 17. Result: A total of 45 studies with 35639 pregnant women were included in this systematic review and meta-analysis. The overall pooled prevalence of HBV among pregnant women in East Africa was 6.0% (95% CI: 6.0%−7.0%, I² = 89.7%). The highest prevalence of 8% ((95% CI: 6%, 10%), I² = 91.08%) was seen in 2021, and the lowest prevalence of 5% ((95% CI: 4%, 6%) I² = 52.52%) was observed in 2022. A pooled meta-analysis showed that history of surgical procedure (OR = 2.14 (95% CI: 1.27, 3.61)), having multiple sexual partners (OR = 3.87 (95% CI: 2.52, 5.95), history of body tattooing (OR = 2.55 (95% CI: 1.62, 4.01)), history of tooth extraction (OR = 2.09 (95% CI: 1.29, 3.39)), abortion history(OR = 2.20(95% CI: 1.38, 3.50)), history of sharing sharp material (OR = 1.88 (95% CI: 1.07, 3.31)), blood transfusion (OR = 2.41 (95% CI: 1.62, 3.57)), family history of HBV (OR = 4.87 (95% CI: 2.95, 8.05)) and history needle injury (OR = 2.62 (95% CI: 1.20, 5.72)) were significant risk factors associated with HBV infection among pregnant women. Conclusions: The pooled prevalence of HBV infection among pregnant women in East Africa was at an intermediate level and different across countries, ranging from 1.5% to 22.2%. The result of this pooled prevalence was an indication of the need for screening, prevention, and control of HBV infection among pregnant women in the region. Therefore, early identification of risk factors, awareness creation of the mode of transmission of HBV, and implementation of preventive measures are essential in reducing the burden of HBV infection among pregnant women.

Keywords: hepatitis B virus, prevalence, determinants, pregnant women, meta-analysis, East Africa

Procedia PDF Downloads 44
724 RNA Antisense Coat Protein Showing Promising Effects against Cotton Leaf Curl Disease in Pakistani Cotton

Authors: Zunnu Raen Akhtar

Abstract:

Cotton Leaf Curl Disease (CLCuD) is from Gemini virus and is transmitted through whiteflies in cotton. Transgenic cotton containing Antisense Coat Protein (ACP) has been found to show better results against CLCuD in cotton. In current research, Antisense Coat Protein was inserted in cotton plants to observe resistance developed in the cotton plants against CLCuD. T1 generation of plants were observed for its expression in plants. Tests were carried out to observe the expression of Antisense Coat Protein using Polymerase Chain Reaction (PCR) technique and by southern blotting. Whiteflies showing positive Cotton Leaf Curl Virus (CLCV) were reared and released in bioassay on ACP expressing cotton plants under laboratory as well as confined semi-field conditions. Results confirmed the expression of AC protein in PCR and southern blotting. Further laboratory results showed that cotton plants expressing AC protein showed rare incidence of CLCuD infection as compared to control. In the confined semi-field, similar results were observed in AC protein expressing cotton as compared to control. These results explicitly show that ACP can help to tackle the CLCuD issue in the future and further studies on biochemical processes involved in these plants and effects of ACP induction on non-target organisms should also be studied for eco-system.

Keywords: cotton, white flies, antisense coat protein, CLCV

Procedia PDF Downloads 185
723 Optimization of Hepatitis B Surface Antigen Purifications to Improving the Production of Hepatitis B Vaccines on Pichia pastoris

Authors: Rizky Kusuma Cahyani

Abstract:

