Search results for: MR image of brain
3548 Obsessive-Compulsive Disorder: Development of Demand-Controlled Deep Brain Stimulation with Methods from Stochastic Phase Resetting
Authors: Mahdi Akhbardeh
Abstract:
Synchronization of neuronal firing is a hallmark of several neurological diseases. Recently, stimulation techniques have been developed which make it possible to desynchronize oscillatory neuronal activity in a mild and effective way, without suppressing the neurons' firing. As yet, these techniques are being used to establish demand-controlled deep brain stimulation (DBS) techniques for the therapy of movement disorders like severe Parkinson's disease or essential tremor. We here present a first conceptualization suggesting that the nucleus accumbens is a promising target for the standard, that is, permanent high-frequency, DBS in patients with severe and chronic obsessive-compulsive disorder (OCD). In addition, we explain how demand-controlled DBS techniques may be applied to the therapy of OCD in those cases that are refractory to behavioral therapies and pharmacological treatment.Keywords: stereotactic neurosurgery, deep brain stimulation, obsessive-compulsive disorder, phase resetting
Procedia PDF Downloads 5123547 Meteosat Second Generation Image Compression Based on the Radon Transform and Linear Predictive Coding: Comparison and Performance
Authors: Cherifi Mehdi, Lahdir Mourad, Ameur Soltane
Abstract:
Image compression is used to reduce the number of bits required to represent an image. The Meteosat Second Generation satellite (MSG) allows the acquisition of 12 image files every 15 minutes. Which results a large databases sizes. The transform selected in the images compression should contribute to reduce the data representing the images. The Radon transform retrieves the Radon points that represent the sum of the pixels in a given angle for each direction. Linear predictive coding (LPC) with filtering provides a good decorrelation of Radon points using a Predictor constitute by the Symmetric Nearest Neighbor filter (SNN) coefficients, which result losses during decompression. Finally, Run Length Coding (RLC) gives us a high and fixed compression ratio regardless of the input image. In this paper, a novel image compression method based on the Radon transform and linear predictive coding (LPC) for MSG images is proposed. MSG image compression based on the Radon transform and the LPC provides a good compromise between compression and quality of reconstruction. A comparison of our method with other whose two based on DCT and one on DWT bi-orthogonal filtering is evaluated to show the power of the Radon transform in its resistibility against the quantization noise and to evaluate the performance of our method. Evaluation criteria like PSNR and the compression ratio allows showing the efficiency of our method of compression.Keywords: image compression, radon transform, linear predictive coding (LPC), run lengthcoding (RLC), meteosat second generation (MSG)
Procedia PDF Downloads 4223546 Wavelet Coefficients Based on Orthogonal Matching Pursuit (OMP) Based Filtering for Remotely Sensed Images
Authors: Ramandeep Kaur, Kamaljit Kaur
Abstract:
In recent years, the technology of the remote sensing is growing rapidly. Image enhancement is one of most commonly used of image processing operations. Noise reduction plays very important role in digital image processing and various technologies have been located ahead to reduce the noise of the remote sensing images. The noise reduction using wavelet coefficients based on Orthogonal Matching Pursuit (OMP) has less consequences on the edges than available methods but this is not as establish in edge preservation techniques. So in this paper we provide a new technique minimum patch based noise reduction OMP which reduce the noise from an image and used edge preservation patch which preserve the edges of the image and presents the superior results than existing OMP technique. Experimental results show that the proposed minimum patch approach outperforms over existing techniques.Keywords: image denoising, minimum patch, OMP, WCOMP
Procedia PDF Downloads 3903545 Hyperspectral Image Classification Using Tree Search Algorithm
Authors: Shreya Pare, Parvin Akhter
Abstract:
Remotely sensing image classification becomes a very challenging task owing to the high dimensionality of hyperspectral images. The pixel-wise classification methods fail to take the spatial structure information of an image. Therefore, to improve the performance of classification, spatial information can be integrated into the classification process. In this paper, the multilevel thresholding algorithm based on a modified fuzzy entropy function is used to perform the segmentation of hyperspectral images. The fuzzy parameters of the MFE function have been optimized by using a new meta-heuristic algorithm based on the Tree-Search algorithm. The segmented image is classified by a large distribution machine (LDM) classifier. Experimental results are shown on a hyperspectral image dataset. The experimental outputs indicate that the proposed technique (MFE-TSA-LDM) achieves much higher classification accuracy for hyperspectral images when compared to state-of-art classification techniques. The proposed algorithm provides accurate segmentation and classification maps, thus becoming more suitable for image classification with large spatial structures.Keywords: classification, hyperspectral images, large distribution margin, modified fuzzy entropy function, multilevel thresholding, tree search algorithm, hyperspectral image classification using tree search algorithm
Procedia PDF Downloads 1803544 Ice Load Measurements on Known Structures Using Image Processing Methods
Authors: Azam Fazelpour, Saeed R. Dehghani, Vlastimil Masek, Yuri S. Muzychka
Abstract:
This study employs a method based on image analyses and structure information to detect accumulated ice on known structures. The icing of marine vessels and offshore structures causes significant reductions in their efficiency and creates unsafe working conditions. Image processing methods are used to measure ice loads automatically. Most image processing methods are developed based on captured image analyses. In this method, ice loads on structures are calculated by defining structure coordinates and processing captured images. A pyramidal structure is designed with nine cylindrical bars as the known structure of experimental setup. Unsymmetrical ice accumulated on the structure in a cold room represents the actual case of experiments. Camera intrinsic and extrinsic parameters are used to define structure coordinates in the image coordinate system according to the camera location and angle. The thresholding method is applied to capture images and detect iced structures in a binary image. The ice thickness of each element is calculated by combining the information from the binary image and the structure coordinate. Averaging ice diameters from different camera views obtains ice thicknesses of structure elements. Comparison between ice load measurements using this method and the actual ice loads shows positive correlations with an acceptable range of error. The method can be applied to complex structures defining structure and camera coordinates.Keywords: camera calibration, ice detection, ice load measurements, image processing
Procedia PDF Downloads 3683543 Arbitrarily Shaped Blur Kernel Estimation for Single Image Blind Deblurring
Authors: Aftab Khan, Ashfaq Khan
Abstract:
The research paper focuses on an interesting challenge faced in Blind Image Deblurring (BID). It relates to the estimation of arbitrarily shaped or non-parametric Point Spread Functions (PSFs) of motion blur caused by camera handshake. These PSFs exhibit much more complex shapes than their parametric counterparts and deblurring in this case requires intricate ways to estimate the blur and effectively remove it. This research work introduces a novel blind deblurring scheme visualized for deblurring images corrupted by arbitrarily shaped PSFs. It is based on Genetic Algorithm (GA) and utilises the Blind/Reference-less Image Spatial QUality Evaluator (BRISQUE) measure as the fitness function for arbitrarily shaped PSF estimation. The proposed BID scheme has been compared with other single image motion deblurring schemes as benchmark. Validation has been carried out on various blurred images. Results of both benchmark and real images are presented. Non-reference image quality measures were used to quantify the deblurring results. For benchmark images, the proposed BID scheme using BRISQUE converges in close vicinity of the original blurring functions.Keywords: blind deconvolution, blind image deblurring, genetic algorithm, image restoration, image quality measures
Procedia PDF Downloads 4443542 The Use of Tourism Destination Management for Image Branding as a Preferable Choice of Foreign Policy
Authors: Mehtab Alam, Mudiarasan Kuppusamy
Abstract:
Image branding is the prominent and well-guided phenomena of managing tourism destinations. It examines the image of cities forming as brand identity. Transformation of cities into tourist destinations is obligatory for the current management practices to be used for foreign policy. The research considers the features of perception, destination accommodation, destination quality, traveler revisit, destination information system, and behavioral image for tourism destination management. Using the quantitative and qualitative research methodology, the objective is to examine and investigate the opportunities for destination branding. It investigates the features and management of tourism destinations in Abbottabad city of Pakistan through SPSS and NVivo 12 software. The prospective outlook of the results and coding reflects the significant contribution of integrated destination management for image branding, where Abbottabad has the potential to become a destination city. The positive impact of branding integrates tourism management as it is fulfilling travelers’ requirements to influence the choice of destination for innovative foreign policy.Keywords: image branding, destination management, tourism, foreign policy, innovative
Procedia PDF Downloads 963541 A Novel Image Steganography Scheme Based on Mandelbrot Fractal
Authors: Adnan H. M. Al-Helali, Hamza A. Ali
Abstract:
Growth of censorship and pervasive monitoring on the Internet, Steganography arises as a new means of achieving secret communication. Steganography is the art and science of embedding information within electronic media used by common applications and systems. Generally, hiding information of multimedia within images will change some of their properties that may introduce few degradation or unusual characteristics. This paper presents a new image steganography approach for hiding information of multimedia (images, text, and audio) using generated Mandelbrot Fractal image as a cover. The proposed technique has been extensively tested with different images. The results show that the method is a very secure means of hiding and retrieving steganographic information. Experimental results demonstrate that an effective improvement in the values of the Peak Signal to Noise Ratio (PSNR), Mean Square Error (MSE), Normalized Cross Correlation (NCC) and Image Fidelity (IF) over the previous techniques.Keywords: fractal image, information hiding, Mandelbrot et fractal, steganography
Procedia PDF Downloads 5413540 The Effects of Turkish Soap Operas on the Image of Turkey in the Middle Europe
Authors: Yakup Uslu
Abstract:
The purpose of this study is to reveal how the Turkish soap operas effect the image of Turkey in the Middle Europe. In last decades, Turkish soap operas have been shown on TV in the middle European countries. A research based on face to face questioning was done in February and June 2014 in Slovakia and the Czech Republic. The participants were seven women and six men from the Czech Republic, 8 women and 6 men from Slovakia. According to results of the research, the Turkish image has been changed substantially after broadcasting the soap operas. In general, the Turkish soap operas have had positive effects on the image of Turkey. The other result of the study shows that most of the people in Slovakia and Czech Republic want to come to Turkey as tourists and want to visit the places where the soap operas have been shooted.Keywords: Turkish soap operas, image of Turkey, Slovakia, Czech Republic
Procedia PDF Downloads 4933539 The Effect of Extremely Low Frequency Magnetic Field on Rats Brain
Authors: Omar Abdalla, Abdelfatah Ahmed, Ahmed Mustafa, Abdelazem Eldouma
Abstract:
The purpose of this study is evaluating the effect of extremely low frequency magnetic field on Waster rats brain. The number of rats used in this study were 25, which were divided into five groups, each group containing five rats as follows: Group 1: The control group which was not exposed to energized field; Group 2: Rats were exposed to a magnetic field with an intensity of 0.6 mT (2 hours/day); Group 3: Rats were exposed to a magnetic field of 1.2 mT (2 hours/day); Group4: Rats were exposed to a magnetic field of 1.8 mT (2 hours/day); Group 5: Rats were exposed to a magnetic field of 2.4 mT (2 hours/day) and all groups were exposed for seven days, by designing a maze and calculating the time average for arriving to the decoy at special conditions. We found the time average before exposure for the all groups was G2=330 s, G3=172 s, G4=500 s and G5=174 s, respectively. We exposed all groups to ELF-MF and measured the time and we found: G2=465 s, G3=388 s, G4=501 s, and G5=442 s. It was observed that the time average increased directly with field strength. Histological samples of frontal lop of brain for all groups were taken and we found lesion, atrophy, empty vacuoles and disorder choroid plexus at frontal lope of brain. And finally we observed the disorder of choroid plexus in histological results and Alzheimer's symptoms increase when the magnetic field increases.Keywords: nonionizing radiation, biophysics, magnetic field, shrinkage
Procedia PDF Downloads 5463538 Analysis of Facial Expressions with Amazon Rekognition
Authors: Kashika P. H.
