Search results for: Corey Clay
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 617

Search results for: Corey Clay

287 Beyond Cooking and Food Preparation: Examining the Material Culture of Medieval Cuisine in the Middle East

Authors: Shurouq Munzer

Abstract:

This study investigates methods for inferring the presence of cooking activity at an archaeological site through the study of cooking tools, contextual evidence, and food preparation techniques. This paper examines the patterns of cooking utensils and categorizes the morphological features as well as the types of clay utilized in manufacturing such cooking utensils. Despite challenges in accessing such evidence due to its limited availability in books and excavations. The excavation results provide the point for evaluating progress in daily life and underscore the cultural, social, and economic significance of studying cooking activity at archaeological sites within their archaeological contexts.

Keywords: coarse ware, cooking utensils, ḥisba, waqif, muḥtasib, foodways, practice, cuisine, food preparation

Procedia PDF Downloads 75
286 Geotechnical Characteristics of Miocenemarl in the Region of Medea North-South Highway, Algeria

Authors: Y. Yongli, M. H. Aissa

Abstract:

The purpose of this paper aims for a geotechnical analysis based on experimental physical and mechanical characteristics of Miocene marl situated at Medea region in Algeria. More than 150 soil samples were taken in the investigation part of the North-South Highway which extends over than 53 km from Chiffa in the North to Berrouaghia in the South of Algeria. The analysis of data in terms of Atterberg limits, plasticity index, and clay content reflects an acceptable correlation justified by a high coefficient of regression which was compared with the previous works in the region. Finally, approximated equations that serve as a guideline for geotechnical design locally have been suggested.

Keywords: correlation, geotechnical properties, miocene marl, north-south highway

Procedia PDF Downloads 297
285 Metagenomic Assessment of the Effects of Genetically Modified Crops on Microbial Ecology and Physicochemical Properties of Soil

Authors: Falana Yetunde Olaitan, Ijah U. J. J, Solebo Shakirat O.

Abstract:

Genetically modified crops are already phenomenally successful and are grown worldwide in more than eighteen countries on more than 67 million hectares. Nigeria, in October 2018, approved Bacillus thuringiensis (Bt) cotton and maize; therefore, the need to carry out environmental risk assessment studies. A total of 15 4L octagonal ceramic pots were filled with 4kg of soil and placed on the bench in 2 rows of 10 pots each and the 3rd row of 5 pots, 1st-row pots were used to plant GM cotton seeds, while the 2nd-row pots were used for non-GM cotton seeds and the 3rd row of 5 pots served as control, all in the screen house. Soil samples for metagenomic DNA extraction were collected at random and at the monthly interval after planting at a distance of 2mm from the plant’s root and at a depth of 10cm using a sterile spatula. Soil samples for physicochemical analysis were collected before planting and after harvesting the GM and non-GM crops as well as from the control soil. The DNA was extracted, quantified and sequenced; Sample 1A (DNA from GM cotton Soil at 1st interval) gave the lowest sequence read with 0.853M while sample 2B (DNA from GM cotton Soil at 2nd interval) gave the highest with 5.785M, others gave between 1.8M and 4.7M. The samples treatment were grouped into four, Group 1 (GM cotton soil from 1 to 3 intervals) had between 800,000 and 5,700,000 strains of microbes (SOM), Group 2 (non GM cotton soil from 1 to 3 intervals) had between 1,400,600 and 4,200,000 SOM, Group 3 (control soil) had between 900,000 and 3,600,000 SOM and Group 4 (initial soil) had between 3,700,000 and 4,000,000 SOM. The microbes observed were predominantly bacteria (including archaea), fungi, dark matter alongside protists and phages. The predominant bacterial groups were the Terrabacteria (Bacillus funiculus, Bacillus sp.), the Proteobacteria (Microvirga massiliensis, sphingomonas sp.) and the Archaea (Nitrososphaera sp.), while the fungi were Aspergillus fischeri and Fusarium falciforme. The comparative analysis between groups was done using JACCARD PERMANOVA beta diversity analysis at P-value not more than 0.76 and there was no significant pair found. The pH for initial, GM cotton, non-GM cotton and control soil were 6.28, 6.26, 7.25, 8.26 and the percentage moisture was 0.63, 0.78, 0.89 and 0.82, respectively, while the percentage Nitrogen was observed to be 17.79, 1.14, 1.10 and 0.56 respectively. Other parameters include, varying concentrations of Potassium (0.46, 1,284.47, 1,785.48, 1,252.83 mg/kg) and Phosphorus (18.76, 17.76, 16.87, 15.23 mg/kg) were recorded for the four treatments respectively. The soil consisted mainly of silt (32.09 to 34.66%) and clay (58.89 to 60.23%), reflecting the soil texture as silty – clay. The results were then tested with ANOVA at less than 0.05 P-value and no pair was found to be significant as well. The results suggest that the GM crops have no significant effect on microbial ecology and physicochemical properties of the soil and, in turn, no direct or indirect effects on human health.

