Search results for: chemical reduction approach
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20846

Search results for: chemical reduction approach

20516 Development of Rh/Ce-Zr-La/Al2O3 TWCs’ Wash Coat: Effect of Reactor on Catalytic and Thermal Stability

Authors: Su-Ning Wang, Yao-Qiang Chen

Abstract:

The CeO2-ZrO2-La2O3-Al2O3 composite oxides are synthesized using co-precipitation method by two different reactors (i.e. continuous stirred-tank reactor and batch reactor), and the corresponding Rh-only three-way catalysts are obtained by wet-impregnation approach. The textural, structural, morphology and redox properties of the support materials, as well as the catalytic performance of the Rh-only catalyst are investigated systematically. The results reveal that the materials (CZLA-C) synthesized by continuous stirred-tank reactor have a better physic-chemical properties than the counterpart material (CZLA-B) prepared by batch reactor. After aging treatment at 1000 ℃ for 5 h, the BET surface area and pore volume of S1 reach up to 76 m2 g-1 and 0.36 mL/g, respectively, which is higher than that of S2. The XRD and Raman results demonstrate that a high structural stability is obtained by S1 because of the negligible lattice variation and the slight grain growth after aging treatment. The SEM and TEM images display that the morphology of S1 is assembled by many homogeneous primary nanoparticles (about 6.12 nm) that are connected to form mesoporous structure The TPR measurement shows that S1 possesses a higher reduction ability than S2. Compared with the catalyst supported on the CZLA-B, the as-prepared CZLA-C demonstrates an improved three-way catalytic activity both before and after aging treatment.

Keywords: composite oxides, reactor, catalysis, catalytic performance

Procedia PDF Downloads 272
20515 Releasing Two Insect Predators to Control of Aphids Under Open-field Conditions

Authors: Mohamed Ahmed Gesraha, Amany Ramadan Ebeid

Abstract:

Aphids are noxious and serious persistent pests in the open fields worldwide. Many authors studied the possibility of aphid control by applying Ladybirds and Lacewings at different releasing rates under open-field conditions. Results clarify that releasing 3rd instar larvae of Coccinella undecimpunctata at the rate of 1 larva:50 aphid was more effective than 1:100 or 1:200 rates for controlling Aphis gossypii population in Okra field; reflecting more than 90% reduction in the aphid population within 15 days. When Chrysoperla carnea 2nd larval instar were releasing at 1:5, 1:10, and 1:20 (predator: aphid), it was noticed that the former rate was the most effective one, inducing 98.93% reduction in aphid population; while the two other rates reflecting less reduction. Additionally, in the case of double releases, the reduction percentage at the 1:5 rate was 99.63%, emphasize that this rate was the most effective one; the other rates induced 97.05 and 95.64% reduction. Generally, a double release was more effective in all tested rates than the single one because of the cumulative existence of the predators in large numbers at the same period of the experiment. It could be concluded that utilizing insect predators (Coccinella undecimpunctata or Chrysoperla carnea) at an early larval stag were faire enough to reduce the aphids’ populations under open fields conditions.

Keywords: releasing predators, lacewings, ladybird, open fields

Procedia PDF Downloads 155
20514 Detecting Impact of Allowance Trading Behaviors on Distribution of NOx Emission Reductions under the Clean Air Interstate Rule

Authors: Yuanxiaoyue Yang

Abstract:

Emissions trading, or ‘cap-and-trade', has been long promoted by economists as a more cost-effective pollution control approach than traditional performance standard approaches. While there is a large body of empirical evidence for the overall effectiveness of emissions trading, relatively little attention has been paid to other unintended consequences brought by emissions trading. One important consequence is that cap-and-trade could introduce the risk of creating high-level emission concentrations in areas where emitting facilities purchase a large number of emission allowances, which may cause an unequal distribution of environmental benefits. This study will contribute to the current environmental policy literature by linking trading activity with environmental injustice concerns and empirically analyzing the causal relationship between trading activity and emissions reduction under a cap-and-trade program for the first time. To investigate the potential environmental injustice concern in cap-and-trade, this paper uses a differences-in-differences (DID) with instrumental variable method to identify the causal effect of allowance trading behaviors on emission reduction levels under the clean air interstate rule (CAIR), a cap-and-trade program targeting on the power sector in the eastern US. The major data source is the facility-year level emissions and allowance transaction data collected from US EPA air market databases. While polluting facilities from CAIR are the treatment group under our DID identification, we use non-CAIR facilities from the Acid Rain Program - another NOx control program without a trading scheme – as the control group. To isolate the causal effects of trading behaviors on emissions reduction, we also use eligibility for CAIR participation as the instrumental variable. The DID results indicate that the CAIR program was able to reduce NOx emissions from affected facilities by about 10% more than facilities who did not participate in the CAIR program. Therefore, CAIR achieves excellent overall performance in emissions reduction. The IV regression results also indicate that compared with non-CAIR facilities, purchasing emission permits still decreases a CAIR participating facility’s emissions level significantly. This result implies that even buyers under the cap-and-trade program have achieved a great amount of emissions reduction. Therefore, we conclude little evidence of environmental injustice from the CAIR program.

