Search results for: health data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30679

Search results for: health data

27139 The Impact of Continuous Exercise on Depression Levels Among Young Female Athletes in Hamadan Province, Iran

Authors: Mahboubeh Varmaziar

Abstract:

Depression is a significant public health concern affecting people of all ages and genders. Physical activity has been shown to have a positive effect on mental health, particularly in alleviating symptoms of depression. This study aims to explore the impact of continuous exercise on depression levels among young female athletes in Hamadan Province, Iran. In this randomized controlled trial, 72 women aged 20 to 35 years attending sports centers in Hamadan Province were selected through convenient sampling and randomly assigned to either the control or experimental group. The experimental group participated in a continuous exercise program consisting of 20 sessions over six weeks, with each session lasting 30 minutes. In contrast, the control group maintained their usual daily activities at the sports center. Both groups completed demographic and Beck Depression Inventory questionnaires. Data were analyzed using descriptive and inferential statistics, including two-way ANOVA. The results of the two-way ANOVA, after controlling for the pre-test effect, revealed a significant difference in the mean depression scores between the control and experimental groups (p < 0.001). This suggests that the continuous exercise program significantly reduced depression levels in the young female athletes. The findings suggest that continuous exercise is an effective non-pharmacological intervention for reducing depression in young female athletes. Incorporating regular physical activity into treatment plans may serve as a complementary therapy alongside conventional treatments, offering a low-risk and beneficial approach to managing depression.

Keywords: depression, exercise, female athletes, yong women

Procedia PDF Downloads 66
27138 Assessment of Cattle Welfare Traveling Long Distance from Jessore (Indian Border) to Chittagong, Bangladesh

Authors: Mahabub Alam, Mohammad Mahmudul Hassan, M. Hasanuzzaman, M. Ahasanul Hoque

Abstract:

Animals are transported from one place to another for different purposes in Bangladesh. However, the potential effect of long-distance transport on cattle health has not frequently been studied. Therefore, this study was conducted to assess health conditions of cattle transported from a long distance to Chittagong in Bangladesh. A total of 100 adult cattle, regardless of breed and sex, were selected at Benapole live cattle market in Jessore between August and September 2015 for the study. Blood samples were taken from 50 randomly selected cattle at 0 hours before transportation, just after transportation, at 12-16 hours post-conclusion of transportation, and 24 hours after transportation. The external health conditions and injuries of the cattle were assessed by close inspection, and the trader was interviewed using the structured questionnaire. Images of cattle injuries were taken with a camera. The basic internal health of the cattle was evaluated using standard hemato-biochemical tests. Animals were fasted and remained standing within a small space allocation (8-10 sq feet/animal) in the vehicle during transportation. Animals were provided only with paddy straw and water prior to selling at the destination market. The overall frequency of cattle injuries varied significantly (26% before vs. 47% after transportation; p < 0.001). The frequency of different cattle injuries also significantly varied by types such as abrasion (11% vs. 21%; p < 0.05) and barbed wire injury (9% vs. 18%; p < 0.05). Single cattle injury differed significantly (21% vs. 36%; p < 0.001). Cattle health conditions varied significantly (nasal discharge: 15% vs. 28%; p < 0.05; diarrhea: 15% vs. 23%; p < 0.05 and severe dehydration: 8% vs. 20%; p < 0.001). The values of hemoglobin (Hb), total erythrocyte count (TEC), total leukocyte count (TLC), lymphocyte (L), neutrophil (N) and eosinophil (E) varied significantly (p ≤ 0.01) (Hb: 11.1mg/dl vs. 12.3mg/dl; TEC: 4.7 million/ml vs. 5.7million/ml; TLC: 6.2 thousand/ml vs. 7.3 thousand/ml; L: 61.7% vs. 58.1%; N: 29.7% vs. 32.8%; E: 3.8% vs. 4.7%). The values of serum total protein (TP), creatine kinase (CK), triglyceride (TG), calcium (Ca), phosphorus (P) and alkaline phosphatase (ALP) significantly differed (p ≤ 0.05) (TP: 6.8g/dl vs. 8.2g/dl; CK:574.9u/l vs. 1288u/l; TG: 104.7mg/dl vs. 127.7mg/dl; Ca: 11.3mg/dl vs. 13mg/dl; P: 7.3mg/dl vs. 7.6mg/dl; ALP: 303u/l vs. 363u/l). The identified status of external and internal health conditions of the cattle for trading purpose due to long-distance transportation in the present study indicates a high degree of transport stress and poor animal welfare.

