Search results for: forest fire detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4780

Search results for: forest fire detection

4450 A Machine Learning Approach to Detecting Evasive PDF Malware

Authors: Vareesha Masood, Ammara Gul, Nabeeha Areej, Muhammad Asif Masood, Hamna Imran

Abstract:

The universal use of PDF files has prompted hackers to use them for malicious intent by hiding malicious codes in their victim’s PDF machines. Machine learning has proven to be the most efficient in identifying benign files and detecting files with PDF malware. This paper has proposed an approach using a decision tree classifier with parameters. A modern, inclusive dataset CIC-Evasive-PDFMal2022, produced by Lockheed Martin’s Cyber Security wing is used. It is one of the most reliable datasets to use in this field. We designed a PDF malware detection system that achieved 99.2%. Comparing the suggested model to other cutting-edge models in the same study field, it has a great performance in detecting PDF malware. Accordingly, we provide the fastest, most reliable, and most efficient PDF Malware detection approach in this paper.

Keywords: PDF, PDF malware, decision tree classifier, random forest classifier

Procedia PDF Downloads 95
4449 Enhancement of Density-Based Spatial Clustering Algorithm with Noise for Fire Risk Assessment and Warning in Metro Manila

Authors: Pinky Mae O. De Leon, Franchezka S. P. Flores

Abstract:

This study focuses on applying an enhanced density-based spatial clustering algorithm with noise for fire risk assessments and warnings in Metro Manila. Unlike other clustering algorithms, DBSCAN is known for its ability to identify arbitrary-shaped clusters and its resistance to noise. However, its performance diminishes when handling high dimensional data, wherein it can read the noise points as relevant data points. Also, the algorithm is dependent on the parameters (eps & minPts) set by the user; choosing the wrong parameters can greatly affect its clustering result. To overcome these challenges, the study proposes three key enhancements: first is to utilize multiple MinHash and locality-sensitive hashing to decrease the dimensionality of the data set, second is to implement Jaccard Similarity before applying the parameter Epsilon to ensure that only similar data points are considered neighbors, and third is to use the concept of Jaccard Neighborhood along with the parameter MinPts to improve in classifying core points and identifying noise in the data set. The results show that the modified DBSCAN algorithm outperformed three other clustering methods, achieving fewer outliers, which facilitated a clearer identification of fire-prone areas, high Silhouette score, indicating well-separated clusters that distinctly identify areas with potential fire hazards and exceptionally achieved a low Davies-Bouldin Index and a high Calinski-Harabasz score, highlighting its ability to form compact and well-defined clusters, making it an effective tool for assessing fire hazard zones. This study is intended for assessing areas in Metro Manila that are most prone to fire risk.

Keywords: DBSCAN, clustering, Jaccard similarity, MinHash LSH, fires

Procedia PDF Downloads 15
4448 Adaptive CFAR Analysis for Non-Gaussian Distribution

Authors: Bouchemha Amel, Chachoui Takieddine, H. Maalem

Abstract:

Automatic detection of targets in a modern communication system RADAR is based primarily on the concept of adaptive CFAR detector. To have an effective detection, we must minimize the influence of disturbances due to the clutter. The detection algorithm adapts the CFAR detection threshold which is proportional to the average power of the clutter, maintaining a constant probability of false alarm. In this article, we analyze the performance of two variants of adaptive algorithms CA-CFAR and OS-CFAR and we compare the thresholds of these detectors in the marine environment (no-Gaussian) with a Weibull distribution.

Keywords: CFAR, threshold, clutter, distribution, Weibull, detection

Procedia PDF Downloads 591
4447 Utilization of Logging Residue to Reduce Soil Disturbance of Timber Harvesting

Authors: Juang R. Matangaran, Qi Adlan

Abstract:

Industrial plantation forest in Indonesia was developed in 1983, and since then, several companies have been successfully planted a total area of concessionaire approximately 10 million hectares. Currently, these plantation forests have their annual harvesting period. In the timber harvesting process, amount part of the trees generally become logging residue. Tree parts such as branches, twigs, defected stem and leaves are unused section of tree on the ground after timber harvesting. The use of heavy machines in timber harvesting area has caused damage to the forest soil. The negative impact of such machines includes loss of topsoil, soil erosion, and soil compaction. Forest soil compaction caused reduction of forest water infiltration, increase runoff and causes difficulty for root penetration. In this study, we used logging residue as soil covers on the passages passed by skidding machines in order to observe the reduction soil compaction. Bulk density of soil was measured and analyzed after several times of skidding machines passage on skid trail. The objective of the research was to analyze the effect of logging residue on reducing soil compaction. The research was taken place at one of the industrial plantation forest area of South Sumatra Indonesia. The result of the study showed that percentage increase of soil compaction bare soil was larger than soil surface covered by logging residue. The maximum soil compaction occurred after 4 to 5 passes on soil without logging residue or bare soil and after 7 to 8 passes on soil cover by logging residue. The use of logging residue coverings could reduce soil compaction from 45% to 60%. The logging residue was effective in decreasing soil disturbance of timber harvesting at the plantation forest area.

