Search results for: basalt fiber reinforced polymer (BFRP)
3073 Accelerated Ageing of Unidirectional Flax Fibers Reinforced Recycled Polypropylene Composites
Authors: Lara Alam, Laetitia Van-Schoors, Olivier Sicot, Benoit Piezel, Shahram Aivazzadeh
Abstract:
Over the last decades, worldwide environmental awareness has grown due to the depletion of raw material resources and global warming. This awareness has prompted the development of new products more environmentally friendly. Among these products are biocomposite materials reinforced with natural fibers. The main challenge in developing the use of biocomposites in exterior applications is the lack of knowledge about their durability and the evolution of their mechanical and physico-chemical properties in the long term. Few studies have been carried out on the photooxidation of unidirectional (UD) composites based on recycled matrix, which is the aim of this work. For this purpose, UD flax fiber composites based on recycled polypropylene were prepared by thermocompression. An accelerated aging test was carried out using a xenon arc WeatherOmeter. The consequences of UV exposure on the chemical composition and morphology of the surface of composites as well as on their tensile mechanical properties have been reported. The results showed that accelerated aging had a significant effect on the surface of these composites while it had little impact on their mechanical properties.Keywords: flax fiber, photooxidation, physico-chemical properties, recycled polypropylene, tensile properties
Procedia PDF Downloads 1993072 Numerical Study of Dynamic Buckling of Fiber Metal Laminates's Profile
Authors: Monika Kamocka, Radoslaw Mania
Abstract:
The design of Fiber Metal Laminates - combining thin aluminum sheets and prepreg layers, allows creating a hybrid structure with high strength to weight ratio. This feature makes FMLs very attractive for aerospace industry, where thin-walled structures are commonly used. Nevertheless, those structures are prone to buckling phenomenon. Buckling could occur also under static load as well as dynamic pulse loads. In this paper, the problem of dynamic buckling of open cross-section FML profiles under axial dynamic compression in the form of pulse load of finite duration is investigated. In the numerical model, material properties of FML constituents were assumed as nonlinear elastic-plastic aluminum and linear-elastic glass-fiber-reinforced composite. The influence of pulse shape was investigated. Sinusoidal and rectangular pulse loads of finite duration were compared in two ways, i.e. with respect to magnitude and force pulse. The dynamic critical buckling load was determined based on Budiansky-Hutchinson, Ari Gur, and Simonetta dynamic buckling criteria.Keywords: dynamic buckling, dynamic stability, Fiber Metal Laminate, Finite Element Method
Procedia PDF Downloads 1933071 Overview of Fiber Optic Gyroscopes
Authors: M. Abdo, Ahmed Elghandour, Khairy Eltahlawy, Mohamed Shalaby
Abstract:
A key development in the field of inertial sensors, fiber-optic gyroscopes (FOGs) are currently thought to be a competitive alternative to mechanical gyroscopes for inertial navigation and control applications. For the past few years, research and development efforts have been conducted all around the world using the FOG as a crucial sensor for high-accuracy inertial navigation systems. The main fundamentals of optical gyros were covered in this essay, followed by discussions of the main types of optical gyros—fiber optic gyroscopes and ring laser gyroscopes—and comparisons between them. We also discussed different types of fiber optic gyros, including interferometric, resonator, and brillion fiber optic gyroscopes.Keywords: mechanical gyros, ring laser gyros, interferometric fiber optic gyros, resonator fiber optic gyros
Procedia PDF Downloads 853070 Effect of Shape and Size of Concrete Specimen and Strength of Concrete Mixture in the Absence and Presence of Fiber
Authors: Sultan Husein Bayqra, Ali Mardani Aghabaglou, Zia Ahmad Faqiri, Hassane Amidou Ouedraogo
Abstract:
In this study, the effect of shape and size of the concrete specimen on the compressive and splitting tensile strength of the concrete mixtures in the absence and presence of steel fiber was investigated. For this aim, ten different concrete mixtures having w/c ratio of 0.3, 0.4, 0.5, 0.6 and 0.7 with and without fiber were prepared. In the mixtures containing steel fibers having aspect ratio (L/D) of 64 were used by 1% of the total mixture volume. In all concrete mixtures, CEM I 42,5R type Portland cement and crushed Lime-stone aggregates having different aggregate size fractions were used. The combined aggregate was obtained by mixing %40 0-5 mm, %30 5-12 mm and %30 12-22 mm aggregate size fraction. The slump values of concrete mixtures were kept constant as 17 ± 2 cm. To provide the desired slump value, a polycarboxylate ether-based high range water reducing admixture was used. In order to investigate the effect of size and shape of concrete specimen on strength properties 10 cm, 15 cm cubic specimens and 10×20 cm, 15×30 cm cylindrical specimens were prepared for each mixture. The specimens were cured under standard conditions until testing days. The 7- and 28-day compressive and splitting tensile strengths of mixtures were determined. The results obtained from the experimental study showed that the strength ratio between the cylinder and the cube specimens increased with the increase of the strength of the concrete. Regardless of the fiber utilization and specimen shape, strength values of concrete mixtures were increased by decreasing specimen size. However, the mentioned behaviour was not observed for the case that the mixtures having high W/C ratio and containing fiber. The compressive strength of cube specimens containing fiber was less affected by the size of the specimen compared to that of cube specimens containing no fibers.Keywords: compressive strength, splitting tensile strength, fiber reinforced concrete, size effect, shape effect