Keywords: air pollution, cap-and-trade, emissions trading, environmental justice

Procedia PDF Downloads 114
20513 Design of Dry Chemical Fire Extinguisher Inspection Equipment in Order to Reduce Ergonomic Risks for Fire Extinguisher Inspectors

Authors: Sitrapee Changmuenwai, Sudaratana Wongweragiat

Abstract:

It is important that a dry chemical fire extinguisher must be inspected for its readiness. For each inspection, the inspectors need to turn the fire extinguisher tank upside down to let the chemical inside the tank move and prevent solidification, which would make the tank not ready for usage when needed. Each tank weighs approximately 16 kg. The inspectors have to turn each tank upside down twice (2 minutes/round). They need to put the tanks over their shoulder close to their ear in order to hear the chemical flow inside the tank or use their hands to feel it. The survey and questionnaire 'The Questionnaire Know Body', which includes neck, left shoulder, upper and lower right arms suggest that all 12 security staffs have the same fatigues. The current dry chemical fire extinguisher inspection affects various ergonomic health problems. Rapid Entire Body Assessment (REBA) is used for evaluation of posture risks so that the working postures may be redesigned or corrected. The dry chemical fire extinguisher inspection equipment has been developed to reduce ergonomic health risks for the inspectors. A REBA analysis has been performed again, and the risk score has been decreased from 13 to 3. In addition, feedbacks from the first trial of the developed equipment show that there are demands to increase the installation in order to reduce the ergonomic health risks.

Keywords: dry chemical fire extinguisher inspection equipment, ergonomic, REBA, rapid entire body assessment

Procedia PDF Downloads 104
20512 Metagenomics Profile during the Bioremediation of Fischer-Tropsch Derived Short-Chain Alcohols and Volatile Fatty Acids Using a Moving Bed Biofilm Reactor

Authors: Mabtho Moreroa-Monyelo, Grace Ijoma, Rosina Nkuna, Tonderayi Matambo

Abstract:

A moving bed biofilm reactor (MBBR) was used for the bioremediation of high strength chemical oxygen demand (COD) Fisher-Tropsch (FT) wastewater. The aerobic MBBR system was operated over 60 days. For metagenomics profile assessment of the targeted 16S sequence of bacteria involved in the bioremediation of the chemical compounds, sludge samples were collected every second day of operation. Parameters such as pH and COD were measured daily to compare the system efficiency as the changedin microbial diversity progressed. The study revealed that pH was a contributing factor to microbial diversity, which further affected the efficiency of the MBBR system. The highest COD removal rate of 86.4% was achieved at pH 8.3. It was observed that when there was more, A higher bacterial diversity led to an improvement in the reduction of COD. Furthermore, an OTUof 4530 was obtained, which were divided into 12 phyla, 27 classes, 44 orders, 74 families, and 138 genera across all sludge samples from the MBBR. A determination of the relative abundance of microorganisms at phyla level indicates that the most abundant phylum on day it was Firmicutes (50%); thereafter, the most abundant phylum changed toProteobacteria.

Keywords: biodegradation, fischer-tropsch wastewater, metagenomics, moving bed biofilm reactor

Procedia PDF Downloads 122
20511 A Numerical Study on the Effects of N2 Dilution on the Flame Structure and Temperature Distribution of Swirl Diffusion Flames

Authors: Yasaman Tohidi, Shidvash Vakilipour, Saeed Ebadi Tavallaee, Shahin Vakilipoor Takaloo, Hossein Amiri

Abstract:

The numerical modeling is performed to study the effects of N2 addition to the fuel stream on the flame structure and temperature distribution of methane-air swirl diffusion flames with different swirl intensities. The Open source Field Operation and Manipulation (OpenFOAM) has been utilized as the computational tool. Flamelet approach along with modified k-ε model is employed to model the flame characteristics.  The results indicate that the presence of N2 in the fuel stream leads to the flame temperature reduction. By increasing of swirl intensity, the flame structure changes significantly. The flame has a conical shape in low swirl intensity; however, it has an hour glass-shape with a shorter length in high swirl intensity. The effects of N2 dilution decrease the flame length in all swirl intensities; however, the rate of reduction is more noticeable in low swirl intensity.

Keywords: swirl diffusion flame, N2 dilution, OpenFOAM, swirl intensity

Procedia PDF Downloads 151
20510 Ductility Reduction Factors for Displacement Spectra Corresponding to Soft Soil Zone of the Valley of Mexico

Authors: Noé D. Lazos-Gallardo, Sonia E. Ruiz, Federico Valenzuela-Beltran

Abstract:

A simplified mathematical expression to estimate ductility reduction factors of the displacement spectra corresponding to the soft soil zone of Mexico City is proposed. The aim is to allow a better characterization of the displacement spectra and provide a simple expression to be used in displacement based design (DBD). Emphasis is on the Mexico City Building Code. The study is based on the analysis of single degree of freedom (SDOF) systems with elasto-plastic hysteretic behavior. Several seismic ground motions corresponding to subduction events with magnitudes equal to or greater than 6 and recorded in different stations of Mexico City are used. The proposed expression involves the ratio of elastic and inelastic pseudo-aceleration spectra, and depends on factors such the ductility demand and the vibration period of the structural system. The resulting ductility reduction factors obtained in this study are compared with others existing in the literature, and their advantages and disadvantages are discussed.