Keywords: bulk density, logging residue, plantation forest, soil compaction, timber harvesting

Procedia PDF Downloads 411
4446 Intrusion Detection Techniques in Mobile Adhoc Networks: A Review

Authors: Rashid Mahmood, Muhammad Junaid Sarwar

Abstract:

Mobile ad hoc networks (MANETs) use has been well-known from the last few years in the many applications, like mission critical applications. In the (MANETS) prevention method is not adequate as the security concerned, so the detection method should be added to the security issues in (MANETs). The authentication and encryption is considered the first solution of the MANETs problem where as now these are not sufficient as MANET use is increasing. In this paper we are going to present the concept of intrusion detection and then survey some of major intrusion detection techniques in MANET and aim to comparing in some important fields.

Keywords: MANET, IDS, intrusions, signature, detection, prevention

Procedia PDF Downloads 382
4445 Effect of Packing Ratio on Fire Spread across Discrete Fuel Beds: An Experimental Analysis

Authors: Qianqian He, Naian Liu, Xiaodong Xie, Linhe Zhang, Yang Zhang, Weidong Yan

Abstract:

In the wild, the vegetation layer with exceptionally complex fuel composition and heterogeneous spatial distribution strongly affects the rate of fire spread (ROS) and fire intensity. Clarifying the influence of fuel bed structure on fire spread behavior is of great significance to wildland fire management and prediction. The packing ratio is one of the key physical parameters describing the property of the fuel bed. There is a threshold value of the packing ratio for ROS, but little is known about the controlling mechanism. In this study, to address this deficiency, a series of fire spread experiments were performed across a discrete fuel bed composed of some regularly arranged laser-cut cardboards, with constant wind speed and different packing ratios (0.0125-0.0375). The experiment aims to explore the relative importance of the internal and surface heat transfer with packing ratio. The dependence of the measured ROS on the packing ratio was almost consistent with the previous researches. The data of the radiative and total heat fluxes show that the internal heat transfer and surface heat transfer are both enhanced with increasing packing ratio (referred to as ‘Stage 1’). The trend agrees well with the variation of the flame length. The results extracted from the video show that the flame length markedly increases with increasing packing ratio in Stage 1. Combustion intensity is suggested to be increased, which, in turn, enhances the heat radiation. The heat flux data shows that the surface heat transfer appears to be more important than the internal heat transfer (fuel preheating inside the fuel bed) in Stage 1. On the contrary, the internal heat transfer dominates the fuel preheating mechanism when the packing ratio further increases (referred to as ‘Stage 2’) because the surface heat flux keeps almost stable with the packing ratio in Stage 2. As for the heat convection, the flow velocity was measured using Pitot tubes both inside and on the upper surface of the fuel bed during the fire spread. Based on the gas velocity distribution ahead of the flame front, it is found that the airflow inside the fuel bed is restricted in Stage 2, which can reduce the internal heat convection in theory. However, the analysis indicates not the influence of inside flow on convection and combustion, but the decreased internal radiation of per unit fuel is responsible for the decrease of ROS.

Keywords: discrete fuel bed, fire spread, packing ratio, wildfire

Procedia PDF Downloads 146
4444 Plant Disease Detection Using Image Processing and Machine Learning

Authors: Sanskar, Abhinav Pal, Aryush Gupta, Sushil Kumar Mishra

Abstract:

One of the critical and tedious assignments in agricultural practices is the detection of diseases on vegetation. Agricultural production is very important in today’s economy because plant diseases are common, and early detection of plant diseases is important in agriculture. Automatic detection of such early diseases is useful because it reduces control efforts in large productive farms. Using digital image processing and machine learning algorithms, this paper presents a method for plant disease detection. Detection of the disease occurs on different leaves of the plant. The proposed system for plant disease detection is simple and computationally efficient, requiring less time than learning-based approaches. The accuracy of various plant and foliar diseases is calculated and presented in this paper.

Keywords: plant diseases, machine learning, image processing, deep learning

Procedia PDF Downloads 18
4443 Credit Cooperatives: A Factor for Improving the Sustainable Management of Private Forests

Authors: Todor Nickolov Stoyanov

Abstract:

Cooperatives are present in all countries and in almost all sectors, including agriculture, forestry, food, finance, health, marketing, insurance and credit. Strong cooperatives are able to overcome many of the difficulties faced by private owners. Cooperatives use seven principles, including the 'Community Concern" principle, which enables cooperatives to work for the sustainable development of the community. The members of cooperatives may use different systems for generating year-round employment and for receiving sustainable income through performing different forestry activities. Various methods are used during the preparation of the report. These include literature reviews, statistics, secondary data and expert interviews. The members of the cooperatives are benefits exclusively from increasing the efficiency of the various products and from the overall yield of the harvest, and ultimately from achieving better profit through cooperative efforts. Cooperatives also use other types of activities that are an additional opportunity for cooperative income. There are many heterogeneous activities in the production and service sectors of the forest cooperatives under consideration. Some cooperatives serve dairies, distilleries, woodworking enterprises, tourist homes, hotels and motels, shops, ski slopes, sheep breeding, etc. Through the revenue generated by the activity, cooperatives have the opportunity to carry out various environmental and protective activities - recreation, water protection, protection of endangered and endemic species, etc., which in the case of small-scale forests cannot be achieved and the management is not sustainable. The conclusions indicate the results received in the analysis. Cooperative management of forests and forest lands gives higher incomes to individual owners. The management of forests and forest lands through cooperatives helps to carry out different environmental and protective activities. Cooperative forest management provides additional means of subsistence to the owners of poor forest lands. Cooperative management of forests and forest lands support owners to implement the forest management plans and to apply sustainable management of these territories.