Procedia PDF Downloads 1773069 Processing and Characterization of Glass-Epoxy Composites Filled with Linz-Donawitz (LD) Slag
Authors: Pravat Ranjan Pati, Alok Satapathy
Abstract:
Linz-Donawitz (LD) slag a major solid waste generated in huge quantities during steel making. It comes from slag formers such as burned lime/dolomite and from oxidizing of silica, iron etc. while refining the iron into steel in the LD furnace. Although a number of ways for its utilization have been suggested, its potential as a filler material in polymeric matrices has not yet been explored. The present work reports the possible use of this waste in glass fiber reinforced epoxy composites as a filler material. Hybrid composites consisting of bi-directional e-glass-fiber reinforced epoxy filled with different LD slag content (0, 7.5, 15, 22.5 wt%) are prepared by simple hand lay-up technique. The composites are characterized in regard to their density, porosity, micro-hardness and strength properties. X-ray diffractography is carried out in order to ascertain the various phases present in LDS. This work shows that LD slag, in spite of being a waste, possesses fairly good filler characteristics as it modifies the strength properties and improves the composite micro-hardness of the polymeric resin.Keywords: characterization, glass-epoxy composites, LD slag, waste utilization
Procedia PDF Downloads 3923068 Chemical and Physical Modification of Carbon Fiber Reinforced Polymers Based on Thermoplastic Acrylic Resin
Authors: Kamil Dydek, Szymon Demski, Kamil Majchrowicz, Paulina Kozera, Bogna Sztorch, Dariusz Brząkalski, Zuzanna Krawczyk, Robert Przekop, Anna Boczkowska
Abstract:
Thanks to their excellent properties, i.e. high stiffness and strength in relation to their weight, corrosion resistance, and low thermal expansion, Carbon Fiber Reinforced Polymers (CFRPs) are a group of materials readily used in many industrial sectors, e.g. aviation, automotive, wind energy. Conventional CFRPs also have their disadvantages, namely, relatively low electrical conductivity and brittle cracking. To counteract this, a thermoplastic acrylic resin was proposed, which was further modified by the addition of organosilicon compounds and multi-walled carbon nanotubes (MWCNTs). The addition of the organosilicon compounds was aimed at improving the dispersion of the MWCNTs and obtaining good adhesion between the resin and the carbon fibre, where the MWCNTs were used as a conductive filler. In addition, during the fabrication of laminates using the infusion method, thermoplastic nonwovens doped with MWCNTs were placed between the carbon reinforcement layers to achieve a synergistic effect with an increase in electrical and mechanical properties.Keywords: CFRP, acrylic resin, organosilicon compounds, mechanical properties, electrical properties
Procedia PDF Downloads 1283067 A Technology of Hot Stamping and Welding of Carbon Reinforced Plastic Sheets Using High Electric Resistance
Authors: Tomofumi Kubota, Mitsuhiro Okayasu
Abstract:
In recent years, environmental problems and energy problems typified by global warming are intensifying, and transportation devices are required to reduce the weight of structural materials from the viewpoint of strengthening fuel efficiency regulations and energy saving. Carbon fiber reinforced plastic (CFRP) used in this research is attracting attention as a structural material to replace metallic materials. Among them, thermoplastic CFRP is expected to expand its application range in terms of recyclability and cost. High formability and weldability of the unidirectional CFRP sheets conducted by a proposed hot stamping process were proposed, in which the carbon fiber reinforced plastic sheets are heated by a designed technique. In this case, the CFRP sheets are heated by the high electric voltage applied through carbon fibers. In addition, the electric voltage was controlled by the area ratio of exposed carbon fiber on the sample surfaces. The lower exposed carbon fiber on the sample surface makes high electric resistance leading to the high sample temperature. In this case, the CFRP sheets can be heated to more than 150 °C. With the sample heating, the stamping and welding technologies can be carried out. By changing the sample temperature, the suitable stamping condition can be detected. Moreover, the proper welding connection of the CFRP sheets was proposed. In this study, we propose a fusion bonding technique using thermoplasticity, high current flow, and heating caused by electrical resistance. This technology uses the principle of resistance spot welding. In particular, the relationship between the carbon fiber exposure rate and the electrical resistance value that affect the bonding strength is investigated. In this approach, the mechanical connection using rivet is also conducted to make a comparison of the severity of welding. The change of connecting strength is reflected by the fracture mechanism. The low and high connecting strength are obtained for the separation of two CFRP sheets and fractured inside the CFRP sheet, respectively. In addition to the two fracture modes, micro-cracks in CFRP are also detected. This approach also includes mechanical connections using rivets to compare the severity of the welds. The change in bond strength is reflected by the destruction mechanism. Low and high bond strengths were obtained to separate the two CFRP sheets, each broken inside the CFRP sheets. In addition to the two failure modes, micro cracks in CFRP are also detected. In this research, from the relationship between the surface carbon fiber ratio and the electrical resistance value, it was found that different carbon fiber ratios had similar electrical resistance values. Therefore, we investigated which of carbon fiber and resin is more influential to bonding strength. As a result, the lower the carbon fiber ratio, the higher the bonding strength. And this is 50% better than the conventional average strength. This can be evaluated by observing whether the fracture mode is interface fracture or internal fracture.Keywords: CFRP, hot stamping, weliding, deforamtion, mechanical property
