Search results for: online and adaptive learning
6368 Community Arts-Based Learning for Interdisciplinary Pedagogy: Measuring Program Effectiveness Using Design Imperatives for 'a New American University'
Authors: Kevin R. Wilson, Roger Mantie
Abstract:
Community arts-based learning and participatory education are pedagogical techniques that serve to be advantageous for students, curriculum development, and local communities. Using an interpretive approach to examine the significance of this arts-informed research in relation to the eight ‘design imperatives’ proposed as the new model for measuring quality in scholarship for Arizona State University as ‘A New American University’, the purpose of this study was to investigate personal, social, and cultural benefits resulting from student engagement in interdisciplinary community-based projects. Students from a graduate level music education class at the ASU Tempe campus (n=7) teamed with students from an undergraduate level community development class at the ASU Downtown Phoenix campus (n=14) to plan, facilitate, and evaluate seven community-based projects in several locations around the Phoenix-metro area. Data was collected using photo evidence, student reports, and evaluative measures designed by the students. The effectiveness of each project was measured in terms of their ability to meet the eight design imperatives to: 1) leverage place; 2) transform society; 3) value entrepreneurship; 4) conduct use-inspired research; 5) enable student success; 6) fuse intellectual disciplines; 7) be socially embedded; and 8) engage globally. Results indicated that this community arts-based project sufficiently captured the essence of each of these eight imperatives. Implications for how the nature of this interdisciplinary initiative allowed for the eight imperatives to manifest are provided, and project success is expounded upon in relation to utility of each imperative. Discussion is also given for how this type of service learning project formatted within the ‘New American University’ model for measuring quality in academia can be a beneficial pedagogical tool in higher education.Keywords: community arts-based learning, participatory education, pedagogy, service learning
Procedia PDF Downloads 4006367 The Learning Experience of Two Students with Visual Impairments in the EFL Courses: A Case Study
Authors: May Ling González-Ruiz, Ana Cristina Solís-Solís
Abstract:
Everyday more people can thrive towards the dream of pursuing a university diploma. This can be more attainable for some than for others who may face different types of limitations. Even though not all limitations come from within the individual but most of the times they come from without it may include the environment, the support of the person’s family, the school – its infrastructure, administrative procedures, and attitudes. This is a qualitative type of research that is developed through a case study. It is based on the experiences of two students who are visually impaired and who have attended a public university in Costa Rica. We enquire about the experiences of these two students in the English as a Foreign Language courses at the university scenario. An in-depth analysis of their lived experiences is presented. Their values, attitudes, and expectations serve as the guiding elements for this research. Findings are presented in light of the Social Justice Approach to inclusive education. Some of the most salient aspects found have to do with the attitudes the students used to face challenges; others point at those elements that may have hindered the learning experience of the persons observed and to those that encouraged them to continue their journey and successfully achieve a diploma.Keywords: inclusion, case study, visually impaired student, learning experience, social justice approach
Procedia PDF Downloads 1386366 Optimizing the Scanning Time with Radiation Prediction Using a Machine Learning Technique
Authors: Saeed Eskandari, Seyed Rasoul Mehdikhani
Abstract:
Radiation sources have been used in many industries, such as gamma sources in medical imaging. These waves have destructive effects on humans and the environment. It is very important to detect and find the source of these waves because these sources cannot be seen by the eye. A portable robot has been designed and built with the purpose of revealing radiation sources that are able to scan the place from 5 to 20 meters away and shows the location of the sources according to the intensity of the waves on a two-dimensional digital image. The operation of the robot is done by measuring the pixels separately. By increasing the image measurement resolution, we will have a more accurate scan of the environment, and more points will be detected. But this causes a lot of time to be spent on scanning. In this paper, to overcome this challenge, we designed a method that can optimize this time. In this method, a small number of important points of the environment are measured. Hence the remaining pixels are predicted and estimated by regression algorithms in machine learning. The research method is based on comparing the actual values of all pixels. These steps have been repeated with several other radiation sources. The obtained results of the study show that the values estimated by the regression method are very close to the real values.Keywords: regression, machine learning, scan radiation, robot
Procedia PDF Downloads 756365 Attitudes of Secondary School Students towards Biology in Birnin Kebbi Metropolis, Kebbi State, Nigeria
Authors: I. A. Libata
Abstract:
The present study was carried out to determine the attitudes of Secondary School Students towards Biology in Birnin Kebbi metropolis. The population of the study is 2680 SS 2 Secondary School Students in Birnin Kebbi metropolis. Proportionate random sampling was used in selecting the samples. Oppinnionnaire was the only instrument used in the study. The instrument was subjected to test-retest reliability. The reliability index of the instrument was 0.69. Overall scores of the Students were analyzed and a mean score was determined, the mean score of students was 85. There were no significant differences between the attitudes of male and female students. The results also revealed that there was significant difference between the attitude of science and art students. The results also revealed that there was significant difference between the attitude of public and private school students. The study also reveals that majority of students in Birnin Kebbi Metropolis have positive attitudes towards biology. Based on the findings of this study, the researcher recommended that teachers should motivate students, which they can do through their teaching styles and by showing them the relevance of the learning topics to their everyday lives. Government and the school management should create the learning environment that helps motivate students not only to come to classes but also want to learn and enjoy learning Biology.Keywords: attitudes, students, Birnin-Kebbi, metropolis
Procedia PDF Downloads 3996364 Early Prediction of Disposable Addresses in Ethereum Blockchain
Authors: Ahmad Saleem
Abstract:
Ethereum is the second largest crypto currency in blockchain ecosystem. Along with standard transactions, it supports smart contracts and NFT’s. Current research trends are focused on analyzing the overall structure of the network its growth and behavior. Ethereum addresses are anonymous and can be created on fly. The nature of Ethereum network and addresses make it hard to predict their behavior. The activity period of an ethereum address is not much analyzed. Using machine learning we can make early prediction about the disposability of the address. In this paper we analyzed the lifetime of the addresses. We also identified and predicted the disposable addresses using machine learning models and compared the results.Keywords: blockchain, Ethereum, cryptocurrency, prediction
Procedia PDF Downloads 966363 Barriers and Opportunities in Apprenticeship Training: How to Complete a Vocational Upper Secondary Qualification with Intermediate Finnish Language Skills
Authors: Inkeri Jaaskelainen
Abstract:
The aim of this study is to shed light on what is it like to study in apprenticeship training using intermediate (or even lower level) Finnish. The aim is to find out and describe these students' experiences and feelings while acquiring a profession in Finnish as it is important to understand how immigrant background adult learners learn and how their needs could be better taken into account. Many students choose apprenticeships and start vocational training while their language skills in Finnish are still very weak. At work, students should be able to simultaneously learn Finnish and do vocational studies in a noisy, demanding, and stressful environment. Learning and understanding new things is very challenging under these circumstances, and sometimes students get exhausted and experience a lot of stress - which makes learning even more difficult. Students are different from each other, and so are their ways to learn. Both duties at work and school assignments require reasonably good general language skills, and, especially at work, language skills are also a safety issue. The empirical target of this study is a group of students with an immigrant background who studied in various fields with intensive L2 support in 2016–2018 and who by now have completed a vocational upper secondary qualification. The interview material for this narrative study was collected from those who completed apprenticeship training in 2019–2020. The data collection methods used are a structured thematic interview, a questionnaire, and observational data. Interviewees with an immigrant background have an inconsistent cultural and educational background - some have completed an academic degree in their country of origin while others have learned to read and write only in Finland. The analysis of the material utilizes thematic analysis, which is used to examine learning and related experiences. Learning a language at work is very different from traditional classroom teaching. With evolving language skills, at an intermediate level at best, rushing and stressing makes it even more difficult to understand and increases the fear of failure. Constant noise, rapidly changing situations, and uncertainty undermine the learning and well-being of apprentices. According to preliminary results, apprenticeship training is well suited to the needs of an adult immigrant student. In apprenticeship training, students need a lot of support for learning and understanding a new communication and working culture. Stress can result in, e.g., fatigue, frustration, and difficulties in remembering and understanding. Apprenticeship training can be seen as a good path to working life. However, L2 support is a very important part of apprenticeship training, and it indeed helps students to believe that one day they will graduate and even get employed in their new country.Keywords: apprenticeship training, vocational basic degree, Finnish learning, wee-being
Procedia PDF Downloads 1326362 Discursive Legitimation Strategies in ISIS’ Online Magazine, Dabiq: A Discourse Historical Approach
Authors: Sahar Rasoulikolamaki
Abstract:
ISIS (also known as DAASH) is an Islamic fundamentalist group that has been known as a global threat to the whole world for their radicalizing approach and application of online platforms as a tool to portray their activities, to disseminate their ideology, and to commit recruiting activities. This study is an attempt to carry out a critical discourse analysis on the argumentative devices by which ISIS legitimizes or delegitimizes positive or negative constructions of social practices in Dabiq. It tries to shed light on how texts in Dabiq as linguistic elements in the micro level of analysis relate to ISIS’ ideology as the higher-up macro level and in other words, how local structures contributed to the construction and transference of a global structure or ideology and vice versa. Therefore, following the relevant analytical frameworks, the study focuses on both micro-level of analysis of arguments (topoi) and macro-structure of legitimation and delegitimation in Dabiq. This purpose is nailed using the analytical categories and tools provided by Wodak’s Discourse Historical Approach (DHA) such as argumentation strategies (topoi), by which the coded language of legitimation/delegitimation and persuasion as used in Dabiq are explored. The ensuing findings demonstrate that Dabiq rigorously relies on the positive representation of the in-group course of actions and justifying its violence and, at the same time, the negative representation of the out-group behavior through implementing various topoi to achieve its desired outcome, which is the ideological manipulation and powerful self-depiction, as well as the supporter recruitment.Keywords: argumentation, discourse-historical approach, ideology, legitimation and delegitimation, topoi
Procedia PDF Downloads 1336361 Inappropriate Antibiotic Use: An Online Survey in Thailand
Authors: Surarong Chinwong, Namthip Intarakumhang Na Rachasima, Siyaporn Kuikhiew, Dujrudee Chinwong
Abstract:
Irrational use of medicines is a major problem in public health. Half of all patients take medicines incorrectly. An inappropriate use of antibiotics is one of the common types of irrational medicine use; for example, patients use antibiotic for treatment of common cold or diarrhea. Objectives: This cross-sectional study aimed to investigate the behaviors on antibiotic use, using amoxicillin and norfloxacin as examples, as well as sources of received health information. Methods: An online self-administered questionnaire was used to collect data from participants in Thailand between September and December 2015. Participants were asked about their behaviors on antibiotic use. Data were analyzed using descriptive statistics. Results: Of all 405 participants, most were female (65.3 %), aged 18-30 years (49.4 %), undergraduate or lower (69.7%), and civil servant or state enterprises (31.7 %). We found inappropriate behaviors in use of amoxicillin or norfloxacin: 1) there were 201/400 participants (50.3%) taking amoxicillin right away in case of having a common cold, such as having sore throat, running nose, and cough; 2) there were 170/405 participants (42.0%) using amoxicillin for relieving inflammatory symptoms, e.g. muscle inflammation or osteoarthritis; 3) there were 71/398 participants (17.8%) using amoxicillin as a muscle relaxant; 4) there were 135/398 participants (33.9%) using norfloxacin for treating diarrhea. Sources of health information received by the participants were from the internet (78.5%), the radio and/or television (42.2%), advertising publishing (33.3 %), and word of mouth (30.1%). Conclusion: This study showed improper behaviors in antibiotic use especially amoxicillin and norfloxacin. Health care providers including pharmacists should raise the public awareness on dangers of inappropriate antibiotic use and promote the rational use of antibiotics.Keywords: antibiotic use, amoxicillin, norfloxacin, rational drug use