Keywords: cooperative, forestry, forest owners, principles of cooperation

Procedia PDF Downloads 247
4442 A Comparative Study of Virus Detection Techniques

Authors: Sulaiman Al amro, Ali Alkhalifah

Abstract:

The growing number of computer viruses and the detection of zero day malware have been the concern for security researchers for a large period of time. Existing antivirus products (AVs) rely on detecting virus signatures which do not provide a full solution to the problems associated with these viruses. The use of logic formulae to model the behaviour of viruses is one of the most encouraging recent developments in virus research, which provides alternatives to classic virus detection methods. In this paper, we proposed a comparative study about different virus detection techniques. This paper provides the advantages and drawbacks of different detection techniques. Different techniques will be used in this paper to provide a discussion about what technique is more effective to detect computer viruses.

Keywords: computer viruses, virus detection, signature-based, behaviour-based, heuristic-based

Procedia PDF Downloads 488
4441 Predictive Modeling of Bridge Conditions Using Random Forest

Authors: Miral Selim, May Haggag, Ibrahim Abotaleb

Abstract:

The aging of transportation infrastructure presents significant challenges, particularly concerning the monitoring and maintenance of bridges. This study investigates the application of Random Forest algorithms for predictive modeling of bridge conditions, utilizing data from the US National Bridge Inventory (NBI). The research is significant as it aims to improve bridge management through data-driven insights that can enhance maintenance strategies and contribute to overall safety. Random Forest is chosen for its robustness, ability to handle complex, non-linear relationships among variables, and its effectiveness in feature importance evaluation. The study begins with comprehensive data collection and cleaning, followed by the identification of key variables influencing bridge condition ratings, including age, construction materials, environmental factors, and maintenance history. Random Forest is utilized to examine the relationships between these variables and the predicted bridge conditions. The dataset is divided into training and testing subsets to evaluate the model's performance. The findings demonstrate that the Random Forest model effectively enhances the understanding of factors affecting bridge conditions. By identifying bridges at greater risk of deterioration, the model facilitates proactive maintenance strategies, which can help avoid costly repairs and minimize service disruptions. Additionally, this research underscores the value of data-driven decision-making, enabling better resource allocation to prioritize maintenance efforts where they are most necessary. In summary, this study highlights the efficiency and applicability of Random Forest in predictive modeling for bridge management. Ultimately, these findings pave the way for more resilient and proactive management of bridge systems, ensuring their longevity and reliability for future use.

Keywords: data analysis, random forest, predictive modeling, bridge management

Procedia PDF Downloads 27
4440 Crooked Wood: Finding Potential in Local Hardwood

Authors: Livia Herle

Abstract:

A large part of the Principality of Liechtenstein is covered by forest. Three-quarters of this forest is defined as protective due to the alpine landscape of the country, which is deteriorating the quality of the wood. Nevertheless, the forest is one of the most important sources of raw material. However, out of the wood harvested annually in Liechtenstein, about two-thirds are used directly as an energy source, drastically shortening up the carbon storage cycle of wood. Furthermore, due to climate change, forest structures are changing. Predictions for the forest in Liechtenstein have stated that the spruce will mostly vanish in low altitudes, only being able to survive in the higher regions. In contrast, hardwood species will experience a rise, resulting in a more mixed forest. Thus, the main research focus will be put upon the potential of hardwood as well as prolonging the lifespan of a timber log before ending up as an energy source. An analysis of the local occurrence of hardwood species and their quality will serve as a tool to implement this knowledge upon constructional solutions. As a system that works with short spam timber and thus qualifies for the regional conditions of hardwood, reciprocal frame systems will be further investigated. These can be defined as load-bearing structures with only two beams connecting at a time, avoiding complex joining situations. Furthermore, every beam is mutually supporting. This allows the usage of short pieces of preferably massive wood. As a result, the system permits for an easy assembly but also disassembly. To promote a more circular application of wood, possible cascading scenarios of the structural solutions will be added. In a workshop at the School of Architecture of the University of Liechtenstein in the Sommer Semester 2024, prototypes in 1:1 of reciprocal frame systems using only local hardwood will help as a tool to further test the theoretical analyses.

Keywords: hardwood, cascading wood, reciprocal frames, crooked wood, forest structures, climate change

Procedia PDF Downloads 83
4439 The Effect of Pixelation on Face Detection: Evidence from Eye Movements

Authors: Kaewmart Pongakkasira

Abstract:

This study investigated how different levels of pixelation affect face detection in natural scenes. Eye movements and reaction times, while observers searched for faces in natural scenes rendered in different ranges of pixels, were recorded. Detection performance for coarse visual detail at lower pixel size (3 x 3) was better than with very blurred detail carried by higher pixel size (9 x 9). The result is consistent with the notion that face detection relies on gross detail information of face-shape template, containing crude shape structure and features. In contrast, detection was impaired when face shape and features are obscured. However, it was considered that the degradation of scenic information might also contribute to the effect. In the next experiment, a more direct measurement of the effect of pixelation on face detection, only the embedded face photographs, but not the scene background, will be filtered.