Keywords: genetically modified crop, microbial ecology, physicochemical properties, metagenomics, DNA, soil

Procedia PDF Downloads 146
284 The Production of Reinforced Insulation Bricks out of the Concentration of Ganoderma lucidum Fungal Inoculums and Cement Paste

Authors: Jovie Esquivias Nicolas, Ron Aldrin Lontoc Austria, Crisabelle Belleza Bautista, Mariane Chiho Espinosa Bundalian, Owwen Kervy Del Rosario Castillo, Mary Angelyn Mercado Dela Cruz, Heinrich Theraja Recana De Luna, Chriscell Gipanao Eustaquio, Desiree Laine Lauz Gilbas, Jordan Ignacio Legaspi, Larah Denise David Madrid, Charles Linelle Malapote Mendoza, Hazel Maxine Manalad Reyes, Carl Justine Nabora Saberdo, Claire Mae Rendon Santos

Abstract:

In response to the global race in discovering the next advanced sustainable material that will reduce our ecological footprint, the researchers aimed to create a masonry unit which is competent in physical edifices and other constructional facets. From different proven researches, mycelium has been concluded that when dried can be used as a robust and waterproof building material that can be grown into explicit forms, thus reducing the processing requirements. Hypothesizing inclusive measures to attest fungi’s impressive structural qualities and absorbency, the researchers projected to perform comparative analyses in creating mycelium bricks from mushroom spores of G. lucidum. Three treatments were intended to classify the most ideal concentration of clay and substrate fixings. The substrate bags fixed with 30% clay and 70% mixings indicated highest numerical frequencies in terms of full occupation of fungal mycelia. Subsequently, sorted parts of white portions from the treatment were settled in a thermoplastic mold and burnt. Three proportional concentrations of cultivated substrate and cement were also prioritized to gather results of variation focused on the weights of the bricks in the Water Absorption Test and Durability Test. Fungal inoculums with solutions of cement showed small to moderate amounts of decrease and increase in load. This proves that the treatments did not show any significant difference when it comes to strength, efficiency and absorption capacity. Each of the concentration is equally valid and could be used in supporting the worldwide demands of creating numerous bricks while also taking into consideration the recovery of our nature.

Keywords: mycelium, fungi, fungal mycelia, durability test, water absorption test

Procedia PDF Downloads 136
283 Effect of Mineral Additives on Improving the Geotechnical Properties of Soils in Chief

Authors: Rabah Younes

Abstract:

The reduction of available land resources and the increased cout associated with the use of high quality materials have led to the need for local soils to be used in geotechnical construction, however; poor engineering properties of these soils pose difficulties for constructions project and need to be stabilized to improve their properties in other works unsuitable soils with low bearing capacity , high plasticity coupled with high instability are frequently encountered hence, there is a need to improve the physical and mechanical characteristics of these soils to make theme more suitable for construction this can be done by using different mechanical and chemical methods clayey soil stabilization has been practiced for sometime but mixing additives, such us cement, lime and fly ash to the soil to increase its strength.

Keywords: clay, soil stabilization, naturaln pozzolana, atterberg limits, compaction, compressive strength shear strength, curing

Procedia PDF Downloads 314
282 Undrained Bearing Capacity of Circular Foundations on two Layered Clays

Authors: S. Benmebarek, S. Benmoussa, N. Benmebarek

Abstract:

Natural soils are often deposited in layers. The estimation of the bearing capacity of the soil using conventional bearing capacity theory based on the properties of the upper layer introduces significant inaccuracies if the thickness of the top layer is comparable to the width of the foundation placed on the soil surface. In this paper, numerical computations using the FLAC code are reported to evaluate the two clay layers effect on the bearing capacity beneath rigid circular rough footing subject to axial static load. The computation results of the parametric study are used to illustrate the sensibility of the bearing capacity, the shape factor and the failure mechanisms to the layered strength and layered thickness.

Keywords: numerical modeling, circular footings, layered clays, bearing capacity, failure

Procedia PDF Downloads 497
281 Membranes for Direct Lithium Extraction (DLE)

Authors: Amir Razmjou, Elika Karbassi Yazdi

Abstract:

Several direct lithium extraction (DLE) technologies have been developed for Li extraction from different brines. Although laboratory studies showed that they can technically recover Li to 90%, challenges still remain in developing a sustainable process that can serve as a foundation for the lithium dependent low-carbon economy. There is a continuing quest for DLE technologies that do not need extensive pre-treatments, fewer materials, and have simplified extraction processes with high Li selectivity. Here, an overview of DLE technologies will be provided with an emphasis on the basic principles of the materials’ design for the development of membranes with nanochannels and nanopores with Li ion selectivity. We have used a variety of building blocks such as nano-clay, organic frameworks, Graphene/oxide, MXene, etc., to fabricate the membranes. Molecular dynamic simulation (MD) and density functional theory (DFT) were used to reveal new mechanisms by which high Li selectivity was obtained.

