Search results for: and coal mining industry
6180 Improved FP-Growth Algorithm with Multiple Minimum Supports Using Maximum Constraints
Authors: Elsayeda M. Elgaml, Dina M. Ibrahim, Elsayed A. Sallam
Abstract:
Association rule mining is one of the most important fields of data mining and knowledge discovery. In this paper, we propose an efficient multiple support frequent pattern growth algorithm which we called “MSFP-growth” that enhancing the FP-growth algorithm by making infrequent child node pruning step with multiple minimum support using maximum constrains. The algorithm is implemented, and it is compared with other common algorithms: Apriori-multiple minimum supports using maximum constraints and FP-growth. The experimental results show that the rule mining from the proposed algorithm are interesting and our algorithm achieved better performance than other algorithms without scarifying the accuracy.Keywords: association rules, FP-growth, multiple minimum supports, Weka tool
Procedia PDF Downloads 4856179 Locally Produced Solid Biofuels – Carbon Dioxide Emissions and Competitiveness with Conventional Ways of Individual Space Heating
Authors: Jiri Beranovsky, Jaroslav Knapek, Tomas Kralik, Kamila Vavrova
Abstract:
The paper deals with the results of research focused on the complex aspects of the use of intentionally grown biomass on agricultural land for the production of solid biofuels as an alternative for individual household heating. . The study primarily deals with the analysis of CO2 emissions of the logistics cycle of biomass for the production of energy pellets. Growing, harvesting, transport and storage are evaluated in the pellet production cycle. The aim is also to take into account the consumption profile during the year in terms of heating of common family houses, which are typical end-market segment for these fuels. It is assumed that in family houses, bio-pellets are able to substitute typical fossil fuels, such as brown coal and old wood burning heating devices and also electric boilers. One of the competing technology with the pellets are heat pumps. The results show the CO2 emissions related with considered fuels and technologies for their utilization. Comparative analysis is aimed biopellets from intentionally grown biomass, brown coal, natural gas and electricity used in electric boilers and heat pumps. Analysis combines CO2 emissions related with individual fuels utilization with costs of these fuels utilization. Cost of biopellets from intentionally grown biomass is derived from the economic models of individual energy crop plantations. At the same time, the restrictions imposed by EU legislation on Ecodesign's fuel and combustion equipment requirements and NOx emissions are discussed. Preliminary results of analyzes show that to achieve the competitiveness of pellets produced from specifically grown biomass, it would be necessary to either significantly ecological tax on coal (from about 0.3 to 3-3.5 EUR/GJ), or to multiply the agricultural subsidy per area. In addition to the Czech Republic, the results are also relevant for other countries, such as Bulgaria and Poland, which also have a high proportion of solid fuels for household heating.Keywords: CO2 emissions, heating costs, energy crop, pellets, brown coal, heat pumps, economical evaluation
Procedia PDF Downloads 1136178 Feature-Based Summarizing and Ranking from Customer Reviews
Authors: Dim En Nyaung, Thin Lai Lai Thein
Abstract:
Due to the rapid increase of Internet, web opinion sources dynamically emerge which is useful for both potential customers and product manufacturers for prediction and decision purposes. These are the user generated contents written in natural languages and are unstructured-free-texts scheme. Therefore, opinion mining techniques become popular to automatically process customer reviews for extracting product features and user opinions expressed over them. Since customer reviews may contain both opinionated and factual sentences, a supervised machine learning technique applies for subjectivity classification to improve the mining performance. In this paper, we dedicate our work is the task of opinion summarization. Therefore, product feature and opinion extraction is critical to opinion summarization, because its effectiveness significantly affects the identification of semantic relationships. The polarity and numeric score of all the features are determined by Senti-WordNet Lexicon. The problem of opinion summarization refers how to relate the opinion words with respect to a certain feature. Probabilistic based model of supervised learning will improve the result that is more flexible and effective.Keywords: opinion mining, opinion summarization, sentiment analysis, text mining
Procedia PDF Downloads 3326177 A Theoretical Model for Pattern Extraction in Large Datasets
Authors: Muhammad Usman
Abstract:
Pattern extraction has been done in past to extract hidden and interesting patterns from large datasets. Recently, advancements are being made in these techniques by providing the ability of multi-level mining, effective dimension reduction, advanced evaluation and visualization support. This paper focuses on reviewing the current techniques in literature on the basis of these parameters. Literature review suggests that most of the techniques which provide multi-level mining and dimension reduction, do not handle mixed-type data during the process. Patterns are not extracted using advanced algorithms for large datasets. Moreover, the evaluation of patterns is not done using advanced measures which are suited for high-dimensional data. Techniques which provide visualization support are unable to handle a large number of rules in a small space. We present a theoretical model to handle these issues. The implementation of the model is beyond the scope of this paper.Keywords: association rule mining, data mining, data warehouses, visualization of association rules
Procedia PDF Downloads 2236176 Application of Artificial Neural Network Technique for Diagnosing Asthma