Abstract:
The development of computer vision systems has been greatly aided by the efficient and precise detection of images and videos. Although the ability to recognize and comprehend images is a strength of the human brain, employing technology to tackle this issue is exceedingly challenging. In the past few years, the use of Deep Learning algorithms to treat object detection has dramatically expanded. One of the key issues in the realm of image recognition is the recognition and detection of certain notable people from randomly acquired photographs. Face recognition uses a way to identify, assess, and compare faces for a variety of purposes, including user identification, user counting, and classification. With the aid of an accessible deep learning-based API, this article intends to recognize various faces of people and their facial descriptors more accurately. The purpose of this study is to locate suitable individuals and deliver accurate information about them by using the Amazon Rekognition system to identify a specific human from a vast image dataset. We have chosen the Amazon Rekognition system, which allows for more accurate face analysis, face comparison, and face search, to tackle this difficulty.Keywords: Amazon rekognition, API, deep learning, computer vision, face detection, text detection
Procedia PDF Downloads 1073537 Analysis of Matching Pursuit Features of EEG Signal for Mental Tasks Classification
Authors: Zin Mar Lwin
Abstract:
Brain Computer Interface (BCI) Systems have developed for people who suffer from severe motor disabilities and challenging to communicate with their environment. BCI allows them for communication by a non-muscular way. For communication between human and computer, BCI uses a type of signal called Electroencephalogram (EEG) signal which is recorded from the human„s brain by means of an electrode. The electroencephalogram (EEG) signal is an important information source for knowing brain processes for the non-invasive BCI. Translating human‟s thought, it needs to classify acquired EEG signal accurately. This paper proposed a typical EEG signal classification system which experiments the Dataset from “Purdue University.” Independent Component Analysis (ICA) method via EEGLab Tools for removing artifacts which are caused by eye blinks. For features extraction, the Time and Frequency features of non-stationary EEG signals are extracted by Matching Pursuit (MP) algorithm. The classification of one of five mental tasks is performed by Multi_Class Support Vector Machine (SVM). For SVMs, the comparisons have been carried out for both 1-against-1 and 1-against-all methods. Procedia PDF Downloads 2793536 A Systematic Review on Assessing the Prevalence, Types, and Predictors of Sleep Disturbances in Childhood Traumatic Brain Injury
Authors: E. Botchway, C. Godfrey, V. Anderson, C. Catroppa
Abstract:
Introduction: Sleep disturbances are common after childhood traumatic brain injury (TBI). This systematic review aimed to assess the prevalence, types, and predictors of sleep disturbances in childhood TBI. Methods: Medline, Pubmed, PsychInfo, Web of Science, and EMBASE databases were searched. Out of the 547 articles assessed, 15 met selection criteria for this review. Results: Sleep disturbances were common in children and adolescents with TBI, irrespective of injury severity. Excessive daytime sleepiness and insomnia were the most common sleep disturbances reported. Sleep disturbance was predicted by sex, injury severity, pre-existing sleep disturbances, younger age, pain, and high body mass index. Conclusions: Sleep disturbances are highly prevalent in childhood TBI, regardless of the injury severity. Routine assessment of sleep in survivors of childhood TBI is recommended.Keywords: traumatic brain injury, sleep diatiurbances, childhood, systematic review
Procedia PDF Downloads 3913535 A Novel Image Steganography Method Based on Mandelbrot Fractal
Authors: Adnan H. M. Al-Helali, Hamza A. Ali
Abstract:
The growth of censorship and pervasive monitoring on the Internet, Steganography arises as a new means of achieving secret communication. Steganography is the art and science of embedding information within electronic media used by common applications and systems. Generally, hiding information of multimedia within images will change some of their properties that may introduce few degradation or unusual characteristics. This paper presents a new image steganography approach for hiding information of multimedia (images, text, and audio) using generated Mandelbrot Fractal image as a cover. The proposed technique has been extensively tested with different images. The results show that the method is a very secure means of hiding and retrieving steganographic information. Experimental results demonstrate that an effective improvement in the values of the Peak Signal to Noise Ratio (PSNR), Mean Square Error (MSE), Normalized Cross Correlation (NCC), and Image Fidelity (IF) over the pervious techniques.Keywords: fractal image, information hiding, Mandelbrot set fractal, steganography
Procedia PDF Downloads 6203534 Structural Protein-Protein Interactions Network of Breast Cancer Lung and Brain Metastasis Corroborates Conformational Changes of Proteins Lead to Different Signaling
Authors: Farideh Halakou, Emel Sen, Attila Gursoy, Ozlem Keskin
Abstract:
Protein–Protein Interactions (PPIs) mediate major biological processes in living cells. The study of PPIs as networks and analyze the network properties contribute to the identification of genes and proteins associated with diseases. In this study, we have created the sub-networks of brain and lung metastasis from primary tumor in breast cancer. To do so, we used seed genes known to cause metastasis, and produced their interactions through a network-topology based prioritization method named GUILDify. In order to have the experimental support for the sub-networks, we further curated them using STRING database. We proceeded by modeling structures for the interactions lacking complex forms in Protein Data Bank (PDB). The functional enrichment analysis shows that KEGG pathways associated with the immune system and infectious diseases, particularly the chemokine signaling pathway, are important for lung metastasis. On the other hand, pathways related to genetic information processing are more involved in brain metastasis. The structural analyses of the sub-networks vividly demonstrated their difference in terms of using specific interfaces in lung and brain metastasis. Furthermore, the topological analysis identified genes such as RPL5, MMP2, CCR5 and DPP4, which are already known to be associated with lung or brain metastasis. Additionally, we found 6 and 9 putative genes that are specific for lung and brain metastasis, respectively. Our analysis suggests that variations in genes and pathways contributing to these different breast metastasis types may arise due to change in tissue microenvironment. To show the benefits of using structural PPI networks instead of traditional node and edge presentation, we inspect two case studies showing the mutual exclusiveness of interactions and effects of mutations on protein conformation which lead to different signaling.Keywords: breast cancer, metastasis, PPI networks, protein conformational changes
Procedia PDF Downloads 2453533 A General Framework for Knowledge Discovery from Echocardiographic and Natural Images
Authors: S. Nandagopalan, N. Pradeep
Abstract:
The aim of this paper is to propose a general framework for storing, analyzing, and extracting knowledge from two-dimensional echocardiographic images, color Doppler images, non-medical images, and general data sets. A number of high performance data mining algorithms have been used to carry out this task. Our framework encompasses four layers namely physical storage, object identification, knowledge discovery, user level. Techniques such as active contour model to identify the cardiac chambers, pixel classification to segment the color Doppler echo image, universal model for image retrieval, Bayesian method for classification, parallel algorithms for image segmentation, etc., were employed. Using the feature vector database that have been efficiently constructed, one can perform various data mining tasks like clustering, classification, etc. with efficient algorithms along with image mining given a query image. All these facilities are included in the framework that is supported by state-of-the-art user interface (UI). The algorithms were tested with actual patient data and Coral image database and the results show that their performance is better than the results reported already.Keywords: active contour, Bayesian, echocardiographic image, feature vector
Procedia PDF Downloads 4453532 Destination Image: A Case Study of International Tourists Who Revisit Thailand
Authors: Aticha Kwaengsopha, Kevin Wongleedee
Abstract:
Destination image can cause an increase and decrease in the growth rate of international tourists visiting Thailand. This paper drew upon data collected from an international tourist survey conducted in Bangkok, Thailand during January to March of 2014. The survey was structured primarily to obtain international tourists’ opinions towards the importance of destination image factors that they encountered during their trip in Thailand. A total of 200 respondents were elicited as data input for mean, SD, and t-test. The findings revealed that the overall level of importance of these factors was not very high. The findings also revealed the three most important factors as tourist experience, interesting place, and pleasing destination. In addition, the result for t-test revealed that there was not much effect from gender differences in opinions of the level concerning importance for destination image factors.Keywords: destination image, international tourists, Thailand, revisit
Procedia PDF Downloads 3373531 An Experiment Research on the Effect of Brain-Break in the Classroom on Elementary School Students’ Selective Attention
Authors: Hui Liu, Xiaozan Wang, Jiarong Zhong, Ziming Shao
Abstract:
Introduction: Related research shows that students don’t concentrate on teacher’s speaking in the classroom. The d2 attention test is a time-limited test about selective attention. The d2 attention test can be used to evaluate individual selective attention. Purpose: To use the d2 attention test tool to measure the difference between the attention level of the experimental class and the control class before and after Brain-Break and to explore the effect of Brain-Break in the classroom on students' selective attention. Methods: According to the principle of no difference in pre-test data, two classes in the fourth- grade of Shenzhen Longhua Central Primary School were selected. After 20 minutes of class in the third class in the morning and the third class in the afternoon, about 3-minute Brain-Break intervention was performed in the experimental class for 10 weeks. The normal class in the control class did not intervene. Before and after the experiment, the d2 attention test tool was used to test the attention level of the two-class students. The paired sample t-test and independent sample t-test in SPSS 23.0 