Keywords: lithium recovery, membrane, lithium selectivity, decarbonization

Procedia PDF Downloads 112
280 Developing of Ecological Internal Insulation Composite Boards for Innovative Retrofitting of Heritage Buildings

Authors: J. N. Nackler, K. Saleh Pascha, W. Winter

Abstract:

WHISCERS™ (Whole House In-Situ Carbon and Energy Reduction Solution) is an innovative process for Internal Wall Insulation (IWI) for energy-efficient retrofitting of heritage building, which uses laser measuring to determine the dimensions of a room, off-site insulation board cutting and rapid installation to complete the process. As part of a multinational investigation consortium the Austrian part adapted the WHISCERS system to local conditions of Vienna where most historical buildings have valuable stucco facades, precluding the application of an external insulation. The Austrian project contribution addresses the replacement of commonly used extruded polystyrene foam (XPS) with renewable materials such as wood and wood products to develop a more sustainable IWI system. As the timber industry is a major industry in Austria, a new innovative and more sustainable IWI solution could also open up new markets. The first approach of investigation was the Life Cycle Assessment (LCA) to define the performance of wood fibre board as insulation material in comparison to normally used XPS-boards. As one of the results the global-warming potential (GWP) of wood-fibre-board is 15 times less the equivalent to carbon dioxide while in the case of XPS it´s 72 times more. The hygrothermal simulation program WUFI was used to evaluate and simulate heat and moisture transport in multi-layer building components of the developed IWI solution. The results of the simulations prove in examined boundary conditions of selected representative brickwork constructions to be functional and usable without risk regarding vapour diffusion and liquid transport in proposed IWI. In a further stage three different solutions were developed and tested (1 - glued/mortared, 2 - with soft board, connected to wall with gypsum board as top layer, 3 - with soft board and clay board as top layer). All three solutions presents a flexible insulation layer out of wood fibre towards the existing wall, thus compensating irregularities of the wall surface. From first considerations at the beginning of the development phase, three different systems had been developed and optimized according to assembly technology and tested as small specimen in real object conditions. The built prototypes are monitored to detect performance and building physics problems and to validate the results of the computer simulation model. This paper illustrates the development and application of the Internal Wall Insulation system.

Keywords: internal insulation, wood fibre, hygrothermal simulations, monitoring, clay, condensate

Procedia PDF Downloads 219
279 Making Lightweight Concrete with Meerschaum

Authors: H. Gonen, M. Dogan

Abstract:

Meerschaum, which is found in the earth’s crust, is a white and clay like hydrous magnesium silicate. It has a wide area of use from production of carious ornaments to chemical industry. It has a white and irregular crystalline structure. It is wet and moist when extracted, which is a good form for processing. At drying phase, it gradually loses its moisture and becomes lighter and harder. In through-dry state, meerschaum is durable and floats on the water. After processing of meerschaum, A ratio between %15 to %40 of the amount becomes waste. This waste is usually kept in a dry-atmosphere which is isolated from environmental effects so that to be used right away when needed. In this study, use of meerschaum waste as aggregate in lightweight concrete is studied. Stress-strain diagrams for concrete with meerschaum aggregate are obtained. Then, stress-strain diagrams of lightweight concrete and concrete with regular aggregate are compared. It is concluded that meerschaum waste can be used in production of lightweight concrete.

Keywords: lightweight concrete, meerschaum, aggregate, sepiolite, stress-strain diagram

Procedia PDF Downloads 607
278 Simulation of Corn Yield in Carmen, North Cotabato, Philippines Using Aquacrop Model

Authors: Marilyn S. Painagan

Abstract:

This general objective of the study was to apply the AquaCrop model to the conditions in the municipality of Carmen, North Cotabato in terms of predicting corn yields in this area and determine the influence of rainfall and soil depth on simulated yield. The study revealed wide disparity in monthly yields as a consequence of similarly varying monthly rainfall magnitudes. It also found out that simulated yield varies with the depth of soil, which in this case was clay loam, the predominant soil in the study area. The model was found to be easy to use even with limited data and shows a vast potential for various farming and policy applications, such as formulation of a cropping calendar.

Keywords: aquacrop, evapotranspiration, crop modelling, crop simulation

Procedia PDF Downloads 253
277 Organic Matter Distribution in Bazhenov Source Rock: Insights from Sequential Extraction and Molecular Geochemistry

Authors: Margarita S. Tikhonova, Alireza Baniasad, Anton G. Kalmykov, Georgy A. Kalmykov, Ralf Littke

Abstract:

There is a high complexity in the pore structure of organic-rich rocks caused by the combination of inter-particle porosity from inorganic mineral matter and ultrafine intra-particle porosity from both organic matter and clay minerals. Fluids are retained in that pore space, but there are major uncertainties in how and where the fluids are stored and to what extent they are accessible or trapped in 'closed' pores. A large degree of tortuosity may lead to fractionation of organic matter so that the lighter and flexible compounds would diffuse to the reservoir whereas more complicated compounds may be locked in place. Additionally, parts of hydrocarbons could be bound to solid organic matter –kerogen– and mineral matrix during expulsion and migration. Larger compounds can occupy thin channels so that clogging or oil and gas entrapment will occur. Sequential extraction of applying different solvents is a powerful tool to provide more information about the characteristics of trapped organic matter distribution. The Upper Jurassic – Lower Cretaceous Bazhenov shale is one of the most petroliferous source rock extended in West Siberia, Russia. Concerning the variable mineral composition, pore space distribution and thermal maturation, there are high uncertainties in distribution and composition of organic matter in this formation. In order to address this issue geological and geochemical properties of 30 samples including mineral composition (XRD and XRF), structure and texture (thin-section microscopy), organic matter contents, type and thermal maturity (Rock-Eval) as well as molecular composition (GC-FID and GC-MS) of different extracted materials during sequential extraction were considered. Sequential extraction was performed by a Soxhlet apparatus using different solvents, i.e., n-hexane, chloroform and ethanol-benzene (1:1 v:v) first on core plugs and later on pulverized materials. The results indicate that the studied samples are mainly composed of type II kerogen with TOC contents varied from 5 to 25%. The thermal maturity ranged from immature to late oil window. Whereas clay contents decreased with increasing maturity, the amount of silica increased in the studied samples. According to molecular geochemistry, stored hydrocarbons in open and closed pore space reveal different geochemical fingerprints. The results improve our understanding of hydrocarbon expulsion and migration in the organic-rich Bazhenov shale and therefore better estimation of hydrocarbon potential for this formation.

Keywords: Bazhenov formation, bitumen, molecular geochemistry, sequential extraction

Procedia PDF Downloads 170
276 Prediction of Unsaturated Permeability Functions for Clayey Soil

Authors: F. Louati, H. Trabelsi, M. Jamei

Abstract:

Desiccation cracks following drainage-humidification cycles. With water loss, mainly due to evaporation, suction in the soil increases, producing volumetric shrinkage and tensile stress. When the tensile stress reaches tensile strength, the soil cracks. Desiccation cracks networks can directly control soil hydraulic properties. The aim of this study was for quantifying the hydraulic properties for examples the water retention curve, the saturated hydraulic conductivity, the unsaturated hydraulic conductivity function, the shrinkage dynamics in Tibar soil- clay soil in the Northern of Tunisia. Then a numerical simulation of unsaturated hydraulic properties for a crack network has been attempted. The finite elements code ‘CODE_BRIGHT’ can be used to follow the hydraulic distribution in cracked porous media.

Keywords: desiccation, cracks, permeability, unsaturated hydraulic flow, simulation

Procedia PDF Downloads 301
275 Comparing Remote Sensing and in Situ Analyses of Test Wheat Plants as Means for Optimizing Data Collection in Precision Agriculture

Authors: Endalkachew Abebe Kebede, Bojin Bojinov, Andon Vasilev Andonov, Orhan Dengiz

Abstract:

Remote sensing has a potential application in assessing and monitoring the plants' biophysical properties using the spectral responses of plants and soils within the electromagnetic spectrum. However, only a few reports compare the performance of different remote sensing sensors against in-situ field spectral measurement. The current study assessed the potential applications of open data source satellite images (Sentinel 2 and Landsat 9) in estimating the biophysical properties of the wheat crop on a study farm found in the village of OvchaMogila. A Landsat 9 (30 m resolution) and Sentinel-2 (10 m resolution) satellite images with less than 10% cloud cover have been extracted from the open data sources for the period of December 2021 to April 2022. An Unmanned Aerial Vehicle (UAV) has been used to capture the spectral response of plant leaves. In addition, SpectraVue 710s Leaf Spectrometer was used to measure the spectral response of the crop in April at five different locations within the same field. The ten most common vegetation indices have been selected and calculated based on the reflectance wavelength range of remote sensing tools used. The soil samples have been collected in eight different locations within the farm plot. The different physicochemical properties of the soil (pH, texture, N, P₂O₅, and K₂O) have been analyzed in the laboratory. The finer resolution images from the UAV and the Leaf Spectrometer have been used to validate the satellite images. The performance of different sensors has been compared based on the measured leaf spectral response and the extracted vegetation indices using the five sampling points. A scatter plot with the coefficient of determination (R2) and Root Mean Square Error (RMSE) and the correlation (r) matrix prepared using the corr and heatmap python libraries have been used for comparing the performance of Sentinel 2 and Landsat 9 VIs compared to the drone and SpectraVue 710s spectrophotometer. The soil analysis revealed the study farm plot is slightly alkaline (8.4 to 8.52). The soil texture of the study farm is dominantly Clay and Clay Loam.The vegetation indices (VIs) increased linearly with the growth of the plant. Both the scatter plot and the correlation matrix showed that Sentinel 2 vegetation indices have a relatively better correlation with the vegetation indices of the Buteo dronecompared to the Landsat 9. The Landsat 9 vegetation indices somewhat align better with the leaf spectrometer. Generally, the Sentinel 2 showed a better performance than the Landsat 9. Further study with enough field spectral sampling and repeated UAV imaging is required to improve the quality of the current study.

Keywords: landsat 9, leaf spectrometer, sentinel 2, UAV

Procedia PDF Downloads 108
274 The Effect of Raindrop Kinetic Energy on Soil Erodibility

Authors: A. Moussouni, L. Mouzai, M. Bouhadef

Abstract:

Soil erosion is a very complex phenomenon, resulting from detachment and transport of soil particles by erosion agents. The kinetic energy of raindrop is the energy available for detachment and transport by splashing rain. The soil erodibility is defined as the ability of soil to resist to erosion. For this purpose, an experimental study was conducted in the laboratory using rainfall simulator to study the effect of the kinetic energy of rain (Ec) on the soil erodibility (K). The soil used was a sandy agricultural soil of 62.08% coarse sand, 19.14% fine sand, 6.39% fine silt, 5.18% coarse silt and 7.21% clay. The obtained results show that the kinetic energy of raindrops evolves as a power law with soil erodibility.