Keywords: animal welfare, cattle, external and internal health conditions, transportation

Procedia PDF Downloads 185
27137 Spatial Data Science for Data Driven Urban Planning: The Youth Economic Discomfort Index for Rome

Authors: Iacopo Testi, Diego Pajarito, Nicoletta Roberto, Carmen Greco

Abstract:

Today, a consistent segment of the world’s population lives in urban areas, and this proportion will vastly increase in the next decades. Therefore, understanding the key trends in urbanization, likely to unfold over the coming years, is crucial to the implementation of sustainable urban strategies. In parallel, the daily amount of digital data produced will be expanding at an exponential rate during the following years. The analysis of various types of data sets and its derived applications have incredible potential across different crucial sectors such as healthcare, housing, transportation, energy, and education. Nevertheless, in city development, architects and urban planners appear to rely mostly on traditional and analogical techniques of data collection. This paper investigates the prospective of the data science field, appearing to be a formidable resource to assist city managers in identifying strategies to enhance the social, economic, and environmental sustainability of our urban areas. The collection of different new layers of information would definitely enhance planners' capabilities to comprehend more in-depth urban phenomena such as gentrification, land use definition, mobility, or critical infrastructural issues. Specifically, the research results correlate economic, commercial, demographic, and housing data with the purpose of defining the youth economic discomfort index. The statistical composite index provides insights regarding the economic disadvantage of citizens aged between 18 years and 29 years, and results clearly display that central urban zones and more disadvantaged than peripheral ones. The experimental set up selected the city of Rome as the testing ground of the whole investigation. The methodology aims at applying statistical and spatial analysis to construct a composite index supporting informed data-driven decisions for urban planning.

Keywords: data science, spatial analysis, composite index, Rome, urban planning, youth economic discomfort index

Procedia PDF Downloads 138
27136 AI-Based Technologies in International Arbitration: An Exploratory Study on the Practicability of Applying AI Tools in International Arbitration

Authors: Annabelle Onyefulu-Kingston

Abstract:

One of the major purposes of AI today is to evaluate and analyze millions of micro and macro data in order to determine what is relevant in a particular case and proffer it in an adequate manner. Microdata, as far as it relates to AI in international arbitration, is the millions of key issues specifically mentioned by either one or both parties or by their counsels, arbitrators, or arbitral tribunals in arbitral proceedings. This can be qualifications of expert witness and admissibility of evidence, amongst others. Macro data, on the other hand, refers to data derived from the resolution of the dispute and, consequently, the final and binding award. A notable example of this includes the rationale of the award and specific and general damages awarded, amongst others. This paper aims to critically evaluate and analyze the possibility of technological inclusion in international arbitration. This research will be imploring the qualitative method by evaluating existing literature on the consequence of applying AI to both micro and macro data in international arbitration, and how this can be of assistance to parties, counsels, and arbitrators.

Keywords: AI-based technologies, algorithms, arbitrators, international arbitration

Procedia PDF Downloads 103
27135 Applicability of the Rapid Estimate of Adult Health Literacy in Medicine (Short Form) among Patients in Dakshina Kannada District, Karnataka, India

Authors: U. P. Rathnakar, Medha Urval, K. Ashok Shenoy

Abstract:

Introduction: There are many tools available for the measurement of health literacy. REALM (Rapid Estimate of Adult Literacy in Medicine) is a very commonly used tool in advanced countries. It comes in two forms-one with 66 words and shorter version (REALM-SF) with seven words. We decided to test the applicability of shorter version of the REALM test among our patients. Methodology: REALM (SF) was tested among 200 patients in a tertiary hospital. Discussion and conclusion: From the analysis of results, when the results of pronunciation indicate adequate levels of HL skills, analysis of comprehension shows that mere reading skills is likely to be misleading. So it is proposed that in Indian population who have adequate reading skills without adequate comprehension the REALM-SF test tool in its present form may not be an ideal testing tool for assessing HL.