Keywords: displacement based design, displacements spectrum, ductility reduction factors, soft soil

Procedia PDF Downloads 153
20509 Microbioreactor System for Cell Behavior Analysis Focused on Nerve Tissue Engineering

Authors: Yusser Olguín, Diego Benavente, Fernando Dorta, Nicole Orellana, Cristian Acevedo

Abstract:

One of the greatest challenges of tissue engineering is the generation of materials in which the highest possible number of conditions can be incorporated to stimulate the proliferation and differentiation of cells, which will be transformed together with the material into new functional tissue. In this sense, considering the properties of microfluidics and its relationship with cellular micro-environments, the possibility of controlling flow patterns and the ability to design diverse patterns in the chips, a microfluidic cell culture system can be established as a means for the evaluation of the effect of different parameters in a controlled and precise manner. Specifically in relation to the study and development of alternatives in peripheral nervous tissue engineering, it is necessary to consider different physical and chemical neurotrophic stimuli that promote cell growth and differentiation. Chemical stimuli include certain vitamins, glucocorticoids, gangliosides, and growth factors, while physical stimuli include topological stimuli, mechanical forces of the cellular environment and electrical stimulation. In this context, the present investigation shows the results of cell stimulation in a microbioreactor using electrical and chemical stimuli, where the differentiation of PC12 cells as a neuronal model is evidenced by neurite expression, dependent on the stimuli and their combination. The results were analysed with a multi-factor statistical approach, showing several relationships and dependencies between different parameters. Chip design, operating parameters and concentrations of neurotrophic chemical factors were found to be preponderant, based on the characteristics of the electrical stimuli.

Keywords: microfluidics, nerve tissue engineering, microbioreactor, electrical stimuli

Procedia PDF Downloads 56
20508 Additive Manufacturing’s Impact on Product Design and Development: An Industrial Case Study

Authors: Ahmed Abdelsalam, Daniel Roozbahani, Marjan Alizadeh, Heikki Handroos

Abstract:

The aim of this study was to redesign a pressing air nozzle with lower weight and improved efficiency utilizing Selective Laser Melting (SLM) technology based on Design for Additive Manufacturing (DfAM) methods. The original pressing air nozzle was modified in SolidWorks 3D CAD, and two design concepts were introduced considering the DfAM approach. In the proposed designs, the air channels were amended. 3D models for the original pressing air nozzle and introduced designs were created to obtain the flow characteristic data using Ansys software. Results of CFD modeling for the original and two proposed designs were extracted, compared, and analyzed to demonstrate the impact of design on the development of a more efficient pressing air nozzle by AM process. Improved airflow was achieved by optimizing the pressing air nozzle's internal channel for both design concepts by providing 30% and 50.6% fewer pressure drops than the original design. Moreover, utilizing the presented designs, a significant reduction in product weight was attained. In addition, by applying the proposed designs, 48.3% and 70.3% reduction in product weight was attained compared to the original design. Therefore, pressing air nozzle with enhanced productivity and lowered weight was generated utilizing the DfAM-driven designs developed in this study. The main contribution of this study is to investigate the additional possibilities that can be achieved in designing modern parts using the advantage of SLM technology in producing that part. The approach presented in this study can be applied to almost any similar industrial application.

Keywords: additive manufacturing, design for additive manufacturing, design methods, product design, pressing air nozzle

Procedia PDF Downloads 96
20507 Imaginal and in Vivo Exposure Blended with Emdr: Becoming Unstuck, an Integrated Inpatient Treatment for Post-Traumatic Stress Disorder

Authors: Merrylord Harb-Azar

Abstract:

Traditionally, PTSD treatment has involved trauma-focused cognitive behaviour therapy (TF CBT) to consolidate traumatic memories. A piloted integrated treatment of TF CBT and eye movement desensitisation reprocessing therapy (EMDR) of eight phases will fasten the rate memory is being consolidated and enhance cognitive functioning in patients with PTSD. Patients spend a considerable amount of time in treatment managing their traumas experienced firsthand, or from aversive details ranging from war, assaults, accidents, abuse, hostage related, riots, or natural disasters. The time spent in treatment or as inpatient affects overall quality of life, relationships, cognitive functioning, and overall sense of identity. EMDR is being offered twice a week in conjunction with the standard prolonged exposure as an inpatient in a private hospital. Prolonged exposure for up to 5 hours per day elicits the affect response required for EMDR sessions in the afternoon to unlock unprocessed memories and facilitate consolidation in the amygdala and hippocampus. Results are indicating faster consolidation of memories, reduction in symptoms in a shorter period of time, reduction in admission time, which is enhancing the quality of life and relationships, and improved cognition. The impact of events scale (IES) results demonstrate a significant reduction in symptoms, trauma symptoms inventory (TSI), and posttraumatic stressor disorder check list (PCL) that demonstrates large effect sizes to date. An integrated treatment approach for PTSD achieves a faster resolution of memories, improves cognition, and reduces the amount of time spent in therapy.

Keywords: EMDR enhances cognitive functioning, faster consolidation of trauma memory, integrated treatment of TF CBT and EMDR, reduction in inpatient admission time

Procedia PDF Downloads 122
20506 Structural and Optical Study of Cu doped ZnS Thin Films Nanocrystalline by Chemical Bath Deposition Method

Authors: Hamid Merzouk, D. T. Talantikite, H. Haddad, Amel Tounsi

Abstract:

ZnS is an important II-VI binary compound with large band-gap energy at room temperature. We present in this work preparation and characterization of ZnS and Cu doped ZnS thin films. The depositions are performed by a simple chemical bath deposition route. Structural properties are carried out by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Optical transmittance is investigated by the UV-visible spectroscopy at room temperature.