Keywords: erosion, runoff, raindrop kinetic energy, soil erodibility, rainfall intensity, raindrop fall velocity

Procedia PDF Downloads 506
273 Polypropylene/Red Mud Polymer Composites: Effects of Powder Size on Mechanical and Thermal Properties

Authors: Munir Tasdemir

Abstract:

Polymer/clay composites have received great attention in the past three decades owing to their light weight coupled with significantly better mechanical and barrier properties than the corresponding neat polymer resins. An investigation was carried out on the effects of red mud powder size and ratio on the mechanical and thermal properties of polypropylene /red mud polymer composites. Red mud, in four different concentrations (0, 10, 20 and 30 wt %) and three different powder size (180, 63 and 38 micron) were added to PP to produce composites. The mechanical properties, including the elasticity modulus, tensile & yield strength, % elongation, hardness, Izod impact strength and the thermal properties including the melt flow index, heat deflection temperature and vicat softening point of the composites were investigated. The structures of the composites were investigated by scanning electron microscopy and compared to mechanical and thermal properties as a function of red mud powder content and size.

Keywords: polypropylene, powder, red mud, mechanical properties

Procedia PDF Downloads 338
272 Multi-Objective Optimization of Wear Parameters of Tube Like Clay Mineral Filled Thermoplastic Polymer Using Response Surface Methodology

Authors: Vasu Velagapudi, G. Suresh

Abstract:

PTFE/HNTs nanocomposites are fabricated with 4%, 6%, and 8% by weight fraction, and the optimization study of wear parameters are performed using response surface methodology (RSM). The experiments are carried out on a pin on disc (POD) wear tester under different operating parameters planned according to Taguchi L27 orthogonal array. The input factors considered are wt% HNTs addition, sliding velocity, load, and distance with three levels for each factor. From ANOVA: The factors load, speed and distance and their interactions have a significant effect on COF. Also for SWR, composition factor and interaction of load and speed are observed to be significant ( < 0.05) Optimum input parameters corresponding to desirability 1 are found to be: COF (0.11) and SWR (17.5)×10⁻⁶ (mm3/N-m) at 6.34 wt% of composition, 5N of load, 2 km of distance and 1 m/sec of velocity.

Keywords: PTFE/HNT, nanocomposites, response surface methodology (RSM), specific wear rate

Procedia PDF Downloads 396
271 Possibility of Making Ceramic Models from Condemned Plaster of Paris (Pop) Moulds for Ceramics Production in Edo State Nigeria

Authors: Osariyekemwen, Daniel Nosakhare

Abstract:

Some ceramic wastes, such as discarded (condemn) Plaster of Paris (POP) in Auchi Polytechnic, Edo State, constitute environmental hazards. This study, therefore, bridges the forgoing gaps by undertaking the use of these discarded (POP) moulds to produced ceramic models for making casting moulds for mass production. This is in line with the possibility of using this medium to properly manage the discarded (condemn) Plaster of Paris (POP) that littered our immediate environment. Presently these are major wastes disposal in the department. Hence, the study has been made to fabricate sanitary miniature models and contract fuse models, respectively. Findings arising from this study show that discarded (condemn) Plaster of Paris (POP) can be carved when to set it neither shrink nor expand; hence warping is quite unusual. Above all, it also gives good finishing with little deterioration with time when compared to clay models.

Keywords: plaster of Paris, condemn, moulds, models, production

Procedia PDF Downloads 191
270 A Review on the Use of Plastic Waste with Viable Materials in Composite Construction Block

Authors: Mohan T. Harish, Masson Lauriane, Sreevalsa Kolathayar

Abstract:

Environmental issues raise alarm in the constructional field which implies a need for exploring new construction materials derived from the waste and residual products. This paper presents a detailed review of the alternatives approaches employed in the construction field using plastic waste in mixture with mixed with fillers. A detailed analysis of the plastic waste used in concrete, with soil, sand, clay and natural residues like sawdust, rice husk etc are presented. The different process carried forward was also discussed along with the scrutiny of the change in mechanical properties. The effect of coupling agents in the proposed mixture has been appraised in detail which gives implications for its future application in the field of plastic waste with viable materials in composite construction blocks.

Keywords: plastic waste, composite materials, construction block, concrete, natural residue, coupling agent

Procedia PDF Downloads 252
269 Suitability of Class F Flyash for Construction Industry: An Indian Scenario

Authors: M. N. Akhtar, J. N. Akhtar

Abstract:

The present study evaluates the properties of class F fly ash as a replacement of natural materials in civil engineering construction industry. The low-lime flash similar to class F is the prime variety generated in India, although it has significantly smaller volumes of high-lime fly ash as compared to class C. The chemical and physical characterization of the sample is carried out with the number of experimental approaches in order to investigate all relevant features present in the samples. For chemical analysis, elementary quantitative results from point analysis and scanning electron microscopy (SEM)/dispersive spectroscopy (EDS) techniques were used to identify the element images of different fractions. The physical properties found very close to the range of common soils. Furthermore, the fly ash-based bricks were prepared by the same sample of class F fly ash and the results of compressive strength similar to that of Standard Clay Brick Grade 1 available in the local market of India.