Procedia PDF Downloads 2736360 Sentiment Analysis of Tourist Online Reviews Concerning Lisbon Cultural Patrimony, as a Contribute to the City Attractiveness Evaluation
Authors: Joao Ferreira Do Rosario, Maria De Lurdes Calisto, Ana Teresa Machado, Nuno Gustavo, Rui Gonçalves
Abstract:
The tourism sector is increasingly important to the economic performance of countries and a relevant theme to academic research, increasing the importance of understanding how and why tourists evaluate tourism locations. The city of Lisbon is currently a tourist destination of excellence in the European and world-wide panorama, registering a significant growth of the economic weight of its tourist activities in the Gross Added Value of the region. Although there is research on the feedback of those who visit tourist sites and different methodologies for studying tourist sites have been applied, this research seeks to be innovative in the objective of obtaining insights on the competitiveness in terms of attractiveness of the city of Lisbon as a tourist destination, based the feedback of tourists in the Facebook pages of the most visited museums and monuments of Lisbon, an interpretation that is relevant in the development of strategies of tourist attraction. The intangible dimension of the tourism offer, due to its unique condition of simultaneous production and consumption, makes eWOM particularly relevant. The testimony of consumers is thus a decisive factor in the decision-making and buying process in tourism. Online social networks are one of the most used platforms for tourists to evaluate the attractiveness's points of a tourism destination (e.g. cultural and historical heritage), with this user-generated feedback enabling relevant information about the customer-tourists. This information is related to the tourist experience representing the true voice of the customer. Furthermore, this voice perceived by others as genuine, opposite to marketing messages, may have a powerful word-of-mouth influence on other potential tourists. The relevance of online reviews sharing, however, becomes particularly complex, considering social media users’ different profiles or the possible and different sources of information available, as well as their associated reputation associated with each source. In the light of these trends, our research focuses on the tourists’ feedback on Facebook pages of the most visited museums and monuments of Lisbon that contribute to its attractiveness as a tourism destination. Sentiment Analysis is the methodology selected for this research, using public available information in the online context, which was deemed as an appropriate non-participatory observation method. Data will be collected from two museums (Museu dos Coches and Museu de Arte Antiga) and three monuments ((Mosteiro dos Jerónimos, Torre de Belém and Panteão Nacional) Facebook pages during a period of one year. The research results will help in the evaluation of the considered places by the tourists, their contribution to the city attractiveness and present insights helpful for the management decisions regarding this museums and monuments. The results of this study will also contribute to a better knowledge of the tourism sector, namely the identification of attributes in the evaluation and choice of the city of Lisbon as a tourist destination. Further research will evaluate the Lisbon attraction points for tourists in different categories beyond museums and monuments, will also evaluate the tourist feedback from other sources like TripAdvisor and apply the same methodology in other cities and country regions.Keywords: Lisbon tourism, opinion mining, sentiment analysis, tourism location attractiveness evaluation
Procedia PDF Downloads 2366359 Promoting Stem Education and a Cosmic Perspective by Using 21st Century Science of Learning
Authors: Rohan Roberts
Abstract:
The purpose of this project was to collaborate with a group of high-functioning, more-able students (aged 15-18) to promote STEM Education and a love for science by bringing a cosmic perspective into the classroom and high school environment. This was done using 21st century science of learning, a focus on the latest research on Neuroeducation, and modern pedagogical methods based on Howard Gardner's theory of Multiple Intelligences, Bill Lucas’ theory of New Smarts, and Sir Ken Robinson’s recommendations on encouraging creativity. The result was an increased sense of passion, excitement, and wonder about science in general, and about the marvels of space and the universe in particular. In addition to numerous unique and innovative science-based initiatives, clubs, workshops, and science trips, this project also saw a marked rise in student-teacher collaboration in science learning and in student engagement with the general public through the press, social media, and community-based initiatives. This paper also outlines the practical impact that bringing a cosmic perspective into the classroom has had on the lives, interests, and future career prospects of the students involved in this endeavour.Keywords: cosmic perspective, gifted and talented, neuro-education, STEM education
Procedia PDF Downloads 3336358 A Model for Analysing Argumentative Structures and Online Deliberation in User-Generated Comments to the Website of a South African Newspaper
Authors: Marthinus Conradie
Abstract:
The conversational dynamics of democratically orientated deliberation continue to stimulate critical scholarship for its potential to bolster robust engagement between different sections of pluralist societies. Several axes of deliberation that have attracted academic attention include face-to-face vs. online interaction, and citizen-to-citizen communication vs. engagement between citizens and political elites. In all these areas, numerous researchers have explored deliberative procedures aimed at achieving instrumental goals such a securing consensus on policy issues, against procedures that prioritise expressive outcomes such as broadening the range of argumentative repertoires that discursively construct and mediate specific political issues. The study that informs this paper, works in the latter stream. Drawing its data from the reader-comments section of a South African broadsheet newspaper, the study investigates online, citizen-to-citizen deliberation by analysing the discursive practices through which competing understandings of social problems are articulated and contested. To advance this agenda, the paper deals specifically with user-generated