Keywords: eye movements, face detection, face-shape information, pixelation

Procedia PDF Downloads 319
4438 Performance of Nakagami Fading Channel over Energy Detection Based Spectrum Sensing

Authors: M. Ranjeeth, S. Anuradha

Abstract:

Spectrum sensing is the main feature of cognitive radio technology. Spectrum sensing gives an idea of detecting the presence of the primary users in a licensed spectrum. In this paper we compare the theoretical results of detection probability of different fading environments like Rayleigh, Rician, Nakagami-m fading channels with the simulation results using energy detection based spectrum sensing. The numerical results are plotted as P_f Vs P_d for different SNR values, fading parameters. It is observed that Nakagami fading channel performance is better than other fading channels by using energy detection in spectrum sensing. A MATLAB simulation test bench has been implemented to know the performance of energy detection in different fading channel environment.

Keywords: spectrum sensing, energy detection, fading channels, probability of detection, probability of false alarm

Procedia PDF Downloads 535
4437 Numerical Simulation and Analysis of Axially Restrained Steel Cellular Beams in Fire

Authors: Asal Pournaghshband

Abstract:

This paper presents the development of a finite element model to study the large deflection behavior of restrained stainless steel cellular beams at elevated temperature. Cellular beams are widely used for efficient utilization of raw materials to facilitate long spans with faster construction resulting sustainable design solution that can enhance the performance and merit of any construction project. However, their load carrying capacity is less than the equivalent beams without opening due to developing shear-moment interaction at the openings. In structural frames due to elements continuity, such beams are restrained by their adjoining members which has a substantial effect on beams behavior in fire. Stainless steel has also become integral part of the build environment due to its excellent corrosion resistance, whole life-cycle costs, and sustainability. This paper reports the numerical investigations into the effect of structural continuity on the thermo-mechanical performance of restrained steel beams with circle and elongated circle shapes of web opening in fire. The numerical model is firstly validated using existing numerical results from the literature, and then employed to perform a parametric study. The structural continuity is evaluated through the application of different levels of axial restraints on the response of carbon steel and stainless steel cellular beam in fire. The transit temperature for stainless steel cellular beam is shown to be less affected by the level of axial stiffness than the equivalent carbon steel cellular beam. Overall, it was established that whereas stainless steel cellular beams show similar stages of behavior of carbon steel cellular beams in fire, they are capable of withstanding higher temperatures prior to the onset of catenary action in large deflection, despite the higher thermal expansion of stainless steel material.

Keywords: axial restraint, catenary action, cellular beam, fire, numerical modeling, stainless steel, transit temperature

Procedia PDF Downloads 88
4436 Reducing the Computational Cost of a Two-way Coupling CFD-FEA Model via a Multi-scale Approach for Fire Determination

Authors: Daniel Martin Fellows, Sean P. Walton, Jennifer Thompson, Oubay Hassan, Kevin Tinkham, Ella Quigley

Abstract:

Structural integrity for cladding products is a key performance parameter, especially concerning fire performance. Cladding products such as PIR-based sandwich panels are tested rigorously, in line with industrial standards. Physical fire tests are necessary to ensure the customer's safety but can give little information about critical behaviours that can help develop new materials. Numerical modelling is a tool that can help investigate a fire's behaviour further by replicating the fire test. However, fire is an interdisciplinary problem as it is a chemical reaction that behaves fluidly and impacts structural integrity. An analysis using Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA) is needed to capture all aspects of a fire performance test. One method is a two-way coupling analysis that imports the updated changes in thermal data, due to the fire's behaviour, to the FEA solver in a series of iterations. In light of our recent work with Tata Steel U.K using a two-way coupling methodology to determine the fire performance, it has been shown that a program called FDS-2-Abaqus can make predictions of a BS 476 -22 furnace test with a degree of accuracy. The test demonstrated the fire performance of Tata Steel U.K Trisomet product, a Polyisocyanurate (PIR) based sandwich panel used for cladding. Previous works demonstrated the limitations of the current version of the program, the main limitation being the computational cost of modelling three Trisomet panels, totalling an area of 9 . The computational cost increases substantially, with the intention to scale up to an LPS 1181-1 test, which includes a total panel surface area of 200 .The FDS-2-Abaqus program is developed further within this paper to overcome this obstacle and better accommodate Tata Steel U.K PIR sandwich panels. The new developments aim to reduce the computational cost and error margin compared to experimental data. One avenue explored is a multi-scale approach in the form of Reduced Order Modeling (ROM). The approach allows the user to include refined details of the sandwich panels, such as the overlapping joints, without a computationally costly mesh size.Comparative studies will be made between the new implementations and the previous study completed using the original FDS-2-ABAQUS program. Validation of the study will come from physical experiments in line with governing body standards such as BS 476 -22 and LPS 1181-1. The physical experimental data includes the panels' gas and surface temperatures and mechanical deformation. Conclusions are drawn, noting the new implementations' impact factors and discussing the reasonability for scaling up further to a whole warehouse.