Keywords: fly ash, class F, class C, chemical, physical, SEM, EDS

Procedia PDF Downloads 181
268 Development of 3D Particle Method for Calculating Large Deformation of Soils

Authors: Sung-Sik Park, Han Chang, Kyung-Hun Chae, Sae-Byeok Lee

Abstract:

In this study, a three-dimensional (3D) Particle method without using grid was developed for analyzing large deformation of soils instead of using ordinary finite element method (FEM) or finite difference method (FDM). In the 3D Particle method, the governing equations were discretized by various particle interaction models corresponding to differential operators such as gradient, divergence, and Laplacian. The Mohr-Coulomb failure criterion was incorporated into the 3D Particle method to determine soil failure. The yielding and hardening behavior of soil before failure was also considered by varying viscosity of soil. First of all, an unconfined compression test was carried out and the large deformation following soil yielding or failure was simulated by the developed 3D Particle method. The results were also compared with those of a commercial FEM software PLAXIS 3D. The developed 3D Particle method was able to simulate the 3D large deformation of soils due to soil yielding and calculate the variation of normal and shear stresses following clay deformation.

Keywords: particle method, large deformation, soil column, confined compressive stress

Procedia PDF Downloads 573
267 Investigation of Ground Disturbance Caused by Pile Driving: Case Study

Authors: Thayalan Nall, Harry Poulos

Abstract:

Piling is the most widely used foundation method for heavy structures in poor soil conditions. The geotechnical engineer can choose among a variety of piling methods, but in most cases, driving piles by impact hammer is the most cost-effective alternative. Under unfavourable conditions, driving piles can cause environmental problems, such as noise, ground movements and vibrations, with the risk of ground disturbance leading to potential damage to proposed structures. In one of the project sites in which the authors were involved, three offshore container terminals, namely CT1, CT2 and CT3, were constructed over thick compressible marine mud. The seabed was around 6m deep and the soft clay thickness within the project site varied between 9m and 20m. CT2 and CT3 were connected together and rectangular in shape and were 2600mx800m in size. CT1 was 400m x 800m in size and was located on south opposite of CT2 towards its eastern end. CT1 was constructed first and due to time and environmental limitations, it was supported on a “forest” of large diameter driven piles. CT2 and CT3 are now under construction and are being carried out using a traditional dredging and reclamation approach with ground improvement by surcharging with vertical drains. A few months after the installation of the CT1 piles, a 2600m long sand bund to 2m above mean sea level was constructed along the southern perimeter of CT2 and CT3 to contain the dredged mud that was expected to be pumped. The sand bund was constructed by sand spraying and pumping using a dredging vessel. About 2000m length of the sand bund in the west section was constructed without any major stability issues or any noticeable distress. However, as the sand bund approached the section parallel to CT1, it underwent a series of deep seated failures leading the displaced soft clay materials to heave above the standing water level. The crest of the sand bund was about 100m away from the last row of piles. There were no plausible geological reasons to conclude that the marine mud only across the CT1 region was weaker than over the rest of the site. Hence it was suspected that the pile driving by impact hammer may have caused ground movements and vibrations, leading to generation of excess pore pressures and cyclic softening of the marine mud. This paper investigates the probable cause of failure by reviewing: (1) All ground investigation data within the region; (2) Soil displacement caused by pile driving, using theories similar to spherical cavity expansion; (3) Transfer of stresses and vibrations through the entire system, including vibrations transmitted from the hammer to the pile, and the dynamic properties of the soil; and (4) Generation of excess pore pressure due to ground vibration and resulting cyclic softening. The evidence suggests that the problems encountered at the site were primarily caused by the “side effects” of the pile driving operations.

Keywords: pile driving, ground vibration, excess pore pressure, cyclic softening

Procedia PDF Downloads 237
266 Compression Strength of Treated Fine-Grained Soils with Epoxy or Cement

Authors: M. Mlhem

Abstract:

Geotechnical engineers face many problematic soils upon construction and they have the choice for replacing these soils with more appropriate soils or attempting to improve the engineering properties of the soil through a suitable soil stabilization technique. Mostly, improving soils is environmental, easier and more economical than other solutions. Stabilization soils technique is applied by introducing a cementing agent or by injecting a substance to fill the pore volume. Chemical stabilizers are divided into two groups: traditional agents such as cement or lime and non-traditional agents such as polymers. This paper studies the effect of epoxy additives on the compression strength of four types of soil and then compares with the effect of cement on the compression strength for the same soils. Overall, the epoxy additives are more effective in increasing the strength for different types of soils regardless its classification. On the other hand, there was no clear relation between studied parameters liquid limit, passing No.200, unit weight and between the strength of samples for different types of soils.