Procedia PDF Downloads 1253066 Strengthening of Concrete Slabs with Steel Beams
Authors: Mizam Doğan
Abstract:
In service life; structures can be damaged if they are subjected to dead and live loads which are greater than design values. For preventing this case; possible loads must be correctly calculated, structure must be designed according to determined loads, and structure must not be used out of its function. If loading case of the structure changes when its function changes; it must be reinforced for continuing it is new function. Reinforcement is a process that is made by increasing the existing strengths of structural system elements of the structure as reinforced concrete walls, beams, and slabs. Reinforcement can be done by casting reinforced concrete, placing steel and fiber structural elements. In this paper, reinforcing of columns and slabs of a structure of which function is changed is studied step by step. This reinforcement is made for increasing vertical and lateral load carrying capacity of the building. Not for repairing damaged structural system.Keywords: strengthening, RC slabs, seismic load, steel beam, structural irregularity
Procedia PDF Downloads 2603065 Effect of the Ratio, Weight, Treatment of Loofah Fiber on the Mechanical Properties of the Composite: Loofah Fiber Resin
Authors: F. Siahmed, A. Lounis, L. Faghi
Abstract:
The aim of this work is to study mechanical properties of composites based on fiber natural. This material has attracted attention of the scientific community for its mechanical properties, its moderate cost and its specification as regards the protection of environment. In this study the loofah part of the family of the natural fiber has been used for these significant mechanical properties. The fiber has porous structure, which facilitates the impregnation of the resin through these pores. The matrix used in this study is the type of unsaturated polyester. This resin was chosen for its resistance to long term.The work involves: -The chemical treatment of the fibers of loofah by NaOH solution (5%) -The realization of the composite resin / fiber loofah; The preparation of samples for testing -The tensile tests and bending -The observation of facies rupture by scanning electron microscopy The results obtained allow us to observe that the values of Young's modulus and tensile strength in tension is high and open up real prospects. The improvement in mechanical properties has been obtained for the two-layer composite fiber with 7.5% (by weight).Keywords: loofah fiber, mechanical properties, composite, loofah fiber resin
Procedia PDF Downloads 4473064 Design of Structural Health Monitoring System for a Damaged Reinforced Concrete Bridge
Authors: Muhammad Fawad
Abstract:
Monitoring and structural health assessment are the primary requirements for the performance evaluation of damaged bridges. This paper highlights the case study of a damaged Reinforced Concrete (RC) bridge structure where the Finite element (FE) modelling of this structure was done using the material properties extracted by the in-situ testing. Analysis was carried out to evaluate the bridge damage. On the basis of FE analysis results, this study proposes a proper Structural Health Monitoring (SHM) system that will extend the life cycle of the bridge with minimal repair costs and reduced risk of failure. This system is based on the installation of three different types of sensors: Liquid Levelling sensors (LLS) for measurement of vertical displacement, Distributed Fiber Optic Sensors (DFOS) for crack monitoring, and Weigh in Motion (WIM) devices for monitoring of moving loads on the bridge.Keywords: bridges, reinforced concrete, finite element method, structural health monitoring, sensors
Procedia PDF Downloads 1043063 Characterization of Structural Elements Concrete Metal Fibre
Authors: Benaouda Hemza
Abstract:
This work on the characterization of structural elements in metal fiber concrete is devoted to the study of recyclability, as reinforcement for concrete, of chips resulting from the machining of steel parts. We are interested in this study to the rheological behavior of fresh chips reinforced concrete and its mechanical behavior at a young age. The evaluation of the workability with the LCL workabilimeter shows that optimal sand gravel ratios (S/G) are S/G=0.8, and S/G=1. The study of the content chips (W%) influence on the workability of the concrete shows that the flow time and the S/G optimum increase with W%. For S/G=1.4, the flow time is practically insensitive to the variation of W%, the concrete behavior is similar to that of self-compacting concrete. Mechanical characterization tests (direct tension, compression, bending, and splitting) show that the mechanical properties of chips concrete are comparable to those of the two selected reference concretes (concrete reinforced with conventional fibers: EUROSTEEL fibers corrugated and DRAMIX fibers). Chips provide a significant increase in strength and some ductility in the post-failure behavior of the concrete. Recycling chips as reinforcement for concrete can be favorably considered.Keywords: fiber concrete, chips, workability, direct tensile test, compression test, bending test, splitting test