Keywords: fire testing, numerical coupling, sandwich panels, thermo fluids

Procedia PDF Downloads 82
4435 Production, Utilization and Marketing of Non-Timber Forest Products (NTFPs) in Ikwuano Local Government Area of Abia State, Nigeria

Authors: Nneka M. Chidieber-Mark, Roseline D. Ejike

Abstract:

Non-Timber Forest Products (NTFPs) have been described as all biological materials, other than timber extracted from natural and managed forests for human subsistence and economic activities. This study focused on the production, utilization and marketing of Non-Timber Forest Products (NTFPs) in Ikwuano Local Government Area of Abia State, Nigeria. A multistage sampling technique was adopted in the selection of respondents for the study. Data were from primary sources only. Data collected were analysed using descriptive statistical tools as well as Net Income Analysis. Results show that a vast number of plant based and animal based NTFPs exist in the study area. They are harvested and used for multiple purposes. NTFPs are a source of income for the indigenes that depend on it for their livelihood. Unsustainable production and harvesting as well as poor marketing information was among the constraints impeding the growth and development of NTFPs sub-sector in the study area.

Keywords: non-timber forest products, production, utilization, marketing

Procedia PDF Downloads 454
4434 Machine Learning Techniques for COVID-19 Detection: A Comparative Analysis

Authors: Abeer A. Aljohani

Abstract:

COVID-19 virus spread has been one of the extreme pandemics across the globe. It is also referred to as coronavirus, which is a contagious disease that continuously mutates into numerous variants. Currently, the B.1.1.529 variant labeled as omicron is detected in South Africa. The huge spread of COVID-19 disease has affected several lives and has surged exceptional pressure on the healthcare systems worldwide. Also, everyday life and the global economy have been at stake. This research aims to predict COVID-19 disease in its initial stage to reduce the death count. Machine learning (ML) is nowadays used in almost every area. Numerous COVID-19 cases have produced a huge burden on the hospitals as well as health workers. To reduce this burden, this paper predicts COVID-19 disease is based on the symptoms and medical history of the patient. This research presents a unique architecture for COVID-19 detection using ML techniques integrated with feature dimensionality reduction. This paper uses a standard UCI dataset for predicting COVID-19 disease. This dataset comprises symptoms of 5434 patients. This paper also compares several supervised ML techniques to the presented architecture. The architecture has also utilized 10-fold cross validation process for generalization and the principal component analysis (PCA) technique for feature reduction. Standard parameters are used to evaluate the proposed architecture including F1-Score, precision, accuracy, recall, receiver operating characteristic (ROC), and area under curve (AUC). The results depict that decision tree, random forest, and neural networks outperform all other state-of-the-art ML techniques. This achieved result can help effectively in identifying COVID-19 infection cases.

Keywords: supervised machine learning, COVID-19 prediction, healthcare analytics, random forest, neural network

Procedia PDF Downloads 95
4433 Intrusion Detection and Prevention System (IDPS) in Cloud Computing Using Anomaly-Based and Signature-Based Detection Techniques

Authors: John Onyima, Ikechukwu Ezepue

Abstract:

Virtualization and cloud computing are among the fast-growing computing innovations in recent times. Organisations all over the world are moving their computing services towards the cloud this is because of its rapid transformation of the organization’s infrastructure and improvement of efficient resource utilization and cost reduction. However, this technology brings new security threats and challenges about safety, reliability and data confidentiality. Evidently, no single security technique can guarantee security or protection against malicious attacks on a cloud computing network hence an integrated model of intrusion detection and prevention system has been proposed. Anomaly-based and signature-based detection techniques will be integrated to enable the network and its host defend themselves with some level of intelligence. The anomaly-base detection was implemented using the local deviation factor graph-based (LDFGB) algorithm while the signature-based detection was implemented using the snort algorithm. Results from this collaborative intrusion detection and prevention techniques show robust and efficient security architecture for cloud computing networks.

Keywords: anomaly-based detection, cloud computing, intrusion detection, intrusion prevention, signature-based detection

Procedia PDF Downloads 313
4432 Safety Risks of Gaseous Toxic Compounds Released from Li Batteries

Authors: Jan Karl, Ondrej Suchy, Eliska Fiserova, Milan Ruzicka

Abstract:

The evolving electromobility and all the electronics also bring an increase of danger with used Li-batteries. Li-batteries have been used in many industries, and currently many types of the batteries are available. Batteries have different compositions that affect their behavior. In the field of Li-battery safety, there are some areas of little discussion, such as extinguishing of fires caused by Li-batteries as well as toxicity of gaseous compounds released from Li batteries, transport or storage. Technical Institute of Fire Protection, which is a part of Fire Brigades of the Czech Republic, is dealing with the safety of Li batteries. That is the reason why we are dealing with toxicity of gaseous compounds released under conditions of fire, mechanical damage, overcharging and other emergencies that may occur. This is necessary for protection of intervening of fire brigade units, people in the vicinity and other envirnomental consequences. In this work, different types of batteries (Li-ion, Li-Po, LTO, LFP) with different kind of damage were tested, and the toxicity and total amount of released gases were studied. These values were evaluated according to their environmental hazard. FTIR spectroscopy was used for the evaluation of toxicity. We used a FTIR gas cell for continuous measurement. The total amount of released gases was determined by collecting the total gas phase through the absorbers and then determining the toxicants absorbed into the solutions. Based on the obtained results, it is possible to determine the protective equipment necessary for the event of an emergency with a Li-battery, to define the environmental load and the immediate danger in an emergency.