Keywords: additives, clay, compression strength, epoxy, stabilization

Procedia PDF Downloads 128
265 Identification and Understanding of Colloidal Destabilization Mechanisms in Geothermal Processes

Authors: Ines Raies, Eric Kohler, Marc Fleury, Béatrice Ledésert

Abstract:

In this work, the impact of clay minerals on the formation damage of sandstone reservoirs is studied to provide a better understanding of the problem of deep geothermal reservoir permeability reduction due to fine particle dispersion and migration. In some situations, despite the presence of filters in the geothermal loop at the surface, particles smaller than the filter size (<1 µm) may surprisingly generate significant permeability reduction affecting in the long term the overall performance of the geothermal system. Our study is carried out on cores from a Triassic reservoir in the Paris Basin (Feigneux, 60 km Northeast of Paris). Our goal is to first identify the clays responsible for clogging, a mineralogical characterization of these natural samples was carried out by coupling X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS). The results show that the studied stratigraphic interval contains mostly illite and chlorite particles. Moreover, the spatial arrangement of the clays in the rocks as well as the morphology and size of the particles, suggest that illite is more easily mobilized than chlorite by the flow in the pore network. Thus, based on these results, illite particles were prepared and used in core flooding in order to better understand the factors leading to the aggregation and deposition of this type of clay particles in geothermal reservoirs under various physicochemical and hydrodynamic conditions. First, the stability of illite suspensions under geothermal conditions has been investigated using different characterization techniques, including Dynamic Light Scattering (DLS) and Scanning Transmission Electron Microscopy (STEM). Various parameters such as the hydrodynamic radius (around 100 nm), the morphology and surface area of aggregates were measured. Then, core-flooding experiments were carried out using sand columns to mimic the permeability decline due to the injection of illite-containing fluids in sandstone reservoirs. In particular, the effects of ionic strength, temperature, particle concentration and flow rate of the injected fluid were investigated. When the ionic strength increases, a permeability decline of more than a factor of 2 could be observed for pore velocities representative of in-situ conditions. Further details of the retention of particles in the columns were obtained from Magnetic Resonance Imaging and X-ray Tomography techniques, showing that the particle deposition is nonuniform along the column. It is clearly shown that very fine particles as small as 100 nm can generate significant permeability reduction under specific conditions in high permeability porous media representative of the Triassic reservoirs of the Paris basin. These retention mechanisms are explained in the general framework of the DLVO theory

Keywords: geothermal energy, reinjection, clays, colloids, retention, porosity, permeability decline, clogging, characterization, XRD, SEM-EDS, STEM, DLS, NMR, core flooding experiments

Procedia PDF Downloads 178
264 A Parallel Poromechanics Finite Element Method (FEM) Model for Reservoir Analyses

Authors: Henrique C. C. Andrade, Ana Beatriz C. G. Silva, Fernando Luiz B. Ribeiro, Samir Maghous, Jose Claudio F. Telles, Eduardo M. R. Fairbairn

Abstract:

The present paper aims at developing a parallel computational model for numerical simulation of poromechanics analyses of heterogeneous reservoirs. In the context of macroscopic poroelastoplasticity, the hydromechanical coupling between the skeleton deformation and the fluid pressure is addressed by means of two constitutive equations. The first state equation relates the stress to skeleton strain and pore pressure, while the second state equation relates the Lagrangian porosity change to skeleton volume strain and pore pressure. A specific algorithm for local plastic integration using a tangent operator is devised. A modified Cam-clay type yield surface with associated plastic flow rule is adopted to account for both contractive and dilative behavior.

Keywords: finite element method, poromechanics, poroplasticity, reservoir analysis

Procedia PDF Downloads 392
263 Numerical Analysis of Rapid Drawdown in Dams Based on Brazilian Standards

Authors: Renato Santos Paulinelli Raposo, Vinicius Resende Domingues, Manoel Porfirio Cordao Neto

Abstract:

Rapid drawdown is one of the cases referred to ground stability study in dam projects. Due to the complexity generated by the combination of loads and the difficulty in determining the parameters, analyses of rapid drawdown are usually performed considering the immediate reduction of water level upstream. The proposal of a simulation, considering the gradual reduction in water level upstream, requires knowledge of parameters about consolidation and those related to unsaturated soil. In this context, the purpose of this study is to understand the methodology of collection and analysis of parameters to simulate a rapid drawdown in dams. Using a numerical tool, the study is complemented with a hypothetical case study that can assist the practical use of data compiled. The referenced dam presents homogeneous section composed of clay soil, a height of 70 meters, a width of 12 meters, and upstream slope with inclination 1V:3H.

Keywords: dam, GeoStudio, rapid drawdown, stability analysis

Procedia PDF Downloads 253
262 Seismic Soil-Pile Interaction Considering Nonlinear Soil Column Behavior in Saturated and Dry Soil Conditions

Authors: Mohammad Moeini, Mehrdad Ghyabi, Kiarash Mohtasham Dolatshahi

Abstract:

This paper investigates seismic soil-pile interaction using the Beam on Nonlinear Winkler Foundation (BNWF) approach. Three soil types are considered to cover all the possible responses, as well as nonlinear site response analysis using finite element method in OpenSees platform. Excitations at each elevation that are output of the site response analysis are used as the input excitation to the soil pile system implementing multi-support excitation method. Spectral intensities of acceleration show that the extent of the response in sand is more severe than that of clay, in addition, increasing the PGA of ground strong motion will affect the sandy soil more, in comparison with clayey medium, which is an indicator of the sensitivity of soil-pile systems in sandy soil.