Procedia PDF Downloads 4553062 Overview of Fiber Optic Gyroscopes as Ring Laser Gyros and Fiber Optic Gyros and the Comparison Between Them
Authors: M. Abdo, Mohamed Shalaby
Abstract:
A key development in the field of inertial sensors, fiber-optic gyroscopes (FOGs) are currently thought to be a competitive alternative to mechanical gyroscopes for inertial navigation and control applications. For the past few years, research and development efforts have been conducted all around the world using the FOG as a crucial sensor for high-accuracy inertial navigation systems. The main fundamentals of optical gyros were covered in this essay, followed by discussions of the main types of optical gyros and fiber optic gyroscopes and ring laser gyroscopes and comparisons between them. We also discussed different types of fiber optic gyros, including interferometric, resonator, and Brillion fiber optic gyroscopes.Keywords: mechanical gyros, ring laser gyros, interferometric finer optic gyros, Resonator fiber optic gyros
Procedia PDF Downloads 803061 Environmental Effects on Coconut Coir Fiber Epoxy Composites Having TiO₂ as Filler
Authors: Srikanth Korla, Mahesh Sharnangat
Abstract:
Composite materials are being widely used in Aerospace, Naval, Defence and other branches of engineering applications. Studies on natural fibers is another emerging research area as they are available in abundance, and also due to their eco-friendly in nature. India being one of the major producer of coir, there is always a scope to study the possibilities of exploring coir as reinforment, and with different combinations of other elements of the composite. In present investigation effort is made to utilize properties possessed by natural fiber and make them enable with polymer/epoxy resin. In natural fiber coconut coir is used as reinforcement fiber in epoxy resin with varying weight percentages of fiber and filler material. Titanium dioxide powder (TiO2) is used as filler material with varying weight percentage including 0%, 2% and 4% are considered for experimentation. Environmental effects on the performance of the composite plate are also studied and presented in this project work; Moisture absorption test for composite specimens is conducted using different solvents including Kerosene, Mineral Water and Saline Water, and its absorption capacity is evaluated. Analysis is carried out in different combinations of Coir as fiber and TiO2 as filler material, and the best suitable composite material considering the strength and environmental effects is identified in this work. Therefore, the significant combination of the composite material is with following composition: 2% TiO2 powder 15% of coir fibre and 83% epoxy, under unique mechanical and environmental conditions considered in the work.Keywords: composite materials, moisture test, filler material, natural fibre composites
Procedia PDF Downloads 2053060 Pultrusion of Side by Side Glass/Polypropylene Fibers: Study of Flexural and Shear Properties
Authors: Behrooz Ataee, Mohammad Golzar
Abstract:
The main purpose of using side by side (SBS) hybrid yarn in pultrusion thermoplastic method is reprisal the effect of high viscosity in melted thermoplastic and reduction of distance between reinforced fiber and melted thermoplastic. SBS hybrid fiber yarn composed of thermoplastic fibers and fiber reinforcement should be produced in the preparation of pultruded thermoplastic composites prepreg to reach better impregnation. An experimental set-up was designed and built to pultrude continues polypropylene and glass fiber to get obtain a suitable impregnated round prepregs. In final stage, the round prepregs come together to produce rectangular profile. Higher fiber volume fraction produces higher void volume fraction, however the second stage of the production process of rectangular profile and the cold die decrease 50% of the void volume fraction. Results show that whit increasing void volume fraction, flexural and shear strength decrease. Also, under certain conditions of parameters the pultruded profiles exhibit better flexural and shear strength. The pulling speed seems to have the greatest influence on the profile quality. In addition, adding cold die strongly increases the surface quality of rectangular profile.Keywords: thermoplastic pultrusion, hybrid pultrusion, side-by-side fibers, impregnation
Procedia PDF Downloads 2583059 Investigation on Behaviour of Reinforced Concrete Beam-Column Joints Retrofitted with CFRP
Authors: Ehsan Mohseni
Abstract:
The aim of this thesis is to provide numerical analyses of reinforced concrete beams-column joints with/without CFRP (Carbon Fiber Reinforced Polymer) in order to achieve a better understanding of the behaviour of strengthened beamcolumn joints. A comprehensive literature survey prior to this study revealed that published studies are limited to a handful only; the results are inconclusive and some are even contradictory. Therefore in order to improve on this situation, following that review, a numerical study was designed and performed as presented in this thesis. For the numerical study, dimensions, end supports, and characteristics of the beam and column models were the same as those chosen in an experimental investigation performed previously where ten beamcolumn joint were tested tofailure. Finite element analysis is a useful tool in cases where analytical methods are not capable of solving the problem due to the