Keywords: Li-battery, toxicity, gaseous toxic compounds, FTIR spectroscopy

Procedia PDF Downloads 156
4431 Survey on Malware Detection

Authors: Doaa Wael, Naswa Abdelbaky

Abstract:

Malware is malicious software that is built to cause destructive actions and damage information systems and networks. Malware infections increase rapidly, and types of malware have become more sophisticated, which makes the malware detection process more difficult. On the other side, the Internet of Things IoT technology is vulnerable to malware attacks. These IoT devices are always connected to the internet and lack security. This makes them easy for hackers to access. These malware attacks are becoming the go-to attack for hackers. Thus, in order to deal with this challenge, new malware detection techniques are needed. Currently, building a blockchain solution that allows IoT devices to download any file from the internet and to verify/approve whether it is malicious or not is the need of the hour. In recent years, blockchain technology has stood as a solution to everything due to its features like decentralization, persistence, and anonymity. Moreover, using blockchain technology overcomes some difficulties in malware detection and improves the malware detection ratio over-than the techniques that do not utilize blockchain technology. In this paper, we study malware detection models which are based on blockchain technology. Furthermore, we elaborate on the effect of blockchain technology in malware detection, especially in the android environment.

Keywords: malware analysis, blockchain, malware attacks, malware detection approaches

Procedia PDF Downloads 90
4430 Land Use Dynamics of Ikere Forest Reserve, Nigeria Using Geographic Information System

Authors: Akintunde Alo

Abstract:

The incessant encroachments into the forest ecosystem by the farmers and local contractors constitute a major threat to the conservation of genetic resources and biodiversity in Nigeria. To propose a viable monitoring system, this study employed Geographic Information System (GIS) technology to assess the changes that occurred for a period of five years (between 2011 and 2016) in Ikere forest reserve. Landsat imagery of the forest reserve was obtained. For the purpose of geo-referencing the acquired satellite imagery, ground-truth coordinates of some benchmark places within the forest reserve was relied on. Supervised classification algorithm, image processing, vectorization and map production were realized using ArcGIS. Various land use systems within the forest ecosystem were digitized into polygons of different types and colours for 2011 and 2016, roads were represented with lines of different thickness and colours. Of the six land-use delineated, the grassland increased from 26.50 % in 2011 to 45.53% in 2016 of the total land area with a percentage change of 71.81 %. Plantations of Gmelina arborea and Tectona grandis on the other hand reduced from 62.16 % in 2011 to 27.41% in 2016. The farmland and degraded land recorded percentage change of about 176.80 % and 8.70 % respectively from 2011 to 2016. Overall, the rate of deforestation in the study area is on the increase and becoming severe. About 72.59% of the total land area has been converted to non-forestry uses while the remnant 27.41% is occupied by plantations of Gmelina arborea and Tectona grandis. Interestingly, over 55 % of the plantation area in 2011 has changed to grassland, or converted to farmland and degraded land in 2016. The rate of change over time was about 9.79 % annually. Based on the results, rapid actions to prevail on the encroachers to stop deforestation and encouraged re-afforestation in the study area are recommended.

Keywords: land use change, forest reserve, satellite imagery, geographical information system

Procedia PDF Downloads 360
4429 Spatio-Temporal Analysis of Land Use and Land Cover Change in the Cocoa Belt of Ondo State, southwestern Nigeria

Authors: Emmanuel Dada, Adebayo-Victoria Tobi Dada

Abstract:

The study evaluates land use and land cover changes in the cocoa belt of Ondo state to quantify its effect on the expanse of land occupied by cocoa plantation as the most suitable region for cocoa raisin in Nigeria. Time series of satellite imagery from Landsat-7 ETM+ and Landsat-8 TIRS covering years 2000 and 2015 respectively were used. The study area was classified into six land use themes of cocoa plantation, settlement, water body, light forest and grassland, forest, and bar surface and rock outcrop. The analyses revealed that out of total land area of 997714 hectares of land of the study area, cocoa plantation land use increased by 10.3% in 2015 from 312260.6 ha in 2000. Forest land use also increased by 6.3% in 2015 from 152144.1 ha in the year 2000, water body reduced from 2954.5 ha in the year 2000 by 0.1% in 2015, settlement land use increased by 3% in 2015 from 15194.6 ha in 2000, light forest and grassland area reduced by 10.4% between 2000 and 2015 and 9.1% reduction in bar surface and rock outcrop land use between the year 2000 and 2015 respectively. The reasons for different ranges in the changes observed in the land use and land cover in the study area could be due to increase in the incentive to cocoa farmers from both government and non-governmental organizations, developed new cocoa breed that thrive better in the light forest, rapid increased in the population of cocoa farmers’ settlements, and government promulgation of forest reserve law.