was used to test the change in the attention level of the two-class classes around 10 weeks. This article only presents results with significant differences. Results: The independent sample t-test results showed that after ten-week of Brain-Break, the missed errors (E1 t = -2.165 p = 0.042), concentration performance (CP t = 1.866 p = 0.05), and the degree of omissions (Epercent t = -2.375 p = 0.029) in experimental class showed significant differences compared with control class. The students’ error level decreased and the concentration increased. Conclusions: Adding Brain-Break interventions in the classroom can effectively improve the attention level of fourth-grade primary school students to a certain extent, especially can improve the concentration of attention and decrease the error rate in the tasks. The new sport's learning model is worth promotingKeywords: cultural class, micromotor, attention, D2 test
Procedia PDF Downloads 1343530 Image Features Comparison-Based Position Estimation Method Using a Camera Sensor
Authors: Jinseon Song, Yongwan Park
Abstract:
In this paper, propose method that can user’s position that based on database is built from single camera. Previous positioning calculate distance by arrival-time of signal like GPS (Global Positioning System), RF(Radio Frequency). However, these previous method have weakness because these have large error range according to signal interference. Method for solution estimate position by camera sensor. But, signal camera is difficult to obtain relative position data and stereo camera is difficult to provide real-time position data because of a lot of image data, too. First of all, in this research we build image database at space that able to provide positioning service with single camera. Next, we judge similarity through image matching of database image and transmission image from user. Finally, we decide position of user through position of most similar database image. For verification of propose method, we experiment at real-environment like indoor and outdoor. Propose method is wide positioning range and this method can verify not only position of user but also direction.Keywords: positioning, distance, camera, features, SURF(Speed-Up Robust Features), database, estimation
Procedia PDF Downloads 3503529 Neuromarketing: Discovering the Somathyc Marker in the Consumer´s Brain
Authors: Mikel Alonso López, María Francisca Blasco López, Víctor Molero Ayala
Abstract:
The present study explains the somatic marker theory of Antonio Damasio, which indicates that when making a decision, the stored or possible future scenarios (future memory) images allow people to feel for a moment what would happen when they make a choice, and how this is emotionally marked. This process can be conscious or unconscious. The development of new Neuromarketing techniques such as functional magnetic resonance imaging (fMRI), carries a greater understanding of how the brain functions and consumer behavior. In the results observed in different studies using fMRI, the evidence suggests that the somatic marker and future memories influence the decision-making process, adding a positive or negative emotional component to the options. This would mean that all decisions would involve a present emotional component, with a rational cost-benefit analysis that can be performed later.Keywords: emotions, decision making, somatic marker, consumer´s brain
Procedia PDF Downloads 4093528 A Robotic Rehabilitation Arm Driven by Somatosensory Brain-Computer Interface
Authors: Jiewei Li, Hongyan Cui, Chunqi Chang, Yong Hu
Abstract:
It was expected to benefit patient with hemiparesis after stroke by extensive arm rehabilitation, to partially regain forearm and hand function. This paper propose a robotic rehabilitation arm in assisting the hemiparetic patient to learn new ways of using and moving their weak arms. In this study, the robotic arm was driven by a somatosensory stimulated brain computer interface (BCI), which is a new modality BCI. The use of somatosensory stimulation is not only an input for BCI, but also a electrical stimulation for treatment of hemiparesis to strengthen the arm and improve its range of motion. A trial of this robotic rehabilitation arm was performed in a stroke patient with pure motor hemiparesis. The initial trial showed a promising result from the patient with great motivation and function improvement. It suggests that robotic rehabilitation arm driven by somatosensory BCI can enhance the rehabilitation performance and progress for hemiparetic patients after stroke.Keywords: robotic rehabilitation arm, brain computer interface (BCI), hemiparesis, stroke, somatosensory stimulation
Procedia PDF Downloads 3903527 A New Approach to Image Stitching of Radiographic Images
Authors: Somaya Adwan, Rasha Majed, Lamya'a Majed, Hamzah Arof
Abstract:
In order to produce images with whole body parts, X-ray of different portions of the body parts is assembled using image stitching methods. A new method for image stitching that exploits mutually feature based method and direct based method to identify and merge pairs of X-ray medical images is presented in this paper. The performance of the proposed method based on this hybrid approach is investigated in this paper. The ability of the proposed method to stitch and merge the overlapping pairs of images is demonstrated. Our proposed method display comparable if not superior performance to other feature based methods that are mentioned in the literature on the standard databases. These results are promising and demonstrate the potential of the proposed method for further development to tackle more advanced stitching problems.Keywords: image stitching, direct based method, panoramic image, X-ray