complexities associated with the problem. The cyclic behaviour of FRP strengthened reinforced concrete beam-columns joints is such a case. Interaction of steel (longitudinal and stirrups), concrete and FRP, yielding of steel bars and stirrups, cracking of concrete, the redistribution of stresses as some elements unload due to crushing or yielding and the confinement of concrete due to the presence of FRP are some of the issues that introduce the complexities into the problem.Numerical solutions, however, can provide further in formation about the behaviour in lieu of the costly experiments or complex closed form solutions. This thesis presents the results of a numerical study on beam-column joints subjected to cyclic loads that are strengthened with CFRP wraps or strrips in a variety of configurations. The analyses are performed by Abaqus finite element program and are calibrated with the experiments. A range of issues in beam-column joints including the cracking load, the ultimate load, lateral load-displacement curves of joints, are investigated.The numerical results for different configurations of strengthening are compared. Finally, the computed numerical results are compared with those obtained from experiments. the cracking load, the ultimate load, lateral load-displacement curves obtained from numerical analysis for all joints were in very good agreement with the corresponding experimental ones.The results obtained from the numerical analysis in most cases implies that this method is conservative and therefore can be used in design applications with confidence.Keywords: numerical analysis, strengthening, CFRP, reinforced concrete joints
Procedia PDF Downloads 3493058 Study on Intensity Modulated Non-Contact Optical Fiber Vibration Sensors of Different Configurations
Authors: Dinkar Dantala, Kishore Putha, Padmavathi Manchineelu
Abstract:
Optical fibers are widely used in the measurement of several physical parameters like temperature, pressure, vibrations etc. Measurement of vibrations plays a vital role in machines. In this paper, three fiber optic non-contact vibration sensors were discussed, which are designed based on the principle of light intensity modulation. The Dual plastic optical fiber, Fiber optic fused 1x2 coupler and Fiber optic fused 2x2 coupler vibration sensors are compared based on range of frequency, resolution and sensitivity. It is to conclude that 2x2 coupler configuration shows better response than other two sensors.Keywords: fiber optic, PMMA, vibration sensor, intensity-modulated
Procedia PDF Downloads 3703057 PVDF-HFP Based Nanocomposite Gel Polymer Electrolytes Dispersed with Zro2 for Li-Ion Batteries
Authors: R. Sharma, A. Sil, S. Ray
Abstract:
Nanocomposites gel polymer electrolytes are gaining more and more attention among the researchers worldwide due to their possible applications in various electrochemical devices particularly in solid-state Li-ion batteries. In this work we have investigated the effect of nanofibers on the electrical properties of PVDF-HFP based gel electrolytes. The nanocomposites polymer electrolytes have been synthesized by solution casting technique with 10wt% of ZrO2. By analysis of impedance spectroscopy it has been demonstrated that the incorporation of ZrO2 into PVDF-HFP–(PC+DEC)–LiClO4 gel polymer electrolyte system significantly enhances the ionic conductivity of the electrolyte. The enhancement of ionic conductivity seems to be correlated with the fact that the dispersion of ZrO2 to PVDF-HFP prevents polymer chain reorganization due to the high aspect ratio of ZrO2, resulting in reduction in polymer crystallinity, which gives rise to an increase in ionic conductivity. The decrease of crystallinity of PVDF-HFP due the addition of ZrO2 has been confirmed by XRD. The interaction of ZrO2 with various constituents of polymer electrolytes has been studied by FTIR spectroscopy. TEM results show that the fillers (ZrO2) has distributed uniformly in the polymer electrolytes. Moreover, ZrO2 added gel polymer electrolytes offer better thermal stability as compared to that of ZrO2 free electrolytes as confirmed by TGA analysis.Keywords: polymer electrolytes, ZrO2, ionic conductivity, FTIR
Procedia PDF Downloads 4743056 Optimal Retrofit Design of Reinforced Concrete Frame with Infill Wall Using Fiber Reinforced Plastic Materials
Authors: Sang Wook Park, Se Woon Choi, Yousok Kim, Byung Kwan Oh, Hyo Seon Park
Abstract:
Various retrofit techniques for reinforced concrete frame with infill wall have been steadily developed. Among those techniques, strengthening methodology based on diagonal FRP strips (FRP bracings) has numerous advantages such as feasibility of implementing without interrupting the building under operation, reduction of cost and time, and easy application. Considering the safety of structure and retrofit cost, the most appropriate retrofit solution is needed. Thus, the objective of this study is to suggest pareto-optimal solution for existing building using FRP bracings. To find pareto-optimal solution analysis, NSGA-II is applied. Moreover, the seismic performance of retrofit building is evaluated. The example building is 5-storey, 3-bay RC frames with infill wall. Nonlinear static pushover analyses are performed with FEMA 356. The criterion of performance evaluation is inter-story drift ratio at the performance level IO, LS, CP. Optimal retrofit solutions is obtained for 32 individuals and 200 generations. Through the proposed optimal solutions, we confirm the improvement of seismic performance of the example building.Keywords: retrofit, FRP bracings, reinforced concrete frame with infill wall, seismic performance evaluation, NSGA-II