Keywords: chemical, bath, method, Cu, doped, ZnS, thin, films

Procedia PDF Downloads 528
20505 Stochastic Approach for Technical-Economic Viability Analysis of Electricity Generation Projects with Natural Gas Pressure Reduction Turbines

Authors: Roberto M. G. Velásquez, Jonas R. Gazoli, Nelson Ponce Jr, Valério L. Borges, Alessandro Sete, Fernanda M. C. Tomé, Julian D. Hunt, Heitor C. Lira, Cristiano L. de Souza, Fabio T. Bindemann, Wilmar Wounnsoscky

Abstract:

Nowadays, society is working toward reducing energy losses and greenhouse gas emissions, as well as seeking clean energy sources, as a result of the constant increase in energy demand and emissions. Energy loss occurs in the gas pressure reduction stations at the delivery points in natural gas distribution systems (city gates). Installing pressure reduction turbines (PRT) parallel to the static reduction valves at the city gates enhances the energy efficiency of the system by recovering the enthalpy of the pressurized natural gas, obtaining in the pressure-lowering process shaft work and generating electrical power. Currently, the Brazilian natural gas transportation network has 9,409 km in extension, while the system has 16 national and 3 international natural gas processing plants, including more than 143 delivery points to final consumers. Thus, the potential of installing PRT in Brazil is 66 MW of power, which could yearly avoid the emission of 235,800 tons of CO2 and generate 333 GWh/year of electricity. On the other hand, an economic viability analysis of these energy efficiency projects is commonly carried out based on estimates of the project's cash flow obtained from several variables forecast. Usually, the cash flow analysis is performed using representative values of these variables, obtaining a deterministic set of financial indicators associated with the project. However, in most cases, these variables cannot be predicted with sufficient accuracy, resulting in the need to consider, to a greater or lesser degree, the risk associated with the calculated financial return. This paper presents an approach applied to the technical-economic viability analysis of PRTs projects that explicitly considers the uncertainties associated with the input parameters for the financial model, such as gas pressure at the delivery point, amount of energy generated by TRP, the future price of energy, among others, using sensitivity analysis techniques, scenario analysis, and Monte Carlo methods. In the latter case, estimates of several financial risk indicators, as well as their empirical probability distributions, can be obtained. This is a methodology for the financial risk analysis of PRT projects. The results of this paper allow a more accurate assessment of the potential PRT project's financial feasibility in Brazil. This methodology will be tested at the Cuiabá thermoelectric plant, located in the state of Mato Grosso, Brazil, and can be applied to study the potential in other countries.

Keywords: pressure reduction turbine, natural gas pressure drop station, energy efficiency, electricity generation, monte carlo methods

Procedia PDF Downloads 86
20504 Geostatistical and Geochemical Study of the Aquifer System Waters Complex Terminal in the Valley of Oued Righ-Arid Area Algeria

Authors: Asma Bettahar, Imed Eddine Nezli, Sameh Habes

Abstract:

Groundwater resources in the Oued Righ valley are represented like the parts of the eastern basin of the Algerian Sahara, superposed by two major aquifers: the Intercalary Continental (IC) and the Terminal Complex (TC). From a qualitative point of view, various studies have highlighted that the waters of this region showed excessive mineralization, including the waters of the terminal complex (EC Avg equal 5854.61 S/cm) .The present article is a statistical approach by two multi methods various complementary (ACP, CAH), applied to the analytical data of multilayered aquifer waters Terminal Complex of the Oued Righ valley. The approach is to establish a correlation between the chemical composition of water and the lithological nature of different aquifer levels formations, and predict possible connection between groundwater’s layers. The results show that the mineralization of water is from geological origin. They concern the composition of the layers that make up the complex terminal.

Keywords: complex terminal, mineralization, oued righ, statistical approach

Procedia PDF Downloads 363
20503 Analysis the Different Types of Nano Sensors on Based of Structure and It’s Applications on Nano Electronics

Authors: Hefzollah Mohammadiyan, Mohammad Bagher Heidari, Ensiyeh Hajeb

Abstract:

In this paper investigates and analyses the structure of nano sensors will be discussed. The structure can be classified based of nano sensors: quantum points, carbon nanotubes and nano tools, which details into each other and in turn are analyzed. Then will be fully examined to the Carbon nanotubes as chemical and mechanical sensors. The following discussion, be examined compares the advantages and disadvantages as different types of sensors and also it has feature and a wide range of applications in various industries. Finally, the structure and application of Chemical sensor transistors and the sensors will be discussed in air pollution control.

Keywords: carbon nanotubes, quantum points, chemical sensors, mechanical sensors, chemical sensor transistors, single walled nanotube (SWNT), atomic force microscope (AFM)

Procedia PDF Downloads 415
20502 Representational Conference Profile of Secondary Students in Understanding Selected Chemical Principles

Authors: Ryan Villafuerte Lansangan

Abstract:

Assessing students’ understanding in the microscopic level of an abstract subject like chemistry poses a challenge to teachers. Literature reveals that the use of representations serves as an essential avenue of measuring the extent of understanding in the discipline as an alternative to traditional assessment methods. This undertaking explored the representational competence profile of high school students from the University of Santo Tomas High School in understanding selected chemical principles and correlate this with their academic profile in chemistry based on their performance in the academic achievement examination in chemistry administered by the Center for Education Measurement (CEM). The common misconceptions of the students on the selected chemistry principles based on their representations were taken into consideration as well as the students’ views regarding their understanding of the role of chemical representations in their learning. The students’ level of representation task instrument consisting of the main lessons in chemistry with a corresponding scoring guide was prepared and utilized in the study. The study revealed that most of the students under study are unanimously rated as Level 2 (symbolic level) in terms of their representational competence in understanding the selected chemical principles through the use of chemical representations. Alternative misrepresentations were most observed on the students’ representations on chemical bonding concepts while the concept of chemical equation appeared to be the most comprehensible topic in chemistry for the students. Data implies that teachers’ representations play an important role in helping the student understand the concept in a microscopic level. Results also showed that the academic achievement in the chemistry of the students based on the standardized CEM examination has a significant association with the students’ representational competence. In addition, the students’ responses on the students’ views in chemical representations questionnaire evidently showed a good understanding of what a chemical representation or a mental model is by drawing a negative response that these tools should be an exact replica. Moreover, the students confirmed a greater appreciation that chemical representations are explanatory tools.