Hepatitis B is a liver inflammatory disease caused by hepatitis B virus (HBV). This infection can be prevented by vaccination which contains HBV surface protein (sHBsAg). However, vaccine supply is limited. Several attempts have been conducted to produce local sHBsAg. However, the purity degree and protein yield are still inadequate. Therefore optimization of HBsAg purification steps is required to obtain high yield with better purification fold. In this study, optimization of purification was done in 2 steps, precipitation using variation of NaCl concentration (0,3 M; 0,5 M; 0,7 M) and PEG (3%, 5%, 7%); ion exchange chromatography (IEC) using NaCl 300-500 mM elution buffer concentration.To determine HBsAg protein, bicinchoninic acid assay (BCA) and enzyme-linked immunosorbent assay (ELISA) was used in this study. Visualization of HBsAg protein was done by SDS-PAGE analysis. Based on quantitative analysis, optimal condition at precipitation step was given 0,3 M NaCl and PEG 3%, while in ion exchange chromatography step, the optimum condition when protein eluted with NaCl 500 mM. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis indicates that the presence of protein HBsAg with a molecular weight of 25 kDa (monomer) and 50 kDa (dimer). The optimum condition for purification of sHBsAg produced in Pichia pastoris gave a yield of 47% and purification fold 17x so that it would increase the production of hepatitis B vaccine to be more optimal.

Keywords: hepatitis B virus, HBsAg, hepatitis B surface antigen, Pichia pastoris, purification

Procedia PDF Downloads 152
722 The Omicron Variant BA.2.86.1 of SARS- 2 CoV-2 Demonstrates an Altered Interaction Network and Dynamic Features to Enhance the Interaction with the hACE2

Authors: Taimur Khan, Zakirullah, Muhammad Shahab

Abstract:

The SARS-CoV-2 variant BA.2.86 (Omicron) has emerged with unique mutations that may increase its transmission and infectivity. This study investigates how these mutations alter the Omicron receptor-binding domain's interaction network and dynamic properties (RBD) compared to the wild-type virus, focusing on its binding affinity to the human ACE2 (hACE2) receptor. Protein-protein docking and all-atom molecular dynamics simulations were used to analyze structural and dynamic differences. Despite the structural similarity to the wild-type virus, the Omicron variant exhibits a distinct interaction network involving new residues that enhance its binding capacity. The dynamic analysis reveals increased flexibility in the RBD, particularly in loop regions crucial for hACE2 interaction. Mutations significantly alter the secondary structure, leading to greater flexibility and conformational adaptability compared to the wild type. Binding free energy calculations confirm that the Omicron RBD has a higher binding affinity (-70.47 kcal/mol) to hACE2 than the wild-type RBD (-61.38 kcal/mol). These results suggest that the altered interaction network and enhanced dynamics of the Omicron variant contribute to its increased infectivity, providing insights for the development of targeted therapeutics and vaccines.

Keywords: SARS-CoV-2, molecular dynamic simulation, receptor binding domain, vaccine

Procedia PDF Downloads 26
721 Serum 25-Hydroxyvitamin D Levels and Depression in Persons with Human Immunodeficiency Virus Infection: A Cross-Sectional and Prospective Study

Authors: Kalpana Poudel-Tandukar

Abstract:

Background: Human Immunodeficiency Virus (HIV) infection has been frequently associated with vitamin D deficiency and depression. Vitamin D deficiency increases the risk of depression in people without HIV. We assessed the cross-sectional and prospective associations between serum concentrations of 25-hydroxyvitamin D (25[OH]D) and depression in a HIV-positive people. Methods: A survey was conducted among 316 HIV-positive people aged 20-60 years residing in Kathmandu, Nepal for a cross-sectional association at baseline, and among 184 participants without depressive symptoms at baseline who responded to both baseline (2010) and follow-up (2011) surveys for prospective association. The competitive protein-binding assay was used to measure 25(OH)D levels and the Beck Depression Inventory-Ia method was used to measure depression, with cut off score 20 or higher. Relationships were assessed using multiple logistic regression analysis with adjustment of potential confounders. Results: The proportion of participants with 25(OH)D level of <20ng/mL, 20-30ng/mL, and >30ng/mL were 83.2%, 15.5%, and 1.3%, respectively. Only four participants with 25(OH)D level of >30ng/mL were excluded in the further analysis. The mean 25(OH)D level in men and women were 15.0ng/mL and 14.4ng/mL, respectively. Twenty six percent of participants (men:23%; women:29%) were depressed. Participants with 25(OH)D level of < 20 ng/mL had a 1.4 fold higher odds of depression in a cross-sectional and 1.3 fold higher odds of depression after 18 months of baseline compared to those with 25(OH)D level of 20-30ng/mL (p=0.40 and p=0.78, respectively). Conclusion: Vitamin D may not have significant impact against depression among HIV-positive people with 25(OH)D level below normal ( > 30ng/mL).