Authors: Azadeh Bashiri
Abstract:
Introduction: Lack of proper diagnosis and inadequate treatment of asthma leads to physical and financial complications. This study aimed to use data mining techniques and creating a neural network intelligent system for diagnosis of asthma. Methods: The study population is the patients who had visited one of the Lung Clinics in Tehran. Data were analyzed using the SPSS statistical tool and the chi-square Pearson's coefficient was the basis of decision making for data ranking. The considered neural network is trained using back propagation learning technique. Results: According to the analysis performed by means of SPSS to select the top factors, 13 effective factors were selected, in different performances, data was mixed in various forms, so the different models were made for training the data and testing networks and in all different modes, the network was able to predict correctly 100% of all cases. Conclusion: Using data mining methods before the design structure of system, aimed to reduce the data dimension and the optimum choice of the data, will lead to a more accurate system. Therefore, considering the data mining approaches due to the nature of medical data is necessary.Keywords: asthma, data mining, Artificial Neural Network, intelligent system
Procedia PDF Downloads 2736175 Biosorption of Gold from Chloride Media in a Simultaneous Adsorption-Reduction Process
Authors: Shafiq Alam, Yen Ning Lee
Abstract:
Conventional hydrometallurgical processing of metals involves the use of large quantities of toxic chemicals. Realizing a need to develop sustainable technologies, extensive research studies are being carried out to recover and recycle base, precious and rare earth metals from their pregnant leach solutions (PLS) using green chemicals/biomaterials prepared from biomass wastes derived from agriculture, marine and forest resources. Our innovative research showed that bio-adsorbents prepared from such biomass wastes can effectively adsorb precious metals, especially gold after conversion of their functional groups in a very simple process. The highly effective ‘Adsorption-coupled-Reduction’ phenomenon witnessed appears promising for the potential use of this gold biosorption process in the mining industry. Proper management and effective use of biomass wastes as value added green chemicals will not only reduce the volume of wastes being generated every day in our society, but will also have a high-end value to the mining and mineral processing industries as those biomaterials would be cheap, but very selective for gold recovery/recycling from low grade ore, leach residue or e-wastes.Keywords: biosorption, hydrometallurgy, gold, adsorption, reduction, biomass, sustainability
Procedia PDF Downloads 3766174 A Closer Look on Economic and Fiscal Incentives for Digital TV Industry
Authors: Yunita Anwar, Maya Safira Dewi
Abstract:
With the increasing importance on digital TV industry, there must be several incentives given to support the growth of the industry. Prior research have found mixed findings of economic and fiscal incentives to economic growth, which means these incentives do not necessarily boost the economic growth while providing support to a particular industry. Focusing on a setting of digital TV transition in Indonesia, this research will conduct document analysis to analyze incentives have been given in other country and incentives currently available in Indonesia. Our results recommend that VAT exemption and local tax incentives could be considered to be added to the incentives list available for digital TV industry.Keywords: Digital TV transition, Economic Incentives, Fiscal Incentives, Policy.
Procedia PDF Downloads 3246173 Biodiesel Fuel Properties of Mixed Culture Microalgae under Different CO₂ Concentration from Coal Fired Flue Gas
Authors: Ambreen Aslam, Tahira Aziz Mughal, Skye R. Thomas-Hall, Peer M. Schenk
Abstract:
Biodiesel is an alternative to petroleum-derived fuel mainly composed of fatty acid from oleaginous microalgae feedstock. Microalgae produced fatty acid methyl esters (FAMEs) as they can store high levels of lipids without competing for food productivity. After lipid extraction and esterification, fatty acid profile from algae feedstock possessed the abundance of fatty acids with carbon chain length specifically C16 and C18. The qualitative analysis of FAME was done by cultivating mix microalgae consortia under three different CO₂ concentrations (1%, 3%, and 5.5%) from a coal fired flue gas. FAME content (280.3 µg/mL) and productivity (18.69 µg/mL/D) was higher under 1% CO₂ (flue gas) as compare to other treatments. Whereas, Mixed C. (F) supplemented with 5.5% CO₂ (50% flue gas) had higher SFA (36.28%) and UFA (63.72%) which improve the oxidative stability of biodiesel. Subsequently, low Iodine value (136.3 gI₂/100g) and higher Cetane number (52) of Mixed C.+P (F) were found to be in accordance with European (EN 14214) standard under 5.5% CO₂ along with 50mM phosphate buffer. Experimental results revealed that sufficient phosphate reduced FAME productivity but significantly enhance biodiesel quality. This research aimed to develop an integrated approach of utilizing flue gas (as CO₂ source) for significant improvement in biodiesel quality under surplus phosphorus. CO₂ sequestration from industrial flue gas not only reduce greenhouse gases (GHG) emissions but also ensure sustainability and eco-friendliness of the biodiesel production process through microalgae.Keywords: biodiesel analysis, carbon dioxide, coal fired flue gas, FAME productivity, fatty acid profile, fuel properties, lipid content, mixed culture microalgae
Procedia PDF Downloads 3286172 Application of Geotube® Method for Sludge Handling in Adaro Coal Mine
Authors: Ezman Fitriansyah, Lestari Diah Restu, Wawan
Abstract:
Adaro coal mine in South Kalimantan-Indonesia maintains catchment area of approximately 15,000 Ha for its mine operation. As an open pit surface coal mine with high erosion rate, the mine water in Adaro coal mine contains high TSS that needs to be treated before being released to rivers. For the treatment process, Adaro operates 21 Settling Ponds equipped with combination of physical and chemical system to separate solids and water to ensure the discharged water complied with regional environmental quality standards. However, the sludge created from the sedimentation process reduces the settling ponds capacity gradually. Therefore regular maintenance activities are required to recover and maintain the ponds' capacity. Trucking system and direct dredging had been the most common method to handle sludge in Adaro. But the main problem in applying these two methods is excessive area required for drying pond construction. To solve this problem, Adaro implements an alternative method called Geotube®. The principle of Geotube® method is the sludge contained in the Settling Ponds is pumped into Geotube® containers which have been designed to release water and retain mud flocks. During the pumping process, an amount of flocculants chemicals are injected into the sludge to form bigger mud flocks. Due to the difference in particle size, the mud flocks are settled in the container whilst the water continues to flow out through the container’s pores. Compared to the trucking system and direct dredging method, this method provides three advantages: space required to operate, increasing of overburden waste dump volume, and increasing of water treatment process speed and quality. Based on the evaluation result, Geotube® method only needs 1:8 of space required by the other methods. From the geotechnical assessment result conducted by Adaro, the potential loss of waste dump volume capacity prior to implementation of the Geotube® method was 26.7%. The water treatment process of TSS in well maintained ponds is 16% more optimum.Keywords: geotube, mine water, settling pond, sludge handling, wastewater treatment
Procedia PDF Downloads 2006171 Measuring Sustainability Risk in the Construction Industry of Saudi Arabia
Authors: Mohammed Alquraish
Abstract:
Saudi Arabia and other emerging nations have faced significant challenges in the sustainable construction industry. This paper presents a quantitative approach to assessing sustainability risk in the Saudi Arabian construction industry and offers insights into holistic sustainability design in industry operations. The implementation of sustainable construction industry practices in the manufacturing sector has been susceptible to several risk factors that need to be identified. In order to successfully execute sustainable building projects, decision makers in the fields of construction and industry can benefit greatly from the advice this study offers by promoting the elements that motivate sustainability implementation. Sustainability risk can be measured from combining failure probability with cumulative effects from sustainability factors: social, environmental, and economic; that affect the integrity of the construction industry. The cumulative effects of sustainability risk are measured by classifying the outcomes resulting from these consequences. Operators of industrial construction can strategically manage and minimize potential disruptions affecting long-term sustainability incentives by measuring sustainability risk. Thus, the suggested strategy greatly reinforces the crucial role of the construction industry.Keywords: sustainability, risk, construction industry, Saudi Arabia
Procedia PDF Downloads 406170 A Feasibility Study on Producing Bio-Coal from Orange Peel Residue by Using Torrefaction
Authors: Huashan Tai, Chien-Hui Lung
Abstract:
Nowadays people use massive fossil fuels which not only cause environmental impacts and global climate change, but also cause the depletion of non-renewable energy such as coal and oil. Bioenergy is currently the most widely used renewable energy, and agricultural waste is one of the main raw materials for bioenergy. In this study, we use orange peel residue, which is easier to collect from agricultural waste to produce bio-coal by torrefaction. The orange peel residue (with 25 to 30% moisture) was treated by torrefaction, and the experiments were conducted with initial temperature at room temperature (approximately at 25° C), with heating rates of 10, 30, and 50°C / min, with terminal temperatures at 150, 200, 250, 300, 350℃, and with residence time of 10, 20, and 30 minutes. The results revealed that the heating value, ash content and energy densification ratio of the solid products after torrefaction are in direct proportion to terminal temperatures and residence time, and are inversely proportional to heating rates. The moisture content, solid mass yield, energy yield, and volumetric energy density of the solid products after torrefaction are inversely proportional to terminal temperatures and residence time, and are in direct proportion to heating rates. In conclusion, we found that the heating values of the solid products were 1.3 times higher than those of the raw orange peels before torrefaction, and the volumetric energy densities were increased by 1.45 times under operating parameters with terminal temperature at 250°C, residence time of 10 minutes, and heating rate of 10°C / min of torrefaction. The results indicated that the residue of orange peel treated by torrefaction improved its energy density and fuel properties, and became more suitable for bio-fuel applications.Keywords: biomass energy, orange, torrefaction
Procedia PDF Downloads 2896169 Silver Nanoparticles Impregnated Zeolitic Composites: Effect of the Silver Loading on Adsorption of Mercury (II)
Authors: Zhandos Tauanov, Dhawal Shah, Grigorios Itskos, Vasileios Inglezakis
Abstract:
Removal of mercury (II) from aqueous phase is of utmost importance, as it is highly toxic and hazardous to the environment and human health. One way of removal of mercury (II) ions from aqueous solutions is by using adsorbents derived from coal fly ash (CFA), such as synthetic zeolites. In this work, we present the hydrothermal production of synthetic zeolites from CFA with conversion rate of 75%. In order to produce silver containing nanocomposites, synthetic zeolites are subsequently impregnated with various amounts of silver nanoparticles, from 0.2 to 2wt.%. All produced zeolites and parent materials are characterized by XRD, XRF, BET, SEM, and TEM to obtain morphological and microstructural data. Moreover, mercury (II) ions removal from aqueous solutions with initial concentration of 10 ppm is studied. According to results, zeolites and Ag-nanocomposites demonstrate much higher removal than parent CFA (up to 98%). In addition to this, we could observe a distinct adsorption behavior depending on the loading of Ag NPs in nanocomposites. A possible reaction mechanism for both zeolites and Ag-nanocomposites is discussed.Keywords: coal fly ash, mercury (II) removal, nanocomposites, silver nanoparticles, synthetic zeolite
Procedia PDF Downloads 2776168 Perspectives of Renewable Energy in 21st Century in India: Statistics and Estimation
Authors: Manoj Kumar, Rajesh Kumar
Abstract:
With the favourable geographical conditions at Indian-subcontinent, it is suitable for flourishing renewable energy. Increasing amount of dependence on coal and other conventional sources is driving the world into pollution and depletion of resources. This paper presents the statistics of energy consumption and energy generation in Indian Sub-continent, which notifies us with the increasing energy demands surpassing energy generation. With the aggrandizement in demand for energy, usage of coal has increased, since the major portion of energy production in India is from thermal power plants. The increase in usage of thermal power plants causes pollution and depletion of reserves; hence, a paradigm shift to renewable sources is inevitable. In this work, the capacity and potential of renewable sources in India are analyzed. Based on the analysis of this work, future potential of these sources is estimated.Keywords: depletion of reserves, energy consumption and generation, emmissions, global warming, renewable sources
Procedia PDF Downloads 4326167 Digital Transformation of Payment Systems Using Field Service Management
Authors: Hamze Torabian, Mohammad Mehrabioun Mohammadi
Abstract:
Like many other industries, the payment industry has been affected by digital transformation. The importance of digital transformation in the payment industry is very crucial. Because the payment industry is considered a leading industry in digital and emerging technologies, and the digitalization of other industries such as retail, health, and telecommunication, it also depends on the growth rate of digitalized payment systems. One of the technological innovations in service management is Field Service Management (FSM). Despite the widespread use of FSM in various industries such as petrochemical, health, maintenance, etc., this technology can also be recruited in the payment industry, transforming the payment industry into a more agile and efficient one. Accordingly, the present study pays close attention to the application of FSM in the payment industry. Given the importance of merchants' bargaining power in the payment industry, this study aims to use FSM in the digital transformation initiative with a targeted focus on providing real-time services to merchants. The research method consists of three parts. Firstly, conducting the review of past research, applications of FSM in the payment industry are considered. In the next step, merchants' benefits such as emotional, functional, economic, and social benefits in using FSM are identified using in-depth interviews and content analysis methods. The related business model in helping the payment industry transforming into a more agile and efficient industry is considered in the following step. The results revealed the 10 main pillars required to realize the digital transformation of payment systems using FSM.Keywords: digital transformation, field service management, merchant support systems, payment industry
Procedia PDF Downloads 1706166 Applying Sequential Pattern Mining to Generate Block for Scheduling Problems
Authors: Meng-Hui Chen, Chen-Yu Kao, Chia-Yu Hsu, Pei-Chann Chang
Abstract:
The main idea in this paper is using sequential pattern mining to find the information which is helpful for finding high performance solutions. By combining this information, it is defined as blocks. Using the blocks to generate artificial chromosomes (ACs) could improve the structure of solutions. Estimation of Distribution Algorithms (EDAs) is adapted to solve the combinatorial problems. Nevertheless many of these approaches are advantageous for this application, but only some of them are used to enhance the efficiency of application. Generating ACs uses patterns and EDAs could increase the diversity. According to the experimental result, the algorithm which we proposed has a better performance to solve the permutation flow-shop problems.Keywords: combinatorial problems, sequential pattern mining, estimationof distribution algorithms, artificial chromosomes
Procedia PDF Downloads 6116165 Constructing a Semi-Supervised Model for Network Intrusion Detection
Authors: Tigabu Dagne Akal
Abstract:
While advances in computer and communications technology have made the network ubiquitous, they have also rendered networked systems vulnerable to malicious attacks devised from a distance. These attacks or intrusions start with attackers infiltrating a network through a vulnerable host and then launching further attacks on the local network or Intranet. Nowadays, system administrators and network professionals can attempt to prevent such attacks by developing intrusion detection tools and systems using data mining technology. In this study, the experiments were conducted following the Knowledge Discovery in Database Process Model. The Knowledge Discovery in Database Process Model starts from selection of the datasets. The dataset used in this study has been taken from Massachusetts Institute of Technology Lincoln Laboratory. After taking the data, it has been pre-processed. The major pre-processing activities include fill in missed values, remove outliers; resolve inconsistencies, integration of data that contains both labelled and unlabelled datasets, dimensionality reduction, size reduction and data transformation activity like discretization tasks were done for this study. A total of 21,533 intrusion records are used for training the models. For validating the performance of the selected model a separate 3,397 records are used as a testing set. For building a predictive model for intrusion detection J48 decision tree and the Naïve Bayes algorithms have been tested as a classification approach for both with and without feature selection approaches. The model that was created using 10-fold cross validation using the J48 decision tree algorithm with the default parameter values showed the best classification accuracy. The model has a prediction accuracy of 96.11% on the training datasets and 93.2% on the test dataset to classify the new instances as normal, DOS, U2R, R2L and probe classes. The findings of this study have shown that the data mining methods generates interesting rules that are crucial for intrusion detection and prevention in the networking industry. Future research directions are forwarded to come up an applicable system in the area of the study.Keywords: intrusion detection, data mining, computer science, data mining
Procedia PDF Downloads 2966164 The Use of Classifiers in Image Analysis of Oil Wells Profiling Process and the Automatic Identification of Events
Authors: Jaqueline Maria Ribeiro Vieira
Abstract:
Different strategies and tools are available at the oil and gas industry for detecting and analyzing tension and possible fractures in borehole walls. Most of these techniques are based on manual observation of the captured borehole images. While this strategy may be possible and convenient with small images and few data, it may become difficult and suitable to errors when big databases of images must be treated. While the patterns may differ among the image area, depending on many characteristics (drilling strategy, rock components, rock strength, etc.). Previously we developed and proposed a novel strategy capable of detecting patterns at borehole images that may point to regions that have tension and breakout characteristics, based on segmented images. In this work we propose the inclusion of data-mining classification strategies in order to create a knowledge database of the segmented curves. These classifiers allow that, after some time using and manually pointing parts of borehole images that correspond to tension regions and breakout areas, the system will indicate and suggest automatically new candidate regions, with higher accuracy. We suggest the use of different classifiers methods, in order to achieve different knowledge data set configurations.Keywords: image segmentation, oil well visualization, classifiers, data-mining, visual computer
Procedia PDF Downloads 3036163 Text Mining Techniques for Prioritizing Pathogenic Mutations in Protein Families Known to Misfold or Aggregate
Authors: Khaleel Saleh Al-Rababah
Abstract:
Amyloid fibril forming regions, which are known as protein aggregates, in sequences of some protein families are associated with a number of diseases known as amyloidosis. Mutations play a role in forming fibrils by accelerating the fibril formation process. In this paper we want to extract diseases that caused by those mutations as a result of the impact of the mutations on structural and functional properties of the aggregated protein. We propose a text mining system, to automatically extract mutations, diseases and relations between mutations and diseases. We presented an algorithm based on finite state to cluster mutations found in the same sentence as a sentence could contain different mutation cause different diseases. Also, we presented a co reference algorithm that enables cross-link sentences.Keywords: amyloid, amyloidosis, co reference, protein, text mining
Procedia PDF Downloads 5256162 Risk Based Maintenance Planning for Loading Equipment in Underground Hard Rock Mine: Case Study
Authors: Sidharth Talan, Devendra Kumar Yadav, Yuvraj Singh Rajput, Subhajit Bhattacharjee
Abstract:
Mining industry is known for its appetite to spend sizeable capital on mine equipment. However, in the current scenario, the mining industry is challenged by daunting factors of non-uniform geological conditions, uneven ore grade, uncontrollable and volatile mineral commodity prices and the ever increasing quest to optimize the capital and operational costs. Thus, the role of equipment reliability and maintenance planning inherits a significant role in augmenting the equipment availability for the operation and in turn boosting the mine productivity. This paper presents the Risk Based Maintenance (RBM) planning conducted on mine loading equipment namely Load Haul Dumpers (LHDs) at Vedanta Resources Ltd subsidiary Hindustan Zinc Limited operated Sindesar Khurd Mines, an underground zinc and lead mine situated in Dariba, Rajasthan, India. The mining equipment at the location is maintained by the Original Equipment Manufacturers (OEMs) namely Sandvik and Atlas Copco, who carry out the maintenance and inspection operations for the equipment. Based on the downtime data extracted for the equipment fleet over the period of 6 months spanning from 1st January 2017 until 30th June 2017, it was revealed that significant contribution of three downtime issues related to namely Engine, Hydraulics, and Transmission to be common among all the loading equipment fleet and substantiated by Pareto Analysis. Further scrutiny through Bubble Matrix Analysis of the given factors revealed the major influence of selective factors namely Overheating, No Load Taken (NTL) issues, Gear Changing issues and Hose Puncture and leakage issues. Utilizing the equipment wise analysis of all the downtime factors obtained, spares consumed, and the alarm logs extracted from the machines, technical design changes in the equipment and pre shift critical alarms checklist were proposed for the equipment maintenance. The given analysis is beneficial to allow OEMs or mine management to focus on the critical issues hampering the reliability of mine equipment and design necessary maintenance strategies to mitigate them.Keywords: bubble matrix analysis, LHDs, OEMs, Pareto chart analysis, spares consumption matrix, critical alarms checklist