Keywords: chemical representations, representational competence, academic profile in chemistry, secondary students

Procedia PDF Downloads 382
20501 Recovery of Metals from Electronic Waste by Physical and Chemical Recycling Processes

Authors: Muammer Kaya

Abstract:

The main purpose of this article is to provide a comprehensive review of various physical and chemical processes for electronic waste (e-waste) recycling, their advantages and shortfalls towards achieving a cleaner process of waste utilization, with especial attention towards extraction of metallic values. Current status and future perspectives of waste printed circuit boards (PCBs) recycling are described. E-waste characterization, dismantling/ disassembly methods, liberation and classification processes, composition determination techniques are covered. Manual selective dismantling and metal-nonmetal liberation at – 150 µm at two step crushing are found to be the best. After size reduction, mainly physical separation/concentration processes employing gravity, electrostatic, magnetic separators, froth floatation etc., which are commonly used in mineral processing, have been critically reviewed here for separation of metals and non-metals, along with useful utilizations of the non-metallic materials. The recovery of metals from e-waste material after physical separation through pyrometallurgical, hydrometallurgical or biohydrometallurgical routes is also discussed along with purification and refining and some suitable flowsheets are also given. It seems that hydrometallurgical route will be a key player in the base and precious metals recoveries from e-waste. E-waste recycling will be a very important sector in the near future from economic and environmental perspectives.

Keywords: e-waste, WEEE, recycling, metal recovery, hydrometallurgy, pirometallurgy, biometallurgy

Procedia PDF Downloads 326
20500 Design Modification in CNC Milling Machine to Reduce the Weight of Structure

Authors: Harshkumar K. Desai, Anuj K. Desai, Jay P. Patel, Snehal V. Trivedi, Yogendrasinh Parmar

Abstract:

The need of continuous improvement in a product or process in this era of global competition leads to apply value engineering for functional and aesthetic improvement in consideration with economic aspect too. Solar industries located at G.I.D.C., Makarpura, Vadodara, Gujarat, India; a manufacturer of variety of CNC Machines had a challenge to analyze the structural design of column, base, carriage and table of CNC Milling Machine in the account of reduction of overall weight of a machine without affecting the rigidity and accuracy at the time of operation. The identified task is the first attempt to validate and optimize the proposed design of ribbed structure statically using advanced modeling and analysis tools in a systematic way. Results of stress and deformation obtained using analysis software are validated with theoretical analysis and found quite satisfactory. Such optimized results offer a weight reduction of the final assembly which is desired by manufacturers in favor of reduction of material cost, processing cost and handling cost finally.

Keywords: CNC milling machine, optimization, finite element analysis (FEA), weight reduction

Procedia PDF Downloads 246
20499 Production of Pig Iron by Smelting of Blended Pre-Reduced Titaniferous Magnetite Ore and Hematite Ore Using Lean Grade Coal

Authors: Bitan Kumar Sarkar, Akashdeep Agarwal, Rajib Dey, Gopes Chandra Das

Abstract:

The rapid depletion of high-grade iron ore (Fe2O3) has gained attention on the use of other sources of iron ore. Titaniferous magnetite ore (TMO) is a special type of magnetite ore having high titania content (23.23% TiO2 present in this case). Due to high TiO2 content and high density, TMO cannot be treated by the conventional smelting reduction. In this present work, the TMO has been collected from high-grade metamorphic terrain of the Precambrian Chotanagpur gneissic complex situated in the eastern part of India (Shaltora area, Bankura district, West Bengal) and the hematite ore has been collected from Visakhapatnam Steel Plant (VSP), Visakhapatnam. At VSP, iron ore is received from Bailadila mines, Chattisgarh of M/s. National Mineral Development Corporation. The preliminary characterization of TMO and hematite ore (HMO) has been investigated by WDXRF, XRD and FESEM analyses. Similarly, good quality of coal (mainly coking coal) is also getting depleted fast. The basic purpose of this work is to find how lean grade coal can be utilised along with TMO for smelting to produce pig iron. Lean grade coal has been characterised by using TG/DTA, proximate and ultimate analyses. The boiler grade coal has been found to contain 28.08% of fixed carbon and 28.31% of volatile matter. TMO fines (below 75 μm) and HMO fines (below 75 μm) have been separately agglomerated with lean grade coal fines (below 75 μm) in the form of briquettes using binders like bentonite and molasses. These green briquettes are dried first in oven at 423 K for 30 min and then reduced isothermally in tube furnace over the temperature range of 1323 K, 1373 K and 1423 K for 30 min & 60 min. After reduction, the reduced briquettes are characterized by XRD and FESEM analyses. The best reduced TMO and HMO samples are taken and blended in three different weight percentage ratios of 1:4, 1:8 and 1:12 of TMO:HMO. The chemical analysis of three blended samples is carried out and degree of metallisation of iron is found to contain 89.38%, 92.12% and 93.12%, respectively. These three blended samples are briquetted using binder like bentonite and lime. Thereafter these blended briquettes are separately smelted in raising hearth furnace at 1773 K for 30 min. The pig iron formed is characterized using XRD, microscopic analysis. It can be concluded that 90% yield of pig iron can be achieved when the blend ratio of TMO:HMO is 1:4.5. This means for 90% yield, the maximum TMO that could be used in the blend is about 18%.