Keywords: satellite imagery, land use and land cover change, area of land

Procedia PDF Downloads 237
4428 Optimizing Design Parameters for Efficient Saturated Steam Production in Fire Tube Boilers: A Cost-Effective Approach

Authors: Yoftahe Nigussie Worku

Abstract:

This research focuses on advancing fire tube boiler technology by systematically optimizing design parameters to achieve efficient saturated steam production. The main objective is to design a high-performance boiler with a production capacity of 2000kg/h at a 12-bar design pressure while minimizing costs. The methodology employs iterative analysis, utilizing relevant formulas, and considers material selection and production methods. The study successfully results in a boiler operating at 85.25% efficiency, with a fuel consumption rate of 140.37kg/hr and a heat output of 1610kW. Theoretical importance lies in balancing efficiency, safety considerations, and cost minimization. The research addresses key questions on parameter optimization, material choices, and safety-efficiency balance, contributing valuable insights to fire tube boiler design.

Keywords: safety consideration, efficiency, production methods, material selection

Procedia PDF Downloads 69
4427 Evaluation of Coupled CFD-FEA Simulation for Fire Determination

Authors: Daniel Martin Fellows, Sean P. Walton, Jennifer Thompson, Oubay Hassan, Ella Quigley, Kevin Tinkham

Abstract:

Fire performance is a crucial aspect to consider when designing cladding products, and testing this performance is extremely expensive. Appropriate use of numerical simulation of fire performance has the potential to reduce the total number of fire tests required when designing a product by eliminating poor-performing design ideas early in the design phase. Due to the complexity of fire and the large spectrum of failures it can cause, multi-disciplinary models are needed to capture the complex fire behavior and its structural effects on its surroundings. Working alongside Tata Steel U.K., the authors have focused on completing a coupled CFD-FEA simulation model suited to test Polyisocyanurate (PIR) based sandwich panel products to gain confidence before costly experimental standards testing. The sandwich panels are part of a thermally insulating façade system primarily for large non-domestic buildings. The work presented in this paper compares two coupling methodologies of a replicated physical experimental standards test LPS 1181-1, carried out by Tata Steel U.K. The two coupling methodologies that are considered within this research are; one-way and two-way. A one-way coupled analysis consists of importing thermal data from the CFD solver into the FEA solver. A two-way coupling analysis consists of continuously importing the updated changes in thermal data, due to the fire's behavior, to the FEA solver throughout the simulation. Likewise, the mechanical changes will also be updated back to the CFD solver to include geometric changes within the solution. For CFD calculations, a solver called Fire Dynamic Simulator (FDS) has been chosen due to its adapted numerical scheme to focus solely on fire problems. Validation of FDS applicability has been achieved in past benchmark cases. In addition, an FEA solver called ABAQUS has been chosen to model the structural response to the fire due to its crushable foam plasticity model, which can accurately model the compressibility of PIR foam. An open-source code called FDS-2-ABAQUS is used to couple the two solvers together, using several python modules to complete the process, including failure checks. The coupling methodologies and experimental data acquired from Tata Steel U.K are compared using several variables. The comparison data includes; gas temperatures, surface temperatures, and mechanical deformation of the panels. Conclusions are drawn, noting improvements to be made on the current coupling open-source code FDS-2-ABAQUS to make it more applicable to Tata Steel U.K sandwich panel products. Future directions for reducing the computational cost of the simulation are also considered.

Keywords: fire engineering, numerical coupling, sandwich panels, thermo fluids

Procedia PDF Downloads 94
4426 A Study of Effective Stereo Matching Method for Long-Wave Infrared Camera Module

Authors: Hyun-Koo Kim, Yonghun Kim, Yong-Hoon Kim, Ju Hee Lee, Myungho Song

Abstract:

In this paper, we have described an efficient stereo matching method and pedestrian detection method using stereo types LWIR camera. We compared with three types stereo camera algorithm as block matching, ELAS, and SGM. For pedestrian detection using stereo LWIR camera, we used that SGM stereo matching method, free space detection method using u/v-disparity, and HOG feature based pedestrian detection. According to testing result, SGM method has better performance than block matching and ELAS algorithm. Combination of SGM, free space detection, and pedestrian detection using HOG features and SVM classification can detect pedestrian of 30m distance and has a distance error about 30 cm.

Keywords: advanced driver assistance system, pedestrian detection, stereo matching method, stereo long-wave IR camera

Procedia PDF Downloads 418
4425 mKDNAD: A Network Flow Anomaly Detection Method Based On Multi-teacher Knowledge Distillation

Authors: Yang Yang, Dan Liu

Abstract:

Anomaly detection models for network flow based on machine learning have poor detection performance under extremely unbalanced training data conditions and also have slow detection speed and large resource consumption when deploying on network edge devices. Embedding multi-teacher knowledge distillation (mKD) in anomaly detection can transfer knowledge from multiple teacher models to a single model. Inspired by this, we proposed a state-of-the-art model, mKDNAD, to improve detection performance. mKDNAD mine and integrate the knowledge of one-dimensional sequence and two-dimensional image implicit in network flow to improve the detection accuracy of small sample classes. The multi-teacher knowledge distillation method guides the train of the student model, thus speeding up the model's detection speed and reducing the number of model parameters. Experiments in the CICIDS2017 dataset verify the improvements of our method in the detection speed and the detection accuracy in dealing with the small sample classes.