Keywords: depression, HIV, Nepal, vitamin D

Procedia PDF Downloads 332
720 Time Delayed Susceptible-Vaccinated-Infected-Recovered-Susceptible Epidemic Model along with Nonlinear Incidence and Nonlinear Treatment

Authors: Kanica Goel, Nilam

Abstract:

Infectious diseases are a leading cause of death worldwide and hence a great challenge for every nation. Thus, it becomes utmost essential to prevent and reduce the spread of infectious disease among humans. Mathematical models help to better understand the transmission dynamics and spread of infections. For this purpose, in the present article, we have proposed a nonlinear time-delayed SVIRS (Susceptible-Vaccinated-Infected-Recovered-Susceptible) mathematical model with nonlinear type incidence rate and nonlinear type treatment rate. Analytical study of the model shows that model exhibits two types of equilibrium points, namely, disease-free equilibrium and endemic equilibrium. Further, for the long-term behavior of the model, stability of the model is discussed with the help of basic reproduction number R₀ and we showed that disease-free equilibrium is locally asymptotically stable if the basic reproduction number R₀ is less than one and unstable if the basic reproduction number R₀ is greater than one for the time lag τ≥0. Furthermore, when basic reproduction number R₀ is one, using center manifold theory and Casillo-Chavez and Song theorem, we showed that the model undergoes transcritical bifurcation. Moreover, numerical simulations are being carried out using MATLAB 2012b to illustrate the theoretical results.

Keywords: nonlinear incidence rate, nonlinear treatment rate, stability, time delayed SVIRS epidemic model

Procedia PDF Downloads 150
719 Distinct Antiviral Pathway for ZFP36-Like Family Members Against Flavivirus Infection

Authors: Ren-Jye Lin, Li-Hsiung Lin, Bing-Cheng Liu, Ching-Len Liao

Abstract:

The human zinc finger protein 36-like protein family, containing zinc finger protein 36-like 1 (ZFP36L1) and zinc finger protein 36-like 2 (ZFP36L2), belongs to CCCH-type zinc-finger protein identified as an RNA-binding protein that participates in controlling posttranscriptional regulation via RNA decay pathways. Recently, we demonstrated that human ZFP36L1 showed potent antiviral activity against flavivirus Infection by both 5´-3´ XRN1 and 3´-5´RNA-exosome RNA decay pathways (Journal of Virology 2022 Jan 12;96(1): e0166521). However, another zinc finger protein 36-like protein member, ZFP36L2, in the host defense response against flaviviruses has yet to be addressed. Here, we also demonstrate that ZFP36L2 functions as a host innate defender against flaviviruses, including Japanese encephalitis virus (JEV) and dengue virus (DENV). Overexpression of ZFP36L2 reduced JEV and DENV infection, and ZFP36L2 knockdown significantly promoted viral replication. Distinct from the antiviral mechanism of ZFP36L1, ZFP36L2 inhibits flavivirus infection by only a 5´-3´ XRN1-mediated RNA decay pathway but not the 3´-5´RNA-exosome RNA decay pathway. Human ZFP36L1 and ZFP36L2 can restrict flavivirus replication by directly binding and destabilizing viral RNA. Thus, for the first time, human zinc finger protein 36-like family members, ZFP36L1 and ZFP36L2, are identified as host antiviral factors that can bind and degrade flavivirus viral RNA by diverse antiviral mechanisms.