Keywords: health literacy, REALM, short form, India

Procedia PDF Downloads 470
27134 A Virtual Grid Based Energy Efficient Data Gathering Scheme for Heterogeneous Sensor Networks

Authors: Siddhartha Chauhan, Nitin Kumar Kotania

Abstract:

Traditional Wireless Sensor Networks (WSNs) generally use static sinks to collect data from the sensor nodes via multiple forwarding. Therefore, network suffers with some problems like long message relay time, bottle neck problem which reduces the performance of the network. Many approaches have been proposed to prevent this problem with the help of mobile sink to collect the data from the sensor nodes, but these approaches still suffer from the buffer overflow problem due to limited memory size of sensor nodes. This paper proposes an energy efficient scheme for data gathering which overcomes the buffer overflow problem. The proposed scheme creates virtual grid structure of heterogeneous nodes. Scheme has been designed for sensor nodes having variable sensing rate. Every node finds out its buffer overflow time and on the basis of this cluster heads are elected. A controlled traversing approach is used by the proposed scheme in order to transmit data to sink. The effectiveness of the proposed scheme is verified by simulation.

Keywords: buffer overflow problem, mobile sink, virtual grid, wireless sensor networks

Procedia PDF Downloads 397
27133 Information Communication Technology Based Road Traffic Accidents’ Identification, and Related Smart Solution Utilizing Big Data

Authors: Ghulam Haider Haidaree, Nsenda Lukumwena

Abstract:

Today the world of research enjoys abundant data, available in virtually any field, technology, science, and business, politics, etc. This is commonly referred to as big data. This offers a great deal of precision and accuracy, supportive of an in-depth look at any decision-making process. When and if well used, Big Data affords its users with the opportunity to produce substantially well supported and good results. This paper leans extensively on big data to investigate possible smart solutions to urban mobility and related issues, namely road traffic accidents, its casualties, and fatalities based on multiple factors, including age, gender, location occurrences of accidents, etc. Multiple technologies were used in combination to produce an Information Communication Technology (ICT) based solution with embedded technology. Those technologies include principally Geographic Information System (GIS), Orange Data Mining Software, Bayesian Statistics, to name a few. The study uses the Leeds accident 2016 to illustrate the thinking process and extracts thereof a model that can be tested, evaluated, and replicated. The authors optimistically believe that the proposed model will significantly and smartly help to flatten the curve of road traffic accidents in the fast-growing population densities, which increases considerably motor-based mobility.

Keywords: accident factors, geographic information system, information communication technology, mobility

Procedia PDF Downloads 211
27132 Ergonomic Assessment of Workplace Environment of Flour Mill Workers

Authors: Jayshree P. Zend, Ashatai B. Pawar

Abstract:

The study was carried out in Parbhani district of Maharashtra state, India with the objectives to study environmental problems faced by flour mill workers, prevalence of work-related health hazards and the physiological cost of workers while performing work in flour mill in traditional method as well as improved method. The use of flour presser, dust controlling bag and noise and dust controlling mask developed by AICRP College of Home Science, VNMKV, Parbhani was considered as an improved method. This investigation consisted survey and experiment which was conducted in the respective locations of flour mills. Healthy, non-smoking 30 flour mill workers ranged between the age group of 20-50 yrs comprising 16 female and 14 male working at flour mill for 4-8 hrs/ day and 6 days/ week and had minimum five years experience of work in flour mill were selected for the study. Pulmonary function test of flour mill workers was carried out by trained technician at Dr. ShankarraoChavan Government Medical College, Nanded by using Electronic Spirometer. The data regarding heart rate (resting, working and recovery), energy expenditure, musculoskeletal problems and occupational health hazards and accidents were recorded by using pretested questionnaire. Scientific equipment used in the experiment were polar sport test heart rate monitor, Hygrometer, Goniometer, Dialed Thermometer, Sound Level Meter, Lux Meter, Ambient Air Sampler and Air Quality Monitor. The collected data were subjected to appropriate statistical analysis such as 't' test and correlation coefficient test. Results indicated that improved method i.e. use of noise and dust controlling mask, flour presser and dust controlling bag were effective in reducing physiological cost of work of flour mill workers. Lung function test of flour mill workers showed decreased values of all parameters, hence the results of present study support paying attention to use of personal protective noise and dust controlling mask by flour mill workers and also to the working conditions in flour mill especially ventilation and illumination level needs to be enhanced in flour mill. The study also emphasizes the need to develop some mechanism for lifting load of grains and unloading in the hopper. It is also suggested that the flour mill workers should use flour presser suitable to their height to avoid frequent bending and should use dust controlling bag to flour outlet of machine to reduce inhalable flour dust level in the flour mill.