Keywords: network flow anomaly detection (NAD), multi-teacher knowledge distillation, machine learning, deep learning

Procedia PDF Downloads 128
4424 Carbon Pool Assessment in Two Community Forest in Nepal

Authors: Khemnath Kharel

Abstract:

Forest itself is a factory as well as product. It supplies tangible and intangible goods and services. It supplies timber, fuel wood, fodder, grass leaf litter as well as non timber edible goods and medicinal and aromatic products additionally provides environmental services. These environmental services are of local, national, or even global importance. In Nepal more than 19 thousands community forests are providing environmental service in less economic benefit than actual efficiency. There is a risk of cost of management of those forest exceeds benefits and forests get converted to open access resources in future. Most of the environmental goods and services don’t have markets which mean no prices at which they are available to the consumers therefore the valuation of these services goods and services establishment of paying mechanism for such services and insure the benefit to community is more relevant in local as well as global scale. There are few examples of carbon trading in domestic level to meet the country wide emission goal. In this contest the study aims to explore the public attitude towards carbon offsetting and their responsibility over service providers. This study helps in promotion of environment service awareness among general people and service provider; community forest. The research helps to unveil the carbon pool scenario in community forest and willingness to pay for carbon offsetting of people who are consuming more energy than general people and emitting relatively more carbon in atmosphere. The study has assessed the carbon pool status in two community forest. In the study in two community forests carbon pools were assessed following the guideline “Forest Carbon Inventory Guideline 2010” prescribed by Ministry of Forest and soil Conservation, Nepal. Final out comes of analysis in intensively managed area of Hokse CF recorded as 103.58 tons C /ha with 6173.30 tons carbon stock. Similarly in Hariyali CF carbon density was recorded 251.72 mg C /ha. The total carbon stock of intensively managed blocks in Hariyali CF is 35839.62 tons carbon.

Keywords: carbon, offsetting, sequestration, valuation

Procedia PDF Downloads 326
4423 Determining Optimal Number of Trees in Random Forests

Authors: Songul Cinaroglu

Abstract:

Background: Random Forest is an efficient, multi-class machine learning method using for classification, regression and other tasks. This method is operating by constructing each tree using different bootstrap sample of the data. Determining the number of trees in random forests is an open question in the literature for studies about improving classification performance of random forests. Aim: The aim of this study is to analyze whether there is an optimal number of trees in Random Forests and how performance of Random Forests differ according to increase in number of trees using sample health data sets in R programme. Method: In this study we analyzed the performance of Random Forests as the number of trees grows and doubling the number of trees at every iteration using “random forest” package in R programme. For determining minimum and optimal number of trees we performed Mc Nemar test and Area Under ROC Curve respectively. Results: At the end of the analysis it was found that as the number of trees grows, it does not always means that the performance of the forest is better than forests which have fever trees. In other words larger number of trees only increases computational costs but not increases performance results. Conclusion: Despite general practice in using random forests is to generate large number of trees for having high performance results, this study shows that increasing number of trees doesn’t always improves performance. Future studies can compare different kinds of data sets and different performance measures to test whether Random Forest performance results change as number of trees increase or not.

Keywords: classification methods, decision trees, number of trees, random forest

Procedia PDF Downloads 397
4422 Rapid Detection System of Airborne Pathogens

Authors: Shigenori Togashi, Kei Takenaka

Abstract:

We developed new processes which can collect and detect rapidly airborne pathogens such as the avian flu virus for the pandemic prevention. The fluorescence antibody technique is known as one of high-sensitive detection methods for viruses, but this needs up to a few hours to bind sufficient fluorescence dyes to viruses for detection. In this paper, we developed a mist-labeling can detect substitution viruses in a short time to improve the binding rate of fluorescent dyes and substitution viruses by the micro reaction process. Moreover, we developed the rapid detection system with the above 'mist labeling'. The detection system set with a sampling bag collecting patient’s breath and a cartridge can detect automatically pathogens within 10 minutes.

Keywords: viruses, sampler, mist, detection, fluorescent dyes, microreaction

Procedia PDF Downloads 480
4421 Livelihood and Willingness to Accept Reducing Emission from Deforestation and Degradation by Local People in the Southwestern Nigeria

Authors: Adebayo John Julius, Emmanuel Imoagene

Abstract:

Mitigating global warming through reducing emission from deforestation and degradation (REDD) has been given increasing attentions in government-to-government negotiations while discussions among decision-makers have been going on, it is important to learn about the perception of local people in relation to REDD because the implementation will affect their lives. A survey was conducted using questionnaires to examine the livelihood and forest dependency of the local people in the vicinity of Onigambari and Ido area. Respondents’ income from forest activities and forest resources are collected. Participation in tourism related activities among the household members was also investigated to measure the potential of this “eco-friendly” income generation activity in the local communities. There was a general indication of reducing slash-and-burn activities with distance from the park and involvement in tourism-related job. Most of the local people were willing to accept compensation as alternative for slash-and-burn activities. The compensation preferred is in various form of development and different level of forest and environmental activities

Keywords: livelihood, emission, deforestation, degradation, local people, southwest Nigeria

Procedia PDF Downloads 151