Keywords: briquetting reduction, lean grade coal, smelting reduction, TMO

Procedia PDF Downloads 294
20498 A Techno-Economic Evaluation of Bio Fuel Production from Waste of Starting Dates in South Algeria

Authors: Insaf Mehani, Bachir Bouchekima

Abstract:

The necessary reduction and progressive consumption of fossil fuels, whose scarcity is inevitable, involves mobilizing a set of alternatives.Renewable energy, including bio energy are an alternative to fossil fuel depletion and a way to fight against the harmful effects of climate change. It is possible to develop common dates of low commercial value, and put on the local and international market a new generation of products with high added values such as bio ethanol. Besides its use in chemical synthesis, bio ethanol can be blended with gasoline to produce a clean fuel while improving the octane.

Keywords: bioenergy, dates, bioethanol, renewable energy, south Algeria

Procedia PDF Downloads 465
20497 Chemical Characteristics of Soils Based on Toposequence Under Wet Tropical Area Bukit Sarasah Padang

Authors: Y. Yulnafatmawita, H. Hermansah

Abstract:

Topography is a factor affecting soil characteristics. Chemical characteristics of a soil is a factor determining the productivity of the land. A research was conducted in Bukit Sarasah Padang, an area receiving > 5000 mm rainfall annually. The purpose of this research was to determine the chemical characteristics of soils at sequence topography in hill-slope of Bukit Sarasah. Soils were sampled at 3 different altitudes in the research area from 315 m – 515 m asl with 100 m interval. At each location, soil samples were taken from two depths (0-20 cm and 30-50 cm) for soil chemical characteristics (pH, CEC, organic-C, N-total, C/N, Ca-, Mg-, K-, Na-, Al-, and H-exchangeable). Based on the data resulted, it was found that there was a tendency of decreasing soil organic matter (SOC) content by increasing location from 315 to 515 m asl as well as from the top 0-20 cm to 30-50 cm soil depth. The same tendency was also found for the CEC, pH, N-total, and C/N ratio of the soil. On the other hand, exchangeable-Al and -H tended to increase by increasing elevation in Bukit Sarasah. There was no significant difference found for the concentration of exchangeable cations among the elevations and between the depths. The soil chemical characteristics on the top 20 cm were generally better than those on 30-50 cm soil depth, however, different elevation did not gave significant difference of the concentration.

Keywords: soil chemical characteristics, soil depths, topo-sequence, wet tropical area

Procedia PDF Downloads 453
20496 Chemical Amelioration of Expansive Soils

Authors: B. R. Phanikumar, Sana Suri

Abstract:

Expansive soils swell when they absorb water and shrink when water evaporates from them. Hence, lightly loaded civil engineering structures found in these soils are subjected to severe distress. Therefore, there is a need to ameliorate or improve these swelling soils through some innovative methods. This paper discusses chemical stabilisation of expansive soils, a technique in which chemical reagents such as lime and calcium chloride are added to expansive soils to reduce the volumetric changes occurring in expansive soils and also to improve their engineering behaviour.

Keywords: expansive soils, swelling, shrinkage, amelioration, lime, calcium chloride

Procedia PDF Downloads 286
20495 Thermal Reduction of Perfect Well Identified Hexagonal Graphene Oxide Nano-Sheets for Super-Capacitor Applications

Authors: A. N. Fouda

Abstract:

A novel well identified hexagonal graphene oxide (GO) nano-sheets were synthesized using modified Hummer method. Low temperature thermal reduction at 350°C in air ambient was performed. After thermal reduction, typical few layers of thermal reduced GO (TRGO) with dimension of few hundreds nanometers were observed using high resolution transmission electron microscopy (HRTEM). GO has a lot of structure models due to variation of the preparation process. Determining the atomic structure of GO is essential for a better understanding of its fundamental properties and for realization of the future technological applications. Structural characterization was identified by x-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FTIR) measurements. A comparison between exper- imental and theoretical IR spectrum were done to confirm the match between experimentally and theoretically proposed GO structure. Partial overlap of the experimental IR spectrum with the theoretical IR was confirmed. The electrochemical properties of TRGO nano-sheets as electrode materials for supercapacitors were investigated by cyclic voltammetry and electrochemical impedance spectroscopy (EIS) measurements. An enhancement in supercapacitance after reduction was confirmed and the area of the CV curve for the TRGO electrode is larger than those for the GO electrode indicating higher specific capacitance which is promising in super-capacitor applications

Keywords: hexagonal graphene oxide, thermal reduction, cyclic voltammetry

Procedia PDF Downloads 478
20494 Energy Efficient Massive Data Dissemination Through Vehicle Mobility in Smart Cities

Authors: Salman Naseer

Abstract:

One of the main challenges of operating a smart city (SC) is collecting the massive data generated from multiple data sources (DS) and to transmit them to the control units (CU) for further data processing and analysis. These ever-increasing data demands require not only more and more capacity of the transmission channels but also results in resource over-provision to meet the resilience requirements, thus the unavoidable waste because of the data fluctuations throughout the day. In addition, the high energy consumption (EC) and carbon discharges from these data transmissions posing serious issues to the environment we live in. Therefore, to overcome the issues of intensive EC and carbon emissions (CE) of massive data dissemination in Smart Cities, we propose an energy efficient and carbon reduction approach by utilizing the daily mobility of the existing vehicles as an alternative communications channel to accommodate the data dissemination in smart cities. To illustrate the effectiveness and efficiency of our approach, we take the Auckland City in New Zealand as an example, assuming massive data generated by various sources geographically scattered throughout the Auckland region to the control centres located in city centre. The numerical results show that our proposed approach can provide up to 5 times lower delay as transferring the large volume of data by utilizing the existing daily vehicles’ mobility than the conventional transmission network. Moreover, our proposed approach offers about 30% less EC and CE than that of conventional network transmission approach.