Keywords: physiological cost, energy expenditure, musculoskeletal problems

Procedia PDF Downloads 405
27131 Attitudes, Knowledge and Perceptions towards Cervical Cancer Messages among Female University Students

Authors: Anne Nattembo

Abstract:

Cervical cancer remains a major public health problem in developing countries, especially in Africa. Effective cervical cancer prevention communication requires identification of behaviors, attitudes and increasing awareness of a given population; thus this study focused on investigating awareness, attitudes, and behavior among female university students towards cervical cancer messages. The study objectives sought to investigate the communication behavior of young adults towards cervical cancer, to understand female students recognition of cervical cancer as a problem, to identify the frames related to cervical cancer and their impact towards audience communication and participation behaviors, to identify the factors that influence behavioral intentions and level of involvement towards cervical cancer services and to make recommendations on how to improve cervical cancer communication towards female university students. The researcher obtained data using semi-structured interviews and focus group discussions targeting 90 respondents. The semi-structured in-depth interviews were carried out through one-on-one discussions basis using a set of prepared questions among 53 respondents. All interviews were audio-tape recorded. Each interview was directly typed into Microsoft Word. 4 focus group discussions were conducted with a total of 37 respondents; 2 female only groups with 10 respondents in one and 9 respondents in another, 1 mixed with 12 participants 5 of whom were male, and 1 male only group with 6 participants. The key findings show that the participants preferred to receive and access cervical cancer information from doctors although they were mainly receiving information from the radio. In regards to the type of public the respondents represent, majority of the respondents were non-publics in the sense that they did not have knowledge about cervical cancer, had low levels of involvement and had high constraint recognition their cervical cancer knowledge levels. The researcher identified the most salient audience frames among female university students towards cervical cancer and these included; death, loss, and fear. These frames did not necessarily make cervical cancer an issue of concern among the female university students but rather an issue they distanced themselves from as they did not perceive it as a risk. The study also identified the constraints respondents face in responding to cervical cancer campaign calls-to-action which included; stigma, lack of knowledge and access to services as well as lack of recommendation from doctors. In regards to sex differences, females had more knowledge about cervical cancer than the males. In conclusion the study highlights the importance of interpersonal communication in risk or health communication with a focus on health providers proactively sharing cervical cancer prevention information with their patients. Health provider’s involvement in cervical cancer is very important in influencing behavior and compliance of cervical cancer calls-to-action. The study also provides recommendations for designing effective cervical cancer campaigns that will positively impact on the audience such as packaging cervical cancer messages that also target the males as a way of increasing their involvement and more campaigns to increase awareness of cervical cancer as well as designing positive framed messages to counter the negative audience frames towards cervical cancer.

Keywords: cervical cancer communication, health communication, university students, risk communication

Procedia PDF Downloads 236
27130 Analysis of ECGs Survey Data by Applying Clustering Algorithm

Authors: Irum Matloob, Shoab Ahmad Khan, Fahim Arif

Abstract:

As Indo-pak has been the victim of heart diseases since many decades. Many surveys showed that percentage of cardiac patients is increasing in Pakistan day by day, and special attention is needed to pay on this issue. The framework is proposed for performing detailed analysis of ECG survey data which is conducted for measuring the prevalence of heart diseases statistics in Pakistan. The ECG survey data is evaluated or filtered by using automated Minnesota codes and only those ECGs are used for further analysis which is fulfilling the standardized conditions mentioned in the Minnesota codes. Then feature selection is performed by applying proposed algorithm based on discernibility matrix, for selecting relevant features from the database. Clustering is performed for exposing natural clusters from the ECG survey data by applying spectral clustering algorithm using fuzzy c means algorithm. The hidden patterns and interesting relationships which have been exposed after this analysis are useful for further detailed analysis and for many other multiple purposes.

Keywords: arrhythmias, centroids, ECG, clustering, discernibility matrix

Procedia PDF Downloads 355
27129 The Impact of Motivation on Employee Performance in South Korea

Authors: Atabong Awung Lekeazem

Abstract:

The purpose of this paper is to identify the impact or role of incentives on employee’s performance with a particular emphasis on Korean workers. The process involves defining and explaining the different types of motivation. In defining them, we also bring out the difference between the two major types of motivations. The second phase of the paper shall involve gathering data/information from a sample population and then analyzing the data. In the analysis, we shall get to see the almost similar mentality or value which Koreans attach to motivation, which a slide different view coming only from top management personnel. The last phase shall have us presenting the data and coming to a conclusion from which possible knowledge on how managers and potential managers can ignite the best out of their employees.