Procedia PDF Downloads 5433526 A Comparison of Image Data Representations for Local Stereo Matching
Authors: André Smith, Amr Abdel-Dayem
Abstract:
The stereo matching problem, while having been present for several decades, continues to be an active area of research. The goal of this research is to find correspondences between elements found in a set of stereoscopic images. With these pairings, it is possible to infer the distance of objects within a scene, relative to the observer. Advancements in this field have led to experimentations with various techniques, from graph-cut energy minimization to artificial neural networks. At the basis of these techniques is a cost function, which is used to evaluate the likelihood of a particular match between points in each image. While at its core, the cost is based on comparing the image pixel data; there is a general lack of consistency as to what image data representation to use. This paper presents an experimental analysis to compare the effectiveness of more common image data representations. The goal is to determine the effectiveness of these data representations to reduce the cost for the correct correspondence relative to other possible matches.Keywords: colour data, local stereo matching, stereo correspondence, disparity map
Procedia PDF Downloads 3713525 A Network of Nouns and Their Features :A Neurocomputational Study
Authors: Skiker Kaoutar, Mounir Maouene
Abstract:
Neuroimaging studies indicate that a large fronto-parieto-temporal network support nouns and their features, with some areas store semantic knowledge (visual, auditory, olfactory, gustatory,…), other areas store lexical representation and other areas are implicated in general semantic processing. However, it is not well understood how this fronto-parieto-temporal network can be modulated by different semantic tasks and different semantic relations between nouns. In this study, we combine a behavioral semantic network, functional MRI studies involving object’s related nouns and brain network studies to explain how different semantic tasks and different semantic relations between nouns can modulate the activity within the brain network of nouns and their features. We first describe how nouns and their features form a large scale brain network. For this end, we examine the connectivities between areas recruited during the processing of nouns to know which configurations of interaction areas are possible. We can thus identify if, for example, brain areas that store semantic knowledge communicate via functional/structural links with areas that store lexical representations. Second, we examine how this network is modulated by different semantic tasks involving nouns and finally, we examine how category specific activation may result from the semantic relations among nouns. The results indicate that brain network of nouns and their features is highly modulated and flexible by different semantic tasks and semantic relations. At the end, this study can be used as a guide to help neurosientifics to interpret the pattern of fMRI activations detected in the semantic processing of nouns. Specifically; this study can help to interpret the category specific activations observed extensively in a large number of neuroimaging studies and clinical studies.Keywords: nouns, features, network, category specificity
Procedia PDF Downloads 5213524 Local Texture and Global Color Descriptors for Content Based Image Retrieval
Authors: Tajinder Kaur, Anu Bala
Abstract:
An image retrieval system is a computer system for browsing, searching, and retrieving images from a large database of digital images a new algorithm meant for content-based image retrieval (CBIR) is presented in this paper. The proposed method combines the color and texture features which are extracted the global and local information of the image. The local texture feature is extracted by using local binary patterns (LBP), which are evaluated by taking into consideration of local difference between the center pixel and its neighbors. For the global color feature, the color histogram (CH) is used which is calculated by RGB (red, green, and blue) spaces separately. In this paper, the combination of color and texture features are proposed for content-based image retrieval. The performance of the proposed method is tested on Corel 1000 database which is the natural database. The results after being investigated show a significant improvement in terms of their evaluation measures as compared to LBP and CH.Keywords: color, texture, feature extraction, local binary patterns, image retrieval
Procedia PDF Downloads 3683523 Correlation between Potential Intelligence Explanatory Study in the Perspective of Multiple Intelligence Theory by Using Dermatoglyphics and Culture Approaches
Authors: Efnie Indrianie
Abstract:
Potential Intelligence constitutes one essential factor in every individual. This intelligence can be a provision for the development of Performance Intelligence if it is supported by surrounding environment. Fingerprint analysis is a method in recognizing this Potential Intelligence. This method is grounded on pattern and number of finger print outlines that are assumed symmetrical with the number of nerves in our brain, in which these areas have their own function among another. These brain’s functions are later being transposed into intelligence components in accordance with the Multiple Intelligences theory. This research tested the correlation between Potential Intelligence and the components of its Performance Intelligence. Statistical test results that used Pearson correlation showed that five components of Potential Intelligence correlated with Performance Intelligence. Those five components are Logic-Math, Logic, Linguistic, Music, Kinesthetic, and Intrapersonal. Also, this research indicated that cultural factor had a big role in shaping intelligence.Keywords: potential intelligence, performance intelligence, multiple intelligences, fingerprint, environment, brain