Keywords: BNWF method, multi-support excitation, nonlinear site response analysis, seismic soil-pile interaction

Procedia PDF Downloads 394
261 Synthesis and Characterization of Iron Modified Geopolymer and Its Resistance against Chloride and Sulphate

Authors: Noor-ul-Amin, Lubna Nawab, Sabiha Sultana

Abstract:

Geopolymer with different silica to alumina ratio with iron have been synthesized using sodium silicate, aluminum, and iron salts as a source of silica, alumina and iron source, and sodium/potassium hydroxide as an alkaline medium. The iron source will be taken from iron (III) salts and laterite clay samples. Laterite has been used as a natural source of iron in modified geopolymer. The synthesized iron modified geopolymer was submitted to the different aggressive environment, including chloride and sulphate solutions in different concentration. Different experimental techniques, including XRF, XRD, and FTIR, were used to study the bonding nature and effect of aggressive environment on geopolymer. The major phases formed during geopolymerization are sodalite (Na₄Al₃Si₃O₁₂Cl), albite (NaAlSi₃O₈), hematite (Fe₂O₃), and chabazite as confirmed from the XRD results. The resulting geopolymer showed greater resistance to sulphate and chloride as compared to the normal geopolymer.

Keywords: modified geopolymer, laterite, chloride, sulphate

Procedia PDF Downloads 156
260 Diversity of Microbial Ground Improvements

Authors: V. Ivanov, J. Chu, V. Stabnikov

Abstract:

Low cost, sustainable, and environmentally friendly microbial cements, grouts, polysaccharides and bioplastics are useful in construction and geotechnical engineering. Construction-related biotechnologies are based on activity of different microorganisms: urease-producing, acidogenic, halophilic, alkaliphilic, denitrifying, iron- and sulphate-reducing bacteria, cyanobacteria, algae, microscopic fungi. The bio-related materials and processes can be used for the bioaggregation, soil biogrouting and bioclogging, biocementation, biodesaturation of water-satured soil, bioencapsulation of soft clay, biocoating, and biorepair of the concrete surface. Altogether with the most popular calcium- and urea based biocementation, there are possible and often are more effective such methods of ground improvement as calcium- and magnesium based biocementation, calcium phosphate strengthening of soil, calcium bicarbonate biocementation, and iron- or polysaccharide based bioclogging. The construction-related microbial biotechnologies have a lot of advantages over conventional construction materials and processes.

Keywords: ground improvement, biocementation, biogrouting, microorganisms

Procedia PDF Downloads 229
259 Design and Performance of a Large Diameter Shaft in Old Alluvium

Authors: Tamilmani Thiruvengadam, Ramasthanan Arulampalam

Abstract:

This project comprises laying approximately 1.8km of 400mm, 1200mm and 2400mm diameter sewer pipes using pipe jacking machines along Mugliston Park, Buangkok Drive, and Buangkok Link. The works include an estimated 14 circular shafts with depth ranging from 10.0 meters to 29.0 meters. Cast in-situ circular shaft will be used for the temporary shaft excavation. The geology is predominantly Backfill and old alluvium with weak material encountered in between. Where there is a very soft clay, F1 material or weak soil is expected, ground improvement will be carried out outside of the shaft followed by cast in-situ concrete ring wall within the improved soil zone. This paper presents the design methodology, analysis and results of temporary shafts for micro TBM launching and constructing permanent manholes. There is also a comparison of instrumentation readings with the analysis predicted values.

Keywords: circular shaft, ground improvement, old alluvium, temporary shaft

Procedia PDF Downloads 289
258 Optimization Study of Adsorption of Nickel(II) on Bentonite

Authors: B. Medjahed, M. A. Didi, B. Guezzen

Abstract:

This work concerns with the experimental study of the adsorption of the Ni(II) on bentonite. The effects of various parameters such as contact time, stirring rate, initial concentration of Ni(II), masse of clay, initial pH of aqueous solution and temperature on the adsorption yield, were carried out. The study of the effect of the ionic strength on the yield of adsorption was examined by the identification and the quantification of the present chemical species in the aqueous phase containing the metallic ion Ni(II). The adsorbed species were investigated by a calculation program using CHEAQS V. L20.1 in order to determine the relation between the percentages of the adsorbed species and the adsorption yield. The optimization process was carried out using 23 factorial designs. The individual and combined effects of three process parameters, i.e. initial Ni(II) concentration in aqueous solution (2.10−3 and 5.10−3 mol/L), initial pH of the solution (2 and 6.5), and mass of bentonite (0.03 and 0.3 g) on Ni(II) adsorption, were studied.

Keywords: adsorption, bentonite, factorial design, Nickel(II)

Procedia PDF Downloads 161