Procedia PDF Downloads 1536161 Rewashing for Gold: Optimizing Mine Plan for Effective Closure
Authors: O. D. Eniowo
Abstract:
“Rewashing” as it is commonly called, involves the process of scooping out and washing chunks of mud from a closed alluvial gold mine site with the purpose of extracting any leftover gold deposits in the site. It is usually carried out by illegal miners who infiltrate closed mine sites with the goal of scavenging for any leftover gold deposits. Expectedly, the practice gives little or no regard for environmental protection. This paper examines the process of “rewashing” in a mining community in Nigeria. It then discusses the looming danger it portends for health, safety, and the environment. The study draws lessons from these occurrences to examine and discuss fit-for-purpose mine closure plans that could be adopted by gold mines in Nigeria and other sub-Saharan African countries.Keywords: mine planning, mine closure, illegal mining, artisanal mining, environmental sustainability
Procedia PDF Downloads 306160 Industry Practitioners Involvement in Taiwan Vocational Education
Authors: Hsiao Tseng Lin, Szu Mei Hsiao, Mei Chun Yuan
Abstract:
Today's rapid development of industrial pulsation, how to reduce the gap between the academics and industry need become an important issue in vocational education. Beginning in 2015, a two-year program for teaching excellence, funded by the Ministry of Education Taiwan, is implemented by Meiho University, with a total project funding of $ 1.5 million USD. One of the innovated highlights of this program is to invite 188 industry practitioners to participate in collaborative teaching for 175 classes and 28 industry practitioners to be as mentors too. 56 industry practitioners are also invited to participate in curriculum planning and design. Students' overall satisfaction with the program was more than 4.5 (out of 5.0). This paper aims to evaluate the effectiveness and discusses the limit of the practitioners program. This study has revealed and provided some valuable perspectives how to best ensure the ongoing involvement of industry practitioners in vocational education. The findings of this study are valuable to those involved in designing collaborative teaching curriculum and delivering a course for vocational education.Keywords: collaborative teaching, industry practitioners, mentor, vocational education
Procedia PDF Downloads 4346159 Valorization of Mining Waste (Sand of Djemi Djema) from the Djbel Onk Mine (Eastern Algeria)
Authors: Rachida Malaoui, Leila Arabet , Asma Benbouza
Abstract:
The use of mining waste rock as a material for construction is one of the biggest concerns grabbing the attention of many mining countries. As these materials are abandoned, more effective solutions have been made to offset some of the building materials, and to avoid environmental pollution. The sands of the Djemi Djema deposit mines of the Djebel Onk mines are sedimentary materials of several varieties of layers with varying thicknesses and are worth far more than 300m deep. The sands from the Djemi Djema business area are medium to coarse and are discharged and accumulated, generating a huge estimated quantity of more than 77424250 tonnes. This state of "resource" is of great importance so as to be oriented towards the fields of public works and civil engineering after having reached the acceptable properties of this resourceKeywords: reuse, sands, shear tests, waste rock
Procedia PDF Downloads 1476158 Challenging Barriers to the Evolution of the Saudi Animation Industry Life-Cycle
Authors: Ohud Alharbi, Emily Baines
Abstract:
The animation industry is one of the creative industries that have attracted recent historiographical attention. However, there has been very limited research on Saudi Arabian and wider Arabian animation industries, while there are a large number of studies that have covered this issue for North America, Europe and East Asia. The existing studies show that developed countries such as USA, Japan and the UK have reached the Maturity stage in their animation industry life-cycle. On the other hand, developing countries that are still in the Introduction phase of the industry life-cycle face challenges to improve their industry. Saudi Arabia is one of the countries whose animation industry is still in its infancy. Thus, the aim of this paper is to address the main barriers that hinder the evolution of the industry life-cycle for Saudi animation – challenges that are also relevant to many other early stage industries in developing countries. These barriers have been analysed using the early mobility barriers defined by Porter, to provide a conceptual structure for defining recommendations to enable the transition to a strong Growth phase industry. This study utilized qualitative methods to collect data, which involved in-depth interviews, document analysis and observations. It also undertook a comparative case study approach to investigate the animation industry life-cycle, with three selected case studies that have a more developed industry than Saudi animation. Case studies include: the United Kingdom, which represents a Mature animation industry; Egypt, which represents an established Growth stage industry; and the United Arab of Emirates, which is an early Growth stage industry. This study suggests adopting appropriate strategies that arise as findings from the comparative case studies, to overcome barriers and facilitate the growth of the Saudi animation industry.Keywords: barriers, industry life-cycle, Saudi animation, industry
Procedia PDF Downloads 5786157 A General Strategy for Noise Assessment in Open Mining Industries