Keywords: ZFP36L1, ZFP36L2, 5'-3' exonuclease XRN1, antiviral mechansim

Procedia PDF Downloads 79
718 Client Hacked Server

Authors: Bagul Abhijeet

Abstract:

Background: Client-Server model is the backbone of today’s internet communication. In which normal user can not have control over particular website or server? By using the same processing model one can have unauthorized access to particular server. In this paper, we discussed about application scenario of hacking for simple website or server consist of unauthorized way to access the server database. This application emerges to autonomously take direct access of simple website or server and retrieve all essential information maintain by administrator. In this system, IP address of server given as input to retrieve user-id and password of server. This leads to breaking administrative security of server and acquires the control of server database. Whereas virus helps to escape from server security by crashing the whole server. Objective: To control malicious attack and preventing all government website, and also find out illegal work to do hackers activity. Results: After implementing different hacking as well as non-hacking techniques, this system hacks simple web sites with normal security credentials. It provides access to server database and allow attacker to perform database operations from client machine. Above Figure shows the experimental result of this application upon different servers and provides satisfactory results as required. Conclusion: In this paper, we have presented a to view to hack the server which include some hacking as well as non-hacking methods. These algorithms and methods provide efficient way to hack server database. By breaking the network security allow to introduce new and better security framework. The terms “Hacking” not only consider for its illegal activities but also it should be use for strengthen our global network.

Keywords: Hacking, Vulnerabilities, Dummy request, Virus, Server monitoring

Procedia PDF Downloads 252
717 Aptamers: A Potential Strategy for COVID-19 Treatment

Authors: Mohamad Ammar Ayass, Natalya Griko, Victor Pashkov, Wanying Cao, Kevin Zhu, Jin Zhang, Lina Abi Mosleh

Abstract:

Respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent for coronavirus disease 2019 (COVID-19). Early evidence pointed at the angiotensin-converting enzyme 2 (ACE-2) expressed on the epithelial cells of the lung as the main entry point of SARS-CoV-2 into the cells. The viral entry is mediated by the binding of the Receptor Binding Domain (RBD) of the spike protein that is expressed on the surface of the virus to the ACE-2 receptor. As the number of SARS-CoV-2 variants continues to increase, mutations arising in the RBD of SARS-CoV-2 may lead to the ineffectiveness of RBD targeted neutralizing antibodies. To address this limitation, the objective of this study is to develop a combination of aptamers that target different regions of the RBD, preventing the binding of the spike protein to ACE-2 receptor and subsequent viral entry and replication. A safe and innovative biomedical tool was developed to inhibit viral infection and reduce the harms of COVID-19. In the present study, DNA aptamers were developed against a recombinant trimer S protein using the Systematic Evolution of Ligands by Exponential enrichment (SELEX). Negative selection was introduced at round number 7 to select for aptamers that bind specifically to the RBD domain. A series of 9 aptamers (ADI2010, ADI2011, ADI201L, ADI203L, ADI205L, ADIR68, ADIR74, ADIR80, ADIR83) were selected and characterized with high binding affinity and specificity to the RBD of the spike protein. Aptamers (ADI25, ADI2009, ADI203L) were able to bind and pull down endogenous spike protein expressed on the surface of SARS-CoV-2 virus in COVID-19 positive patient samples and determined by liquid chromatography- tandem mass spectrometry analysis (LC-MS/MS). LC-MS/MS data confirmed that aptamers can bind to the RBD of the spike protein. Furthermore, results indicated that the combination of the 9 best aptamers inhibited the binding of the purified trimer spike protein to the ACE-2 receptor found on the surface of Vero E6 cells. In the same experiment, the combined aptamers displayed a better neutralizing effect than antibodies. The data suggests that the selected aptamers could be used in therapy to neutralize the effect of the SARS-CoV-2 virus by inhibiting the interaction between the RBD and ACE-2 receptor, preventing viral entry into target cells and therefore blocking viral replication.