Keywords: smart city, delay tolerant network, infrastructure offloading, opportunistic network, vehicular mobility, energy consumption, carbon emission

Procedia PDF Downloads 118
20493 Computing Some Topological Descriptors of Single-Walled Carbon Nanotubes

Authors: Amir Bahrami

Abstract:

In the fields of chemical graph theory, molecular topology, and mathematical chemistry, a topological index or a descriptor index also known as a connectivity index is a type of a molecular descriptor that is calculated based on the molecular graph of a chemical compound. Topological indices are numerical parameters of a graph which characterize its topology and are usually graph invariant. Topological indices are used for example in the development of quantitative structure-activity relationships (QSARs) in which the biological activity or other properties of molecules are correlated with their chemical structure. In this paper some descriptor index (descriptor index) of single-walled carbon nanotubes, is determined.

Keywords: chemical graph theory, molecular topology, molecular descriptor, single-walled carbon nanotubes

Procedia PDF Downloads 305
20492 Chaotic Sequence Noise Reduction and Chaotic Recognition Rate Improvement Based on Improved Local Geometric Projection

Authors: Rubin Dan, Xingcai Wang, Ziyang Chen

Abstract:

A chaotic time series noise reduction method based on the fusion of the local projection method, wavelet transform, and particle swarm algorithm (referred to as the LW-PSO method) is proposed to address the problem of false recognition due to noise in the recognition process of chaotic time series containing noise. The method first uses phase space reconstruction to recover the original dynamical system characteristics and removes the noise subspace by selecting the neighborhood radius; then it uses wavelet transform to remove D1-D3 high-frequency components to maximize the retention of signal information while least-squares optimization is performed by the particle swarm algorithm. The Lorenz system containing 30% Gaussian white noise is simulated and verified, and the phase space, SNR value, RMSE value, and K value of the 0-1 test method before and after noise reduction of the Schreiber method, local projection method, wavelet transform method, and LW-PSO method are compared and analyzed, which proves that the LW-PSO method has a better noise reduction effect compared with the other three common methods. The method is also applied to the classical system to evaluate the noise reduction effect of the four methods and the original system identification effect, which further verifies the superiority of the LW-PSO method. Finally, it is applied to the Chengdu rainfall chaotic sequence for research, and the results prove that the LW-PSO method can effectively reduce the noise and improve the chaos recognition rate.

Keywords: Schreiber noise reduction, wavelet transform, particle swarm optimization, 0-1 test method, chaotic sequence denoising

Procedia PDF Downloads 168
20491 Multidimensional Item Response Theory Models for Practical Application in Large Tests Designed to Measure Multiple Constructs

Authors: Maria Fernanda Ordoñez Martinez, Alvaro Mauricio Montenegro

Abstract:

This work presents a statistical methodology for measuring and founding constructs in Latent Semantic Analysis. This approach uses the qualities of Factor Analysis in binary data with interpretations present on Item Response Theory. More precisely, we propose initially reducing dimensionality with specific use of Principal Component Analysis for the linguistic data and then, producing axes of groups made from a clustering analysis of the semantic data. This approach allows the user to give meaning to previous clusters and found the real latent structure presented by data. The methodology is applied in a set of real semantic data presenting impressive results for the coherence, speed and precision.

Keywords: semantic analysis, factorial analysis, dimension reduction, penalized logistic regression

Procedia PDF Downloads 419
20490 Physicochemical Investigation of Caffeic Acid and Caffeinates with Chosen Metals (Na, Mg, Al, Fe, Ru, Os)

Authors: Włodzimierz Lewandowski, Renata Świsłocka, Aleksandra Golonko, Grzegorz Świderski, Monika Kalinowska

Abstract:

Caffeic acid (3,4-dihydroxycinnamic) is distributed in a free form or as ester conjugates in many fruits, vegetables and seasonings including plants used for medical purpose. Caffeic acid is present in propolis – a substance with exceptional healing properties used in natural medicine since ancient times. The antioxidant, antibacterial, antiinflammatory and anticarcinogenic properties of caffeic acid are widely described in the literature. The biological activity of chemical compounds can be modified by the synthesis of their derivatives or metal complexes. The structure of the compounds determines their biological properties. This work is a continuation of the broader topic concerning the investigation of the correlation between the electronic charge distribution and biological (anticancer and antioxidant) activity of the chosen phenolic acids and their metal complexes. In the framework of this study the synthesis of new metal complexes of sodium, magnesium, aluminium, iron (III) ruthenium (III) and osmium (III) with caffeic acid was performed. The spectroscopic properties of these compounds were studied by means of FT-IR, FT-Raman, UV-Vis, ¹H and ¹³C NMR. The quantum-chemical calculations (at B3LYP/LAN L2DZ level) of caffeic acid and selected complexes were done. Moreover the antioxidant properties of synthesized complexes were studied in relation to selected stable radicals (method of reduction of DPPH and method of reduction of ABTS). On the basis of the differences in the number, intensity and locations of the bands from the IR, Raman, UV/Vis and NMR spectra of caffeic acid and its metal complexes the effect of metal cations on the electronic system of ligand was discussed. The geometry, theoretical spectra and electronic charge distribution were calculated by the use of Gaussian 09 programme. The geometric aromaticity indices (Aj – normalized function of the variance in bond lengths; BAC - bond alternation coefficient; HOMA – harmonic oscillator model of aromaticity and I₆ – Bird’s index) were calculated and the changes in the aromaticity of caffeic acid and its complexes was discussed. This work was financially supported by National Science Centre, Poland, under the research project number 2014/13/B/NZ7/02-352.