Authors: Diego Mauricio Murillo Gomez, Enney Leon Gonzalez Ramirez, Hugo Piedrahita, Jairo Yate
Abstract:
This paper proposes a methodology for the management of noise in open mining industries based on an integral concept, which takes into consideration occupational and environmental noise as a whole. The approach relies on the characterization of sources, the combination of several measurements’ techniques and the use of acoustic prediction software. A discussion about the difference between frequently used acoustic indicators such as Leq and LAV is carried out, aiming to establish common ground for homologation. The results show that the correct integration of this data not only allows for a more robust technical analysis but also for a more strategic route of intervention as several departments of the company are working together. Noise control measurements can be designed to provide a healthy acoustic surrounding in which the exposure workers but also the outdoor community is benefited.Keywords: environmental noise, noise control, occupational noise, open mining
Procedia PDF Downloads 2696156 A Framework for Event-Based Monitoring of Business Processes in the Supply Chain Management of Industry 4.0
Authors: Johannes Atug, Andreas Radke, Mitchell Tseng, Gunther Reinhart
Abstract:
In modern supply chains, large numbers of SKU (Stock-Keeping-Unit) need to be timely managed, and any delays in noticing disruptions of items often limit the ability to defer the impact on customer order fulfillment. However, in supply chains of IoT-connected enterprises, the ERP (Enterprise-Resource-Planning), the MES (Manufacturing-Execution-System) and the SCADA (Supervisory-Control-and-Data-Acquisition) systems generate large amounts of data, which generally glean much earlier notice of deviations in the business process steps. That is, analyzing these streams of data with process mining techniques allows the monitoring of the supply chain business processes and thus identification of items that deviate from the standard order fulfillment process. In this paper, a framework to enable event-based SCM (Supply-Chain-Management) processes including an overview of core enabling technologies are presented, which is based on the RAMI (Reference-Architecture-Model for Industrie 4.0) architecture. The application of this framework in the industry is presented, and implications for SCM in industry 4.0 and further research are outlined.Keywords: cyber-physical production systems, event-based monitoring, supply chain management, RAMI (Reference-Architecture-Model for Industrie 4.0)
Procedia PDF Downloads 2366155 An Improved Parallel Algorithm of Decision Tree
Authors: Jiameng Wang, Yunfei Yin, Xiyu Deng
Abstract:
Parallel optimization is one of the important research topics of data mining at this stage. Taking Classification and Regression Tree (CART) parallelization as an example, this paper proposes a parallel data mining algorithm based on SSP-OGini-PCCP. Aiming at the problem of choosing the best CART segmentation point, this paper designs an S-SP model without data association; and in order to calculate the Gini index efficiently, a parallel OGini calculation method is designed. In addition, in order to improve the efficiency of the pruning algorithm, a synchronous PCCP pruning strategy is proposed in this paper. In this paper, the optimal segmentation calculation, Gini index calculation, and pruning algorithm are studied in depth. These are important components of parallel data mining. By constructing a distributed cluster simulation system based on SPARK, data mining methods based on SSP-OGini-PCCP are tested. Experimental results show that this method can increase the search efficiency of the best segmentation point by an average of 89%, increase the search efficiency of the Gini segmentation index by 3853%, and increase the pruning efficiency by 146% on average; and as the size of the data set increases, the performance of the algorithm remains stable, which meets the requirements of contemporary massive data processing.Keywords: classification, Gini index, parallel data mining, pruning ahead
Procedia PDF Downloads 1236154 Hydro Geochemistry and Water Quality in a River Affected by Lead Mining in Southern Spain
Authors: Rosendo Mendoza, María Carmen Hidalgo, María José Campos-Suñol, Julián Martínez, Javier Rey
Abstract:
The impact of mining environmental liabilities and mine drainage on surface water quality has been investigated in the hydrographic basin of the La Carolina mining district (southern Spain). This abandoned mining district is characterized by the existence of important mineralizations of sulfoantimonides of Pb - Ag, and sulfides of Cu - Fe. All surface waters reach the main river of this mining area, the Grande River, which ends its course in the Rumblar reservoir. This waterbody is intended to supply 89,000 inhabitants, as well as irrigation and livestock. Therefore, the analysis and control of the metal(loid) concentration that exists in these surface waters is an important issue because of the potential pollution derived from metallic mining. A hydrogeochemical campaign consisting of 20 water sampling points was carried out in the hydrographic network of the Grande River, as well as two sampling points in the Rumbler reservoir and at the main tailings impoundment draining to the river. Although acid mine drainage (pH below 4) is discharged into the Grande river from some mine adits, the pH values in the river water are always neutral or slightly alkaline. This is mainly the result of a dilution process of the small volumes of mine waters by net alkaline waters of the river. However, during the dry season, the surface waters present high mineralization due to a constant discharge from the abandoned flooded mines and a decrease in the contribution of surface runoff. The concentrations of dissolved Cd and Pb in the water reach values of 2 and 81 µg/l, respectively, exceeding the limit established by the Environmental Quality Standard for surface water. In addition, the concentrations of dissolved As, Cu, and Pb in the waters of the Rumblar reservoir reached values of 10, 20, and 11 µg/l, respectively. These values are higher than the maximum allowable concentration for human consumption, a circumstance that is especially alarming.Keywords: environmental quality, hydrogeochemistry, metal mining, surface water