Procedia PDF Downloads 5373522 Efficient Corporate Image as a Strategy for Enhancing Profitability in Hotels
Authors: Lucila T. Magalong
Abstract:
The hotel industry has been using their corporate image and reputation to maintain service quality, customer satisfaction, and customer loyalty and to leverage themselves against competitors and facilitate their growth strategies. With the increasing pressure to perform, hotels have even created hybrid service strategy to fight in the niche markets across pricing and level-off service parameters.Keywords: corporate image, hotel industry, service quality, customer expectations
Procedia PDF Downloads 4653521 Multi-Sensor Image Fusion for Visible and Infrared Thermal Images
Authors: Amit Kumar Happy
Abstract:
This paper is motivated by the importance of multi-sensor image fusion with a specific focus on infrared (IR) and visual image (VI) fusion for various applications, including military reconnaissance. Image fusion can be defined as the process of combining two or more source images into a single composite image with extended information content that improves visual perception or feature extraction. These images can be from different modalities like visible camera & IR thermal imager. While visible images are captured by reflected radiations in the visible spectrum, the thermal images are formed from thermal radiation (infrared) that may be reflected or self-emitted. A digital color camera captures the visible source image, and a thermal infrared camera acquires the thermal source image. In this paper, some image fusion algorithms based upon multi-scale transform (MST) and region-based selection rule with consistency verification have been proposed and presented. This research includes the implementation of the proposed image fusion algorithm in MATLAB along with a comparative analysis to decide the optimum number of levels for MST and the coefficient fusion rule. The results are presented, and several commonly used evaluation metrics are used to assess the suggested method's validity. Experiments show that the proposed approach is capable of producing good fusion results. While deploying our image fusion algorithm approaches, we observe several challenges from the popular image fusion methods. While high computational cost and complex processing steps of image fusion algorithms provide accurate fused results, they also make it hard to become deployed in systems and applications that require a real-time operation, high flexibility, and low computation ability. So, the methods presented in this paper offer good results with minimum time complexity.Keywords: image fusion, IR thermal imager, multi-sensor, multi-scale transform
Procedia PDF Downloads 1153520 Analysis of Patterns in TV Commercials That Recognize NGO Image
Authors: Areerut Jaipadub
Abstract:
The purpose of this research is to analyze the pattern of television commercials and how they encourage non-governmental organizations to build their image in Thailand. It realizes how public relations can impact an organization's image. It is a truth that bad public relations management can cause hurt a reputation. On the other hand, a very small amount of work in public relations helps your organization to be recognized broadly and eventually accepted even wider. The main idea in this paper is to study and analyze patterns of television commercials that could impact non-governmental organization's images in a greater way. This research uses questionnaires and content analysis to summarize results. The findings show the aspects of how patterns of television commercials that are suited to non-governmental organization work in Thailand. It will be useful for any non-governmental organization that wishes to build their image through television commercials and also for further work based on this research.Keywords: television commercial (TVC), organization image, non-governmental organization (NGO), public relation
Procedia PDF Downloads 2863519 Using Self Organizing Feature Maps for Classification in RGB Images
Authors: Hassan Masoumi, Ahad Salimi, Nazanin Barhemmat, Babak Gholami
Abstract:
Artificial neural networks have gained a lot of interest as empirical models for their powerful representational capacity, multi input and output mapping characteristics. In fact, most feed-forward networks with nonlinear nodal functions have been proved to be universal approximates. In this paper, we propose a new supervised method for color image classification based on self organizing feature maps (SOFM). This algorithm is based on competitive learning. The method partitions the input space using self-organizing feature maps to introduce the concept of local neighborhoods. Our image classification system entered into RGB image. Experiments with simulated data showed that separability of classes increased when increasing training time. In additional, the result shows proposed algorithms are effective for color image classification.Keywords: classification, SOFM algorithm, neural network, neighborhood, RGB image
Procedia PDF Downloads 482