Procedia PDF Downloads 4373055 Experimental Investigation of Proton Exchange Membrane Fuel Cells Operated with Nano Fiber and Nano Fiber/Nano Particle
Authors: Kevser Dincer, Basma Waisi, M. Ozan Ozdemir, Ugur Pasaogullari, Jeffrey McCutcheon
Abstract:
Nanofibers are defined as fibers with diameters less than 100 nanometers. They can be produced by interfacial polymerization, electrospinning and electrostatic spinning. In this study, behaviours of activated carbon nano fiber (ACNF), carbon nano-fiber (CNF), Polyacrylonitrile/carbon nanotube (PAN/CNT), Polyvinyl alcohol/nano silver (PVA/Ag) in PEM fuel cells are investigated experimentally. This material was used as gas diffusion layer (GDL) in PEM fuel cells. When the performances of these cells are compared to each other at 5x5 cm2 cell, it is found that the PVA/Ag exhibits the best performance among all. In this work, nano fiber and nano fiber/nano particles electrical conductivities have been studied to understand their effects on PEM fuel cell performance. According to the experimental results, the maximum electrical conductivity performance of the fuel cell with nanofiber was found to be at PVA/Ag. The electrical conductivities of CNF, ACNF, PAN/CNT are lower for PEM. The resistance of cell with PVA/Ag is lower than the resistance of cell with PAN/CNT, ACNF, CNF.Keywords: proton exchange membrane fuel cells, electrospinning, carbon nano fiber, activate carbon nano-fiber, PVA fiber, PAN fiber, carbon nanotube, nano particle nanocomposites
Procedia PDF Downloads 3913054 Model-Based Fault Diagnosis in Carbon Fiber Reinforced Composites Using Particle Filtering
Abstract:
Carbon fiber reinforced composites (CFRP) used as aircraft structure are subject to lightning strike, putting structural integrity under risk. Indirect damage may occur after a lightning strike where the internal structure can be damaged due to excessive heat induced by lightning current, while the surface of the structures remains intact. Three damage modes may be observed after a lightning strike: fiber breakage, inter-ply delamination and intra-ply cracks. The assessment of internal damage states in composite is challenging due to complicated microstructure, inherent uncertainties, and existence of multiple damage modes. In this work, a model based approach is adopted to diagnose faults in carbon composites after lighting strikes. A resistor network model is implemented to relate the overall electrical and thermal conduction behavior under simulated lightning current waveform to the intrinsic temperature dependent material properties, microstructure and degradation of materials. A fault detection and identification (FDI) module utilizes the physics based model and a particle filtering algorithm to identify damage mode as well as calculate the probability of structural failure. Extensive simulation results are provided to substantiate the proposed fault diagnosis methodology with both single fault and multiple faults cases. The approach is also demonstrated on transient resistance data collected from a IM7/Epoxy laminate under simulated lightning strike.Keywords: carbon composite, fault detection, fault identification, particle filter
Procedia PDF Downloads 1953053 Fabrication and Mechanical Characterization of Sugarcane Bagasse Fiber-Reinforced Polypropylene Based Composites: Effect of Gamma Radiation
Authors: Kamrun N. Keya, Nasrin A. Kona, Ruhul A. Khan
Abstract:
Sugarcane bagasse (SCB)-reinforced Polypropylene (PP) Based matrix composites (25-45 wt% fiber) were fabricated by a compression molding technique. The SCB surface was chemically modified using 5%-10% sodium hydroxide (NaOH), and after that, mechanical properties, water uptake, and soil degradation of the composites were investigated. Tensile strength (TS), tensile modulus (TM), bending strength (BS), bending modulus (BM) and elongation at break (Eb%) of the 30wt% composites were found to be 35.6 MPa, 10.2 GPa, 56 MPa, 5.6 GPa, and 11%, respectively. The SCB/PP based composites were treated with irradiated under gamma radiation (the source strength 50 kCi Cobalt-60) of various doses (2.5 kGy to 10 kGy). The effect of gamma radiation on the composites was also investigated, and it found that the effect of 5.0 kGy (i.e. units for radiation measurement is 'gray', kGy=kilogray ) gamma dose showed better mechanical properties than other doses. The results revealed that the combination of the chemical modification of the SCB fibers and irradiation of the composites were more effective in compatibility improvement than chemical modification alone. After flexural testing, fracture sides of the untreated and treated both composites were studied by scanning electron microscope (SEM). SEM results of the treated SCB/PP based composites showed better fiber-matrix adhesion than untreated SCB/PP based composites. However, it was found that the treated SCB/PP composite has better mechanical strength, durability, and more receptivity than untreated SCB/PP based composite.Keywords: sugarcane bagasse (SCB), polypropylene (PP), mechanical properties, scanning electron microscope (SEM), gamma radiation, water uptake tests and soil degradation
Procedia PDF Downloads 1373052 Localization Problem in Optical Fiber Sensors
Authors: M. Zyczkowski, P. Markowski, M. Karol
Abstract:
The security industry is making many efforts to lower the costs of system installation. However, the dominant technique is the application of fiber optic sensors. It is necessary to determine the location of the disorder of long optical fiber cables. For a number of years, many research centers developed their own solutions. The article presents the construction of the sensor systems with the possibility of disorder location. We present a methodology for determining location of the disorder. The aim of investigations is to answer the question of which of optical sensor configuration offer the best performance for location of the disorder.Keywords: fiber optic sensor, security sensor, fiber cables, system instillation