comments posted in response to news stories on questions of race and racism in South Africa. The analysis works to discern and interpret the various sets of discourse practices that shape how citizens deliberate contentious political issues, especially racism. Since the website in question is designed to encourage the critical comparison of divergent interpretations of news events, without feeding directly into national policymaking, the study adopts an analytic framework that traces how citizens articulate arguments, rather than the instrumental effects that citizen deliberations might exert on policy. The paper starts from the argument that such expressive interactions are particularly crucial to current trends in South African politics, given that the precise nature of race and racism remain contested and uncertain. Centred on a sample of 2358 conversational moves in 814 posts to 18 news stories emanating from issues of race and racism, the analysis proceeds in a two-step fashion. The first stage conducts a qualitative content analysis that offers insights into the levels of reciprocity among commenters (do readers engage with each other or simply post isolated opinions?), as well as the structures of argumentation (do readers support opinions by citing evidence?). The second stage involves a more fine-grained discourse analysis, based on a theorisation of argumentation that delineates it into three components: opinions/conclusions, evidence/data to support opinions/conclusions and warrants that explicate precisely how evidence/data buttress opinions/conclusions. By tracing the manifestation and frequency of specific argumentative practices, this study contributes to the archive of research currently aggregating around the practices that characterise South Africans’ engagement with provocative political questions, especially racism and racial inequity. Additionally, the study also contributes to recent scholarship on the affordances of Web 2.0 software by eschewing a simplistic bifurcation between cyber-optimist vs. pessimism, in favour of a more nuanced and context-specific analysis of the patterns that structure online deliberation.Keywords: online deliberation, discourse analysis, qualitative content analysis, racism
Procedia PDF Downloads 1756357 Investigation and Estimation of State of Health of Battery Pack in Battery Electric Vehicles-Online Battery Characterization
Authors: Ali Mashayekh, Mahdiye Khorasani, Thomas Weyh
Abstract:
The tendency to use the Battery-Electric vehicle (BEV) for the low and medium driving range or even high driving range has been growing more and more. As a result, higher safety, reliability, and durability of the battery pack as a component of electric vehicles, which has a great share of cost and weight of the final product, are the topics to be considered and investigated. Battery aging can be considered as the predominant factor regarding the reliability and durability of BEV. To better understand the aging process, offline battery characterization has been widely used, which is time-consuming and needs very expensive infrastructures. This paper presents the substitute method for the conventional battery characterization methods, which is based on battery Modular Multilevel Management (BM3). According to this Topology, the battery cells can be drained and charged concerning their capacity, which allows varying battery pack structures. Due to the integration of the power electronics, the output voltage of the battery pack is no longer fixed but can be dynamically adjusted in small steps. In other words, each cell can have three different states, namely series, parallel, and bypass in connection with the neighbor cells. With the help of MATLAB/Simulink and by using the BM3 modules, the battery string model is created. This model allows us to switch two cells with the different SoC as parallel, which results in the internal balancing of the cells. But if the parallel switching lasts just for a couple of ms, we can have a perturbation pulse which can stimulate the cells out of the relaxation phase. With the help of modeling the voltage response pulse of the battery, it would be possible to characterize the cell. The Online EIS method, which is discussed in this paper, can be a robust substitute for the conventional battery characterization methods.Keywords: battery characterization, SoH estimation, RLS, BEV
Procedia PDF Downloads 1476356 An Ensemble Deep Learning Architecture for Imbalanced Classification of Thoracic Surgery Patients
Authors: Saba Ebrahimi, Saeed Ahmadian, Hedie Ashrafi
Abstract:
Selecting appropriate patients for surgery is one of the main issues in thoracic surgery (TS). Both short-term and long-term risks and benefits of surgery must be considered in the patient selection criteria. There are some limitations in the existing datasets of TS patients because of missing values of attributes and imbalanced distribution of survival classes. In this study, a novel ensemble architecture of deep learning networks is proposed based on stacking different linear and non-linear layers to deal with imbalance datasets. The categorical and numerical features are split using different layers with ability to shrink the unnecessary features. Then, after extracting the insight from the raw features, a novel biased-kernel layer is applied to reinforce the gradient of the minority class and cause the network to be trained better comparing the current methods. Finally, the performance and advantages of our proposed model over the existing models are examined for predicting patient survival after thoracic surgery using a real-life clinical data for lung cancer patients.Keywords: deep learning, ensemble models, imbalanced classification, lung cancer, TS patient selection
Procedia PDF Downloads 1446355 The Role of Synthetic Data in Aerial Object Detection
Authors: Ava Dodd, Jonathan Adams
Abstract:
The purpose of this study is to explore the characteristics of developing a machine learning application using synthetic data. The study is structured to develop the application for the purpose of deploying the computer vision model. The findings discuss the realities of attempting to develop a computer vision model for practical purpose, and detail the processes, tools, and techniques that were used to meet accuracy requirements. The research reveals that synthetic data represents another variable that can be adjusted to improve the performance of a computer vision model. Further, a suite of tools and tuning recommendations are provided.Keywords: computer vision, machine learning, synthetic data, YOLOv4
Procedia PDF Downloads 2216354 Pride and Prejudice in Higher Education: Countering Elitist Perspectives in the Curriculum at Imperial College London
Authors: Mark R. Skopec, Hamdi M. Issa, Henock B. Taddese, Kate Ippolito, Matthew J. Harris
Abstract:
In peer review, there is a skew toward research from high-income countries, otherwise known as geographic bias. Research from well-known and prestigious institutions is often favored in the peer review process and is more frequently cited in biomedical research. English clinicians have been found to rate research from low-income countries worse compared to the same research presented as if from high-income countries. This entrenched bias, which is rooted in the perceived superiority of academic institutions in high-income countries is damaging in many regards. Crucially, it reinforces colonial roots by strengthening the dominance of knowledge bases in high-income contexts and perpetuates the perceived inferiority of research from low-income settings. We report on the interventions that Imperial College London is conducting to “decolonize” the higher education curriculum – a root and branch review of reading material in the Masters of Public Health course; identification of unconscious bias against low-income country research in faculty and staff; in-depth interviews with faculty members on their experiences and practices with respect to inclusion of low-income country research in their own teaching and learning practice; and exploring issues surrounding entrenched biases and structural impediments for enabling desirable changes. We intend to use these findings to develop frameworks and approaches, including workshops and online resources, to effect sustainable changes to diversify the curriculum at Imperial College London.Keywords: curriculum design, diversity, geographic bias, higher education, implicit associations, inclusivity
Procedia PDF Downloads 1706353 Talent-to-Vec: Using Network Graphs to Validate Models with Data Sparsity
Authors: Shaan Khosla, Jon Krohn
Abstract:
In a recruiting context, machine learning models are valuable for recommendations: to predict the best candidates for a vacancy, to match the best vacancies for a candidate, and compile a set of similar candidates for any given candidate. While useful to create these models, validating their accuracy in a recommendation context is difficult due to a sparsity of data. In this report, we use network graph data to generate useful representations for candidates and vacancies. We use candidates and vacancies as network nodes and designate a bi-directional link between them based on the candidate interviewing for the vacancy. After using node2vec, the embeddings are used to construct a validation dataset with a ranked order, which will help validate new recommender systems.Keywords: AI, machine learning, NLP, recruiting
Procedia PDF Downloads 836352 Optimizing Multimodal Teaching Strategies for Enhanced Engagement and Performance
Authors: Victor Milanes, Martha Hubertz
Abstract:
In the wake of COVID-19, all aspects of life have been estranged, and humanity has been forced to shift toward a more technologically integrated mode of operation. Essential work such as Healthcare, business, and public policy are a few notable industries that were initially dependent upon face-to-face modality but have completely reimagined their operation style. Unique to these fields, education was particularly strained because academics, teachers, and professors alike were obligated to shift their curriculums online over the course of a few weeks while also maintaining the expectation that they were educating their students to a similar level accomplished pre-pandemic. This was notable as research indicates two key concepts: Students prefer face-to-face modality, and due to the disruption in academic continuity/style, there was a negative impact on student's overall education and performance. With these two principles in mind, this study aims to inquire what online strategies could be best employed by teachers to educate their students, as well as what strategies could be adopted in a multimodal setting if deemed necessary by the instructor or outside convoluting factors (Such as the case of COVID-19, or a personal matter that demands the teacher's attention away from the classroom). Strategies and methods will be cross-analyzed via a ranking system derived from various recognized teaching assessments, in which engagement, retention, flexibility, interest, and performance are specifically accounted for. We expect to see an emphasis on positive social pressure as a dominant factor in the improved propensity for education, as well as a preference for visual aids across platforms, as research indicates most individuals are visual learners.Keywords: technological integration, multimodal teaching, education, student engagement
Procedia PDF Downloads 616351 Understanding Relationships between Listening to Music and Pronunciation Learning: An Investigation Based upon Japanese EFL Learners' Self-Evaluation
Authors: Hirokatsu Kawashima
Abstract:
In an attempt to elucidate relationships between listening to music and pronunciation learning, a classroom-based investigation was conducted with Japanese EFL learners (n=45). The subjects were instructed to listen to English songs they liked on YouTube, especially paying attention to phonologically similar vowel and consonant minimal pair words (e.g., live and leave). This kind of activity, which included taking notes, was regularly carried out in the classroom, and the same kind of task was given to the subjects as homework in order to reinforce the in-class activity. The duration of these activities was eight weeks, after which the program was evaluated on a 9-point scale (1: the lowest and 9: the highest) by learners’ self-evaluation. The main questions for this evaluation included 1) how good the learners had been at pronouncing vowel and consonant minimal pair words originally, 2) how often they had listened to songs good for pronouncing vowel and consonant minimal pair words, 3) how frequently they had moved their mouths to vowel and consonant minimal pair words of English songs, and 4) how much they thought the program would support and enhance their pronunciation learning of phonologically similar vowel and consonant minimal pair words. It has been found, for example, A) that the evaluation of this program is by no means low (Mean: 6.51 and SD: 1.23), suggesting that listening to music may support and enhance pronunciation learning, and B) that listening to consonant minimal pair words in English songs and moving the mouth to them are more related to the program’s evaluation (r =.69, p=.00 and r =.55, p=.00, respectively) than listening to vowel minimal pair words in English songs and moving the mouth to them (r =.45, p=.00 and r =.39, p=.01, respectively).Keywords: minimal pair, music, pronunciation, song
Procedia PDF Downloads 3156350 Communicative Language Teaching in English as a Foreign Language Classrooms: An Overview of Secondary Schools in Bangladesh
Authors: Saifunnahar
Abstract:
As a former English colony, the relationship of Bangladesh with the English language goes a long way back. English is taught as a compulsory subject in Bangladesh from an early age starting from grade 1 and continuing through the 12th, yet, students are not competent enough to communicate in English proficiently. To improve students’ English language competency, the Bangladesh Ministry of Education introduced communicative language teaching (CLT) methods in English classrooms in the 1990s. It has been decades since this effort was taken, but the students’ level of proficiency is still not satisfactory. The main reason behind this failure is that CLT-based teaching-learning methods have not been effectively implemented. Very little research has been conducted to address the issues English as a foreign language (EFL) classrooms are facing to carry out CLT methodologies in secondary schools (grades 6 to 10) in Bangladesh. Though the secondary level is crucial for students’ language learning and retention, EFL classrooms are marked with various issues that make teaching-learning harder for teachers and students. This study provides an overview of the status of CLT in EFL classrooms and the reasons behind failing to implement CLT in secondary schools in Bangladesh through an analysis of the qualitative data collected from different literature. Based on the findings, effective approaches have been recommended to employ CLT in EFL classrooms.Keywords: Bangladesh, communicative language teaching, English as a foreign language, secondary schools, pedagogy