Procedia PDF Downloads 1436153 Exploring the Role of Data Mining in Crime Classification: A Systematic Literature Review
Authors: Faisal Muhibuddin, Ani Dijah Rahajoe
Abstract:
This in-depth exploration, through a systematic literature review, scrutinizes the nuanced role of data mining in the classification of criminal activities. The research focuses on investigating various methodological aspects and recent developments in leveraging data mining techniques to enhance the effectiveness and precision of crime categorization. Commencing with an exposition of the foundational concepts of crime classification and its evolutionary dynamics, this study details the paradigm shift from conventional methods towards approaches supported by data mining, addressing the challenges and complexities inherent in the modern crime landscape. Specifically, the research delves into various data mining techniques, including K-means clustering, Naïve Bayes, K-nearest neighbour, and clustering methods. A comprehensive review of the strengths and limitations of each technique provides insights into their respective contributions to improving crime classification models. The integration of diverse data sources takes centre stage in this research. A detailed analysis explores how the amalgamation of structured data (such as criminal records) and unstructured data (such as social media) can offer a holistic understanding of crime, enriching classification models with more profound insights. Furthermore, the study explores the temporal implications in crime classification, emphasizing the significance of considering temporal factors to comprehend long-term trends and seasonality. The availability of real-time data is also elucidated as a crucial element in enhancing responsiveness and accuracy in crime classification.Keywords: data mining, classification algorithm, naïve bayes, k-means clustering, k-nearest neigbhor, crime, data analysis, sistematic literature review
Procedia PDF Downloads 656152 The Relationship between Inventory Management and Profitability: A Comparative Research on Turkish Firms Operated in Weaving Industry, Eatables Industry, Wholesale and Retail Industry
Authors: Gamze Sekeroglu, Mikail Altan
Abstract:
Working capital is identified as firm’s all current assets. Inventories which are one of the working capital elements are very important among current assets for firms. Because, profitability is an indicator for firms’ financial success is provided with minimum cost and optimum inventory quantity. So in this study, it is investigated as comparatively that the effect of inventory management on the profitability of Turkish firms which operated in weaving industry, eatables industry, wholesale and retail industry in between 2003 – 2012 years. Research data consist of profitability ratios and inventory turnovers ratio calculated by using balance sheets and income statements of firms which operated in Borsa Istanbul (BIST). In this research, the relationship between inventories and profitability is investigated by using SPSS-20 software with regression and correlation analysis. The results achieved from three industry departments which exist in study interpreted as comparatively. Accordingly, it is determined that there is a positive relationship between inventory management and profitability in eatables industry. However, it was founded that there is no relationship between inventory management and profitability in weaving industry and wholesale and retail industry.Keywords: profitability, regression analysis, inventory management, working capital
Procedia PDF Downloads 3356151 Numerical Modelling of 3-D Fracture Propagation and Damage Evolution of an Isotropic Heterogeneous Rock with a Pre-Existing Surface Flaw under Uniaxial Compression
Authors: S. Mondal, L. M. Olsen-Kettle, L. Gross
Abstract:
Fracture propagation and damage evolution are extremely important for many industrial applications including mining industry, composite materials, earthquake simulations, hydraulic fracturing. The influence of pre-existing flaws and rock heterogeneity on the processes and mechanisms of rock fracture has important ramifications in many mining and reservoir engineering applications. We simulate the damage evolution and fracture propagation in an isotropic sandstone specimen containing a pre-existing 3-D surface flaw in different configurations under uniaxial compression. We apply a damage model based on the unified strength theory and solve the solid deformation and damage evolution equations using the Finite Element Method (FEM) with tetrahedron elements on unstructured meshes through the simulation software, eScript. Unstructured meshes provide higher geometrical flexibility and allow a more accurate way to model the varying flaw depth, angle, and length through locally adapted FEM meshes. The heterogeneity of rock is considered by initializing material properties using a Weibull distribution sampled over a cubic grid. In our model, we introduce a length scale related to the rock heterogeneity which is independent of the mesh size. We investigate the effect of parameters including the heterogeneity of the elastic moduli and geometry of the single flaw in the stress strain response. The generation of three typical surface cracking patterns, called wing cracks, anti-wing cracks and far-field cracks were identified, and these depend on the geometry of the pre-existing surface flaw. This model results help to advance our understanding of fracture and damage growth in heterogeneous rock with the aim to develop fracture simulators for different industry applications.Keywords: finite element method, heterogeneity, isotropic damage, uniaxial compression
Procedia PDF Downloads 218