Keywords: aptamer, ACE-2 receptor, binding inhibitor, COVID-19, spike protein, SARS-CoV-2, treatment

Procedia PDF Downloads 185
716 Design and in Slico Study of the Truncated Spike-M-N SARS-CoV-2 as a Novel Effective Vaccine Candidate

Authors: Aghasadeghi MR., Bahramali G., Sadat SM., Sadeghi SA., Yousefi M., Khodaei K., Ghorbani M., Sadat Larijani M.

Abstract:

Background:The emerging COVID-19 pandemic is a serious concernfor the public health worldwide. Despite the many mutations in the virus genome, it is important to find an effective vaccine against viral mutations. Therefore, in current study, we aimed at immunoinformatic evaluation of the virus proteins immunogenicity to design a preventive vaccine candidate, which could elicit humoral and cellular immune responses as well. Methods:Three antigenic regions are included;Spike, Membrane, and Nucleocapsid amino acid sequences were obtained, and possible fusion proteins were assessed andcompared by immunogenicity, structural features, and population coverage. The best fusion protein was also evaluated for MHC-I and MHC-II T-cell epitopes and the linear and conformational B-cell epitopes. Results: Among the four predicted models, the truncated Spike protein in fusion with M and N proteins is composed of 24 highly immunogenic human MHC class I and 29 MHC class II, along with 14 B-cell linear and 61 discontinues epitopes. Also, the selected protein has high antigenicity and acceptable population coverage of 82.95% in Iran and 92.51% in Europe. Conclusion: The data indicate that the truncated Spike-M-N SARS-CoV-2form which could be potential targets of neutralizing antibodies. The protein also has the ability to stimulate humoral and cellular immunity. The in silico study provided the fusion protein as a potential preventive vaccine candidate for further in vivo evaluation.

Keywords: SARS-CoV-2, immunoinformatic, protein, vaccine

Procedia PDF Downloads 224
715 Multivariate Analysis of Causes of Death among Hepatocellular Carcinoma Patients: A Seer-Based Study

Authors: Peri Harish Kumar, Sai Sharan Dwarka, Tajbinder Singh Bains, Suneet John Joseph, Chaitanya Kiran, Sambhu Dutta, Sarah Makram, Mohamed Sayed Zaazouee, Alaa Ahmed Elshanbary

Abstract:

Objective: To identify cancer and non-cancer causes of death in hepatocellular carcinoma (HCC) patients over different time periods after diagnosis and to compare the mortality risk of each cause in HCC patients with the general population. Methods: In this retrospective cohort study, data of 67,637 HCC patients from 1975 to 2016 were collected from the Surveillance, Epidemiology, and End Results (SEER) database. We investigated the association between different causes of death and the following variables: age, race, tumor stage at diagnosis, and treatment (surgery, chemotherapy, and radiotherapy); each according to the periods of <1 year, 1-5 years, 5-10 years, and >10 years following the diagnosis. Standardized mortality ratios (SMRs) and their 95% confidence intervals (CIs) were calculated for cancer and non-cancer deaths in each of the mentioned periods following diagnosis. Results: Data of 67,637 patients, of whom 50,571 patients died during the follow-up period, were analyzed. Most deaths were due to HCC itself (35,535, 70.3%), followed by other cancers (3,983, 7.9%). Common causes of non-cancer mortality included infectious and parasitic diseases including HIV (2,823 patients, SMR=105.68, 95% CI: 101.82-109.65), chronic liver disease (2,719 patients, SMR=76.56, 95% CI: 73.71,79.5), and heart diseases (1,265 patients, SMR=2.26, 95% CI: 2.14-2.39), with higher mortality risk in HCC patients than in the general population. Conclusion: Cancers stand for most deaths in patients with HCC. Besides, infectious, and parasitic diseases including HIV represent the commonest non-cancer cause of mortality.

Keywords: hepatocellular carcinoma, seer, causes of death, mortality

Procedia PDF Downloads 90