Keywords: antioxidant properties, caffeic acid, metal complexes, spectroscopic methods

Procedia PDF Downloads 189
20489 Programming Systems in Implementation of Process Safety at Chemical Process Industry

Authors: Maryam Shayan

Abstract:

Programming frameworks have been utilized as a part of chemical industry process safety operation and configuration to enhance its effectiveness. This paper gives a brief survey and investigation of the best in class and effects of programming frameworks in process security. A study was completed by talking staff accountable for procedure wellbeing practices in the Iranian chemical process industry and diving into writing of innovation for procedure security. This article investigates the useful and operational attributes of programming frameworks for security and endeavors to sort the product as indicated by its level of effect in the administration chain of importance. The study adds to better comprehension of the parts of Information Communication Technology in procedure security, the future patterns and conceivable gaps for innovative work.

Keywords: programming frameworks, chemical industry process, process security, administration chain, information communication technology

Procedia PDF Downloads 347
20488 Efficacy of Comprehensive Diabetic Care Program with the Reduction of HbA1c in Overweight Type II Diabetes Mellitus Patients: A Retrospective Study

Authors: Rohit Sane, Pravin Ghadigaonkar, Purvi Ahuja, Suvarna Tirmare, Archana Kelhe, Kranti Shinde, Rahul Mandole

Abstract:

To evaluate the efficacy of Comprehensive Diabetic Care Program with the reduction of HbA1c in overweight Diabetes Mellitus Type II patients retrospectively. Methods: Retrospective study was carried out on 34 overweight type II diabetic patients (Mean Age = 54.58 ±11.38 yrs). A total of 34 patients were enrolled after screening of 68 patients (HbA1c 7-10%). The patients were on concomitant drugs namely insulin (11.76%), DPP-4 inhibitor (17.64%), Biguanide (55.88%), Sulfonylurea (52.94%), thiazolidinedione (11.76%), other medications (20.58%) and no allopathic medications (14.70%). The patients were given Comprehensive Diabetic Care Program consisting of panchkarma procedures namely snehana (external oleation), swedana (passive heat therapy) and basti (enema), which was completed in 15 sittings. During the therapy and next 90 days, the patients followed low carbohydrate and moderate protein & fat diet. The primary endpoint of this study was the evaluation of reduction in HbA1c at the end of the follow-up after 90 days. Results: Thirty-four overweight type II diabetic patients (mean age: 54.58[±11.38], HbA1c[7-10%], 67.64% male and 32.35% female) were enrolled in the study. A significant reduction was observed in HbA1c levels (14.30%, p<0.05) at the end of the 90 days follow-up as compared to baseline. Also, BMI was reduced by 5.87%. There was reduction in the usage of the concomitant drugs namely insulin (2.94%), DPP-4 inhibitor (2.94%), Biguanide (32.35%), Sulfonylurea (35.29%), thiazolidinedione (5.88%), other medications(17.64%) and no allopathic medications (32.35%). Conclusion: The results of the study highlight not only in the reduction of HbA1c, but also in BMI and drug tapering of the CDC program in the overweight type II diabetic patients with HbA1c (7-10%).

Keywords: HbA1c, low carb diet, Panchakarma therapy, Type II Diabetes

Procedia PDF Downloads 258
20487 Control of Indoor Carbon through Soft Approaches in Himachal Pradesh, India

Authors: Kopal Verma, Umesh C. Kulshrestha

Abstract:

The mountainous regions are very crucial for a country because of their importance for weather, water supply, forests, and various other socio-economic benefits. But the increasing population and its demand for energy and infrastructure have contributed very high loadings of air pollution. Various activities such as cooking, heating, manufacturing, transport, etc. contribute various particulate and gaseous pollutants in the atmosphere. This study was focused upon indoor air pollution and was carried out in four rural households of the Baggi village located in the Hamirpur District of the Himachal Pradesh state. The residents of Baggi village use biomass as fuel for cooking on traditional stove (Chullah). The biomass types include wood (mainly Beul, Grewia Optiva), crop residue and dung cakes. This study aimed to determine the organic carbon (OC), elemental carbon (EC), major cations and anions in the indoor air of each household. During non-cooking hours, it was found that the indoor air contained OC and EC as low as 21µg/m³ and 17µg/m³ respectively. But during cooking hours (with biomass burning), the levels of OC and EC were raised significantly by 91.2% and 85.4% respectively. Then the residents were advised to switch over as per our soft approach options. In the first approach change, they were asked to prepare the meal partially on Chullah using biomass and partially with liquefied petroleum gas (LPG). By doing this change, a considerable reduction in OC (53.1%) and in EC (41.8%) was noticed. The second change of approach included the cooking of entire meal by using LPG. This resulted in the reduction of OC (84.1%) and EC (73.3%) as compared to the values obtained during cooking entirely with biomass. The carbonaceous aerosol levels were higher in the morning hours than in the evening hours because of more biomass burning activity in the morning. According to a general survey done with the residents, the study provided them an awareness about the air pollution and the harmful effects of biomass burning. Some of them correlated their ailments like weakened eyesight, fatigue and respiratory problems with indoor air pollution. This study demonstrated that by replacing biomass with clean fuel such as LPG, the indoor concentrations of EC and OC can be reduced substantially.

Keywords: biomass burning, carbonaceous aerosol, elemental carbon, organic carbon, LPG

Procedia PDF Downloads 101