Procedia PDF Downloads 6353051 Fracture Mechanics Modeling of a Shear-Cracked RC Beams Shear-Strengthened with FRP Sheets
Authors: Shahriar Shahbazpanahi, Alaleh Kamgar
Abstract:
So far, the conventional experimental and theoretical analysis in fracture mechanics have been applied to study concrete flexural- cracked beams, which are strengthened using fiber reinforced polymer (FRP) composite sheets. However, there is still little knowledge about the shear capacity of a side face FRP- strengthened shear-cracked beam. A numerical analysis is herein presented to model the fracture mechanics of a four-point RC beam, with two inclined initial notch on the supports, which is strengthened with side face FRP sheets. In the present study, the shear crack is forced to conduct by using an initial notch in supports. The ABAQUS software is used to model crack propagation by conventional cohesive elements. It is observed that the FRP sheets play important roles in preventing the propagation of shear cracks.Keywords: crack, FRP, shear, strengthening
Procedia PDF Downloads 5503050 Multi-Scale Damage Modelling for Microstructure Dependent Short Fiber Reinforced Composite Structure Design
Authors: Joseph Fitoussi, Mohammadali Shirinbayan, Abbas Tcharkhtchi
Abstract:
Due to material flow during processing, short fiber reinforced composites structures obtained by injection or compression molding generally present strong spatial microstructure variation. On the other hand, quasi-static, dynamic, and fatigue behavior of these materials are highly dependent on microstructure parameters such as fiber orientation distribution. Indeed, because of complex damage mechanisms, SFRC structures design is a key challenge for safety and reliability. In this paper, we propose a micromechanical model allowing prediction of damage behavior of real structures as a function of microstructure spatial distribution. To this aim, a statistical damage criterion including strain rate and fatigue effect at the local scale is introduced into a Mori and Tanaka model. A critical local damage state is identified, allowing fatigue life prediction. Moreover, the multi-scale model is coupled with an experimental intrinsic link between damage under monotonic loading and fatigue life in order to build an abacus giving Tsai-Wu failure criterion parameters as a function of microstructure and targeted fatigue life. On the other hand, the micromechanical damage model gives access to the evolution of the anisotropic stiffness tensor of SFRC submitted to complex thermomechanical loading, including quasi-static, dynamic, and cyclic loading with temperature and amplitude variations. Then, the latter is used to fill out microstructure dependent material cards in finite element analysis for design optimization in the case of complex loading history. The proposed methodology is illustrated in the case of a real automotive component made of sheet molding compound (PSA 3008 tailgate). The obtained results emphasize how the proposed micromechanical methodology opens a new path for the automotive industry to lighten vehicle bodies and thereby save energy and reduce gas emission.Keywords: short fiber reinforced composite, structural design, damage, micromechanical modelling, fatigue, strain rate effect
Procedia PDF Downloads 1073049 Single-Molecule Analysis of Structure and Dynamics in Polymer Materials by Super-Resolution Technique
Authors: Hiroyuki Aoki
Abstract:
The physical properties of polymer materials are dependent on the conformation and molecular motion of a polymer chain. Therefore, the structure and dynamic behavior of the single polymer chain have been the most important concerns in the field of polymer physics. However, it has been impossible to directly observe the conformation of the single polymer chain in a bulk medium. In the current work, the novel techniques to study the conformation and dynamics of a single polymer chain are proposed. Since a fluorescence method is extremely sensitive, the fluorescence microscopy enables the direct detection of a single molecule. However, the structure of the polymer chain as large as 100 nm cannot be resolved by conventional fluorescence methods because of the diffraction limit of light. In order to observe the single chains, we developed the labeling method of polymer materials with a photo-switchable dye and the super-resolution microscopy. The real-space conformational analysis of single polymer chains with the spatial resolution of 15-20 nm was achieved. The super-resolution microscopy enables us to obtain the three-dimensional coordinates; therefore, we succeeded the conformational analysis in three dimensions. The direct observation by the nanometric optical microscopy would reveal the detailed information on the molecular processes in the various polymer systems.Keywords: polymer materials, single molecule, super-resolution techniques, conformation
Procedia PDF Downloads 3053048 Experimental Investigation on Mechanical Properties of Rice Husk Filled Jute Reinforced Composites
Authors: Priyankar P. Deka, Sutanu Samanta
Abstract:
This paper describes the development of new class of epoxy based hybrid composites reinforced with jute and filled with rice husk flour. Rice husk flour is added in 0%, 1%, 3%, 5% by weight. Epoxy resin and triethylene tetramine (T.E.T.A) is used as matrix and hardener respectively. It investigates the mechanical properties of the composites and a comparison is done for monolithic jute composite and the filled ones. The specimens are prepared according to the ASTM standards and experimentation is carried out using INSTRON 8801. The result shows that with the increase of filler percentage the tensile properties increases but compressive and flexural properties decreases.Keywords: jute, mechanical characterization, natural fiber, rice husk
Procedia PDF Downloads 2853047 Modelling of Factors Affecting Bond Strength of Fibre Reinforced Polymer Externally Bonded to Timber and Concrete
Authors: Abbas Vahedian, Rijun Shrestha, Keith Crews
Abstract:
In recent years, fibre reinforced polymers as applications of strengthening materials have received significant attention by civil engineers and environmentalists because of their excellent characteristics. Currently, these composites have become a mainstream technology for strengthening of infrastructures such as steel, concrete and more recently, timber and masonry structures. However, debonding is identified as the main problem which limit the full utilisation of the FRP material. In this paper, a preliminary analysis of factors affecting bond strength of FRP-to-concrete and timber bonded interface has been conducted. A novel theoretical method through regression analysis has been established to evaluate these factors. Results of proposed model are then assessed with results of pull-out tests and satisfactory comparisons are achieved between measured failure loads (R2 = 0.83, P < 0.0001) and the predicted loads (R2 = 0.78, P < 0.0001).Keywords: debonding, fibre reinforced polymers (FRP), pull-out test, stepwise regression analysis
Procedia PDF Downloads 2483046 The Effectschemical Treatment on Alkyl Phenol Modified Sisal Fiber Reinforced Epoxy Composite
Authors: Rajesh Panda, Jimi Tjong, Sanjay K. Nayak, Mohini M. Sain
Abstract:
The aim of this manuscript was to evaluate the effect of chemical treatment of sisal fibre on the mechanical and viscoelastic properties of bio based epoxy/fibre composites. The composite samples were manufactured through a vacuum infusion process by adding alkyl phenols from cashew nutshell liquid (CSNL). Changes in the chemical structure of the sisal fibres resulting from the treatments were analyzed by Fourier transform infrared spectroscopy (FTIR). Both alkali and silane treatments produced enhancements in the mechanical properties of sisal fibre bundles. The alkali treatment, when combined with the silane treatment, the mechanical properties of epoxy composites notably improved (13%) in comparison to untreated sisal fibre reinforced composites.This was attributed to an enhanced fibre/matrix interface. The incorporation of CSNL into the sisal/epoxy composite enhanced the fibre-matrix interfacial properties because of the addition of -OH groups to the epoxy matrix. The incorporation of sisal fibre imparts stiffness to the epoxy matrix.Keywords: phenalkamine, sisal fiber, vacuum infusion, cashew nutshell liquid, cashew nutshell liquid (CSNL)
Procedia PDF Downloads 2843045 Impact Load Response of Light Rail Train Rail Guard
Authors: Eyob Hundessa Gose
Abstract:
Nowadays, it is obviously known that the construction of different infrastructures is one measurement of the development of a country; infrastructures like buildings, bridges, roads, and railways are among them. In the capital city of Ethiopia, the so-called Addis Ababa, the Light Rail Train (LRT), was built Four years ago to satisfy the demand for transportation among the people in the city. The lane of the Train and vehicle separation Media was built with a curb and rail guard installation system to show the right-of-way and for protection of vehicles entering the Train Lane, but this Rail guard fails easily when impacted by vehicles and found that the impact load response of the Rail guard is weak and the Rail guard cannot withstand impact load. This study investigates the effect of variation of parameters such as vehicle speed and different mass effects and assesses the failure mode FRP and Steel reinforcement bar rail guards of deflection and damage state.Keywords: impact load, fiber reinforced polymer, rail guard, LS-DYNA
Procedia PDF Downloads 593044 Recycled Plastic Fibers for Minimizing Plastic Shrinkage Cracking of Cement Based Mortar
Authors: B. S. Al-Tulaian, M. J. Al-Shannag, A. M. Al-Hozaimy
Abstract:
The development of new construction materials using recycled plastic is important to both the construction and the plastic recycling industries. Manufacturing of fibers from industrial or post-consumer plastic waste is an attractive approach with such benefits as concrete performance enhancement, and reduced needs for land filling. The main objective of this study is to investigate the effect of plastic fibers obtained locally from recycled waste on plastic shrinkage cracking of ordinary cement based mortar. Parameters investigated include: Fiber length ranging from 20 to 50 mm, and fiber volume fraction ranging from 0% to 1.5% by volume. The test results showed significant improvement in crack arresting mechanism and substantial reduction in the surface area of cracks for the mortar reinforced with recycled plastic fibers compared to plain mortar. Furthermore, test results indicated that there was a slight decrease in compressive strength of mortar reinforced with different lengths and contents of recycled fibers compared to plain mortar. This study suggests that adding more than 1% of RP fibers to mortar, can be used effectively for controlling plastic shrinkage cracking of cement based mortar, and thus results in waste reduction and resources conservation.Keywords: mortar, plastic, shrinkage cracking, compressive strength, RF recycled fibers
Procedia PDF Downloads 409