Procedia PDF Downloads 1536349 Monitoring Synthesis of Biodiesel through Online Density Measurements
Authors: Arnaldo G. de Oliveira, Jr, Matthieu Tubino
Abstract:
The transesterification process of triglycerides with alcohols that occurs during the biodiesel synthesis causes continuous changes in several physical properties of the reaction mixture, such as refractive index, viscosity and density. Amongst them, density can be an useful parameter to monitor the reaction, in order to predict the composition of the reacting mixture and to verify the conversion of the oil into biodiesel. In this context, a system was constructed in order to continuously determine changes in the density of the reacting mixture containing soybean oil, methanol and sodium methoxide (30 % w/w solution in methanol), stirred at 620 rpm at room temperature (about 27 °C). A polyethylene pipe network connected to a peristaltic pump was used in order to collect the mixture and pump it through a coil fixed on the plate of an analytical balance. The collected mass values were used to trace a curve correlating the mass of the system to the reaction time. The density variation profile versus the time clearly shows three different steps: 1) the dispersion of methanol in oil causes a decrease in the system mass due to the lower alcohol density followed by stabilization; 2) the addition of the catalyst (sodium methoxide) causes a larger decrease in mass compared to the first step (dispersion of methanol in oil) because of the oil conversion into biodiesel; 3) the final stabilization, denoting the end of the reaction. This density variation profile provides information that was used to predict the composition of the mixture over the time and the reaction rate. The precise knowledge of the duration of the synthesis means saving time and resources on a scale production system. This kind of monitoring provides several interesting features such as continuous measurements without collecting aliquots.Keywords: biodiesel, density measurements, online continuous monitoring, synthesis
Procedia PDF Downloads 5746348 Living with a Partner with Depression: The Role of Dispositional Empathy in Psychological Resilience
Authors: Elizabeth O'Brien, Raegan Murphy
Abstract:
Research suggests that high levels of empathy in individuals with partners with mental health difficulties can lead to improved outcomes for their partner while compromising their own mental health. Specifically, it is proposed that the affective dimension of empathy diminishes resilience to the distress of a partner, whereas cognitive empathy (CE) enhances it. The relationship between different empathy dimensions and psychological resilience measures has not been investigated in partners of people with depression. Psychological inflexibility (PI) is a construct that can be understood as distress intolerance and is suggested to be an important feature of psychological resilience. The current study, therefore, aimed to investigate the differential role of dispositional empathy dimensions in PI for people living with a partner with depression. A cross-sectional design was employed in which 148 participants living with a partner with depression and 45 participants for a comparison sample were recruited using online platforms. Participants completed online surveys with measures relating to demographics, empathy, and PI. Scores were compared between the study and comparison samples. The study sample scored significantly lower for CE and affective empathy (AE) and significantly higher for PI than the comparison sample. Exploratory and regression analyses were run to examine associations between variables within the study sample. Analyses revealed that CE predicted the resilience outcome whilst AE did not. These results suggest that interventions for partners of people with depression that bolster the CE dimension alone may improve mental health outcomes for both members of the couple relationship.Keywords: affective empathy, cognitive empathy, depression, partners, psychological inflexibility
Procedia PDF Downloads 1326347 Indian Premier League (IPL) Score Prediction: Comparative Analysis of Machine Learning Models
Authors: Rohini Hariharan, Yazhini R, Bhamidipati Naga Shrikarti
Abstract:
In the realm of cricket, particularly within the context of the Indian Premier League (IPL), the ability to predict team scores accurately holds significant importance for both cricket enthusiasts and stakeholders alike. This paper presents a comprehensive study on IPL score prediction utilizing various machine learning algorithms, including Support Vector Machines (SVM), XGBoost, Multiple Regression, Linear Regression, K-nearest neighbors (KNN), and Random Forest. Through meticulous data preprocessing, feature engineering, and model selection, we aimed to develop a robust predictive framework capable of forecasting team scores with high precision. Our experimentation involved the analysis of historical IPL match data encompassing diverse match and player statistics. Leveraging this data, we employed state-of-the-art machine learning techniques to train and evaluate the performance of each model. Notably, Multiple Regression emerged as the top-performing algorithm, achieving an impressive accuracy of 77.19% and a precision of 54.05% (within a threshold of +/- 10 runs). This research contributes to the advancement of sports analytics by demonstrating the efficacy of machine learning in predicting IPL team scores. The findings underscore the potential of advanced predictive modeling techniques to provide valuable insights for cricket enthusiasts, team management, and betting agencies. Additionally, this study serves as a benchmark for future research endeavors aimed at enhancing the accuracy and interpretability of IPL score prediction models.Keywords: indian premier league (IPL), cricket, score prediction, machine learning, support vector machines (SVM), xgboost, multiple regression, linear regression, k-nearest neighbors (KNN), random forest, sports analytics
Procedia PDF Downloads 506346 Teachers' Technological Pedagogical and Content Knowledge and Technology Integration in Teaching and Learning in a Small Island Developing State: A Concept Paper
Authors: Aminath Waseela, Vinesh Chandra, Shaun Nykvist,
Abstract:
The success of technology integration initiatives hinges on the knowledge and skills of teachers to effectively integrate technology in classroom teaching. Consequently, gaining an understanding of teachers' technology knowledge and its integration can provide useful insights on strategies that can be adopted to enhance teaching and learning, especially in developing country contexts where research is scant. This paper extends existing knowledge on teachers' use of technology by developing a conceptual framework that recognises how three key types of knowledge; content, pedagogy, technology, and their integration are at the crux of teachers' technology use while at the same time is amenable to empirical studies. Although the aforementioned knowledge is important for effective use of technology that can result in enhanced student engagement, literature on how this knowledge leads to effective technology use and enhanced student engagement is limited. Thus, this theoretical paper proposes a framework to explore teachers' knowledge through the lens of the Technological Pedagogical and Content Knowledge (TPACK); the integration of technology in classroom teaching through the Substitution Augmentation Modification and Redefinition (SAMR) model and how this affects students' learning through the Bloom's Digital Taxonomy (BDT) lens. Studies using this framework could inform the design of professional development to support teachers to develop skills for effective use of available technology that can enhance student learning engagement.Keywords: information and communication technology, ICT, in-service training, small island developing states, SIDS, student engagement, technology integration, technology professional development training, technological pedagogical and content knowledge, TPACK
Procedia PDF Downloads 1436345 Localization of Geospatial Events and Hoax Prediction in the UFO Database
Authors: Harish Krishnamurthy, Anna Lafontant, Ren Yi
Abstract:
Unidentified Flying Objects (UFOs) have been an interesting topic for most enthusiasts and hence people all over the United States report such findings online at the National UFO Report Center (NUFORC). Some of these reports are a hoax and among those that seem legitimate, our task is not to establish that these events confirm that they indeed are events related to flying objects from aliens in outer space. Rather, we intend to identify if the report was a hoax as was identified by the UFO database team with their existing curation criterion. However, the database provides a wealth of information that can be exploited to provide various analyses and insights such as social reporting, identifying real-time spatial events and much more. We perform analysis to localize these time-series geospatial events and correlate with known real-time events. This paper does not confirm any legitimacy of alien activity, but rather attempts to gather information from likely legitimate reports of UFOs by studying the online reports. These events happen in geospatial clusters and also are time-based. We look at cluster density and data visualization to search the space of various cluster realizations to decide best probable clusters that provide us information about the proximity of such activity. A random forest classifier is also presented that is used to identify true events and hoax events, using the best possible features available such as region, week, time-period and duration. Lastly, we show the performance of the scheme on various days and correlate with real-time events where one of the UFO reports strongly correlates to a missile test conducted in the United States.Keywords: time-series clustering, feature extraction, hoax prediction, geospatial events
Procedia PDF Downloads 3756344 Neighborhood Graph-Optimized Preserving Discriminant Analysis for Image Feature Extraction
Authors: Xiaoheng Tan, Xianfang Li, Tan Guo, Yuchuan Liu, Zhijun Yang, Hongye Li, Kai Fu, Yufang Wu, Heling Gong
Abstract:
The image data collected in reality often have high dimensions, and it contains noise and redundant information. Therefore, it is necessary to extract the compact feature expression of the original perceived image. In this process, effective use of prior knowledge such as data structure distribution and sample label is the key to enhance image feature discrimination and robustness. Based on the above considerations, this paper proposes a local preserving discriminant feature learning model based on graph optimization. The model has the following characteristics: (1) Locality preserving constraint can effectively excavate and preserve the local structural relationship between data. (2) The flexibility of graph learning can be improved by constructing a new local geometric structure graph using label information and the nearest neighbor threshold. (3) The L₂,₁ norm is used to redefine LDA, and the diagonal matrix is introduced as the scale factor of LDA, and the samples are selected, which improves the robustness of feature learning. The validity and robustness of the proposed algorithm are verified by experiments in two public image datasets.Keywords: feature extraction, graph optimization local preserving projection, linear discriminant analysis, L₂, ₁ norm
Procedia PDF Downloads 1476343 Machine Learning Facing Behavioral Noise Problem in an Imbalanced Data Using One Side Behavioral Noise Reduction: Application to a Fraud Detection
Authors: Salma El Hajjami, Jamal Malki, Alain Bouju, Mohammed Berrada
Abstract:
With the expansion of machine learning and data mining in the context of Big Data analytics, the common problem that affects data is class imbalance. It refers to an imbalanced distribution of instances belonging to each class. This problem is present in many real world applications such as fraud detection, network intrusion detection, medical diagnostics, etc. In these cases, data instances labeled negatively are significantly more numerous than the instances labeled positively. When this difference is too large, the learning system may face difficulty when tackling this problem, since it is initially designed to work in relatively balanced class distribution scenarios. Another important problem, which usually accompanies these imbalanced data, is the overlapping instances between the two classes. It is commonly referred to as noise or overlapping data. In this article, we propose an approach called: One Side Behavioral Noise Reduction (OSBNR). This approach presents a way to deal with the problem of class imbalance in the presence of a high noise level. OSBNR is based on two steps. Firstly, a cluster analysis is applied to groups similar instances from the minority class into several behavior clusters. Secondly, we select and eliminate the instances of the majority class, considered as behavioral noise, which overlap with behavior clusters of the minority class. The results of experiments carried out on a representative public dataset confirm that the proposed approach is efficient for the treatment of class imbalances in the presence of noise.Keywords: machine learning, imbalanced data, data mining, big data
Procedia PDF Downloads 1306342 A Meta Analysis of the Recent Work-Related Research of BEC-Teachers in the Graduate Programs of the Selected HEIs in Region I and CAR
Authors: Sherelle Lou Sumera Icutan, Sheila P. Cayabyab, Mary Jane Laruan, Paulo V. Cenas, Agustina R. Tactay
Abstract:
This study critically analyzed the recent theses and dissertations of the Basic Education Curriculum (BEC) teachers who finished their graduate programs in selected higher educational institutions in Region I and CAR to be able to come up with a unified result from the varied results of the analyzed research works. All theses and dissertations completed by the educators/teachers/school personnel in the secondary and elementary public and private schools in Region 1 and CAR from AY 2003–2004 to AY 2007–2008 were classified first–as to work or non-work related; second–as to the different aspects of the curriculum: implementation, content, instructional materials, assessment instruments, learning, teaching, and others; third–as to being eligible for meta-analysis or not. Only studies found eligible for meta-analysis were subjected to the procedure. Aside from documentary analysis, the statistical treatments used in meta-analysis include the standardized effect size, Pearson’s correlation (r), the chi-square test of homogeneity and the inverse of the Fisher transformation. This study found out that the BEC-teachers usually probe on work-related researchers with topics that are focused on the learning performances of the students and on factors related to teaching. The development of instructional materials and assessment of implemented programs are also equally explored. However, there are only few researches on content and assessment instrument. Research findings on the areas of learning and teaching are the only aspects that are meta-analyzable. The research findings across studies in Region I and CAR of BEC teachers that focused on similar variables correlated to teaching do not vary significantly. On the contrary, research findings across studies in Region I and CAR that focused on variables correlated to learning performance significantly vary. Within each region, variations on the findings of research works related to learning performance that considered similar variables still exist. The combined finding on the effect size or relationship of the variables that are correlated to learning performance are low which means that effect is small but definite while the combined findings on the relationship of the variables correlated to teaching are slight or almost negligible.Keywords: meta-analysis, BEC teachers, work-related research,
Procedia PDF Downloads 4266341 A Survey of Field Programmable Gate Array-Based Convolutional Neural Network Accelerators
Authors: Wei Zhang
Abstract:
With the rapid development of deep learning, neural network and deep learning algorithms play a significant role in various practical applications. Due to the high accuracy and good performance, Convolutional Neural Networks (CNNs) especially have become a research hot spot in the past few years. However, the size of the networks becomes increasingly large scale due to the demands of the practical applications, which poses a significant challenge to construct a high-performance implementation of deep learning neural networks. Meanwhile, many of these application scenarios also have strict requirements on the performance and low-power consumption of hardware devices. Therefore, it is particularly critical to choose a moderate computing platform for hardware acceleration of CNNs. This article aimed to survey the recent advance in Field Programmable Gate Array (FPGA)-based acceleration of CNNs. Various designs and implementations of the accelerator based on FPGA under different devices and network models are overviewed, and the versions of Graphic Processing Units (GPUs), Application Specific Integrated Circuits (ASICs) and Digital Signal Processors (DSPs) are compared to present our own critical analysis and comments. Finally, we give a discussion on different perspectives of these acceleration and optimization methods on FPGA platforms to further explore the opportunities and challenges for future research. More helpfully, we give a prospect for future development of the FPGA-based accelerator.Keywords: deep learning, field programmable gate array, FPGA, hardware accelerator, convolutional neural networks, CNN
Procedia PDF Downloads 1276340 Introduction to Multi-Agent Deep Deterministic Policy Gradient
Authors: Xu Jie
Abstract:
As a key network security method, cryptographic services must fully cope with problems such as the wide variety of cryptographic algorithms, high concurrency requirements, random job crossovers, and instantaneous surges in workloads. Its complexity and dynamics also make it difficult for traditional static security policies to cope with the ever-changing situation. Cyber Threats and Environment. Traditional resource scheduling algorithms are inadequate when facing complex decisionmaking problems in dynamic environments. A network cryptographic resource allocation algorithm based on reinforcement learning is proposed, aiming to optimize task energy consumption, migration cost, and fitness of differentiated services (including user, data, and task security). By modeling the multi-job collaborative cryptographic service scheduling problem as a multiobjective optimized job flow scheduling problem, and using a multi-agent reinforcement learning method, efficient scheduling and optimal configuration of cryptographic service resources are achieved. By introducing reinforcement learning, resource allocation strategies can be adjusted in real time in a dynamic environment, improving resource utilization and achieving load balancing. Experimental results show that this algorithm has significant advantages in path planning length, system delay and network load balancing, and effectively solves the problem of complex resource scheduling in cryptographic services.Keywords: multi-agent reinforcement learning, non-stationary dynamics, multi-agent systems, cooperative and competitive agents
Procedia PDF Downloads 216339 Empowering Middle School Math Coordinators as Agents of Transformation: The Impact of the Mitar Program on Mathematical Literacy and Social-Emotional Learning Integration
Authors: Saleit Ron
Abstract:
The Mitar program was established to drive a shift in middle school mathematics education, emphasizing the connection of math to real-life situations, exploring mathematical modeling and literacy, and integrating social and emotional learning (SEL) components for enhanced excellence. The program envisions math coordinators as catalysts for change, equipping them to create educational materials, strengthen leadership skills, and develop SEL competencies within coordinator communities. These skills are then employed to lead transformative efforts within their respective schools. The program engaged 90 participants across six math coordinator communities during 2022-2023, involving 30-60 hours of annual learning. The process includes formative and summative evaluations through questionnaires and interviews, revealing participants' high contentment and successful integration of acquired skills into their schools. Reflections from participants highlighted the need for enhanced change leadership processes, often seeking more personalized mentoring to navigate challenges effectively.Keywords: math coordinators, mathematical literacy, mathematical modeling, SEL competencies
Procedia PDF Downloads 49