Keywords: motivation, employee’s performance, Korean workers, business information systems

Procedia PDF Downloads 418
27128 Geochemical Characteristics and Chemical Toxicity: Appraisal of Groundwater Uranium With Other Geogenic Contaminants in Various Districts of Punjab, India

Authors: Tanu Sharma, Bikramjit Singh Bajwa, Inderpreet Kaur

Abstract:

Monitoring of groundwater in Tarn-Taran, Bathinda, Faridkot and Mansa districts of Punjab state, India is essential where this freshwater resource is being over-exploited causing quality deterioration, groundwater depletion and posing serious threats to residents. The present integrated study was done to appraise quality and suitability of groundwater for drinking/irrigation purposes, hydro-geochemical characteristics, source identification and associated health risks. In the present study, groundwater of various districts of Punjab state was found to be heavily contaminated with As followed by U, thus posing high cancerous risks to local residents via ingestion, along with minor contamination of Fe, Mn, Pb and F−. Most health concerns in the study region were due to the elevated concentrations of arsenic in groundwater with average values of 130 µg L-1, 176 µg L-1, 272 µg L-1 and 651 µg L-1 in Tarn-Taran, Bathinda, Faridkot and Mansa districts, respectively, which is quite high as compared to the safe limit as recommended by BIS i.e. 10 µg L-1. In Tarn-Taran, Bathinda, Faridkot and Mansa districts, average uranium contents were found to be 37 µg L-1, 88 µg L-1, 61 µg L-1 and 104 µg L-1, with 51 %, 74 %, 61 % and 71 % samples, respectively, being above the WHO limit of 30 µg L-1 in groundwater. Further, the quality indices showed that groundwater of study region is suited for irrigation but not appropriate for drinking purposes. Hydro-geochemical studies revealed that most of the collected groundwater samples belonged to Ca2+ - Mg2+ - HCO3- type showing dominance of MgCO3 type which indicates the presence of temporary hardness in groundwater. Rock-water reactions and reverse ion exchange were the predominant factors for controlling hydro-geochemistry in the study region. Dissolution of silicate minerals caused the dominance of Na+ ions in the aquifers of study region. Multivariate statistics revealed that along with geogenic sources, contribution of anthropogenic activities such as injudicious application of agrochemicals and domestic waste discharge was also very significant. The results obtained abolished the myth that uranium is only root cause for large number of cancer patients in study region as arsenic and mercury were also present in groundwater at levels that were of health concern to groundwater.

Keywords: uranium, trace elements, multivariate data analysis, risk assessment

Procedia PDF Downloads 75
27127 Improved Classification Procedure for Imbalanced and Overlapped Situations

Authors: Hankyu Lee, Seoung Bum Kim

Abstract:

The issue with imbalance and overlapping in the class distribution becomes important in various applications of data mining. The imbalanced dataset is a special case in classification problems in which the number of observations of one class (i.e., major class) heavily exceeds the number of observations of the other class (i.e., minor class). Overlapped dataset is the case where many observations are shared together between the two classes. Imbalanced and overlapped data can be frequently found in many real examples including fraud and abuse patients in healthcare, quality prediction in manufacturing, text classification, oil spill detection, remote sensing, and so on. The class imbalance and overlap problem is the challenging issue because this situation degrades the performance of most of the standard classification algorithms. In this study, we propose a classification procedure that can effectively handle imbalanced and overlapped datasets by splitting data space into three parts: nonoverlapping, light overlapping, and severe overlapping and applying the classification algorithm in each part. These three parts were determined based on the Hausdorff distance and the margin of the modified support vector machine. An experiments study was conducted to examine the properties of the proposed method and compared it with other classification algorithms. The results showed that the proposed method outperformed the competitors under various imbalanced and overlapped situations. Moreover, the applicability of the proposed method was demonstrated through the experiment with real data.

Keywords: classification, imbalanced data with class overlap, split data space, support vector machine

Procedia PDF Downloads 309
27126 A Survey of Types and Causes of Medication Errors and Related Factors in Clinical Nurses

Authors: Kouorsh Zarea, Fatemeh Hassani, Samira Beiranvand, Akram Mohamadi

Abstract:

Background and Objectives: Medication error in hospitals is a major cause of the errors which disrupt the health care system. The aim of this study was to assess the nurses’ medication errors and related factors. Material and methods: This was a descriptive study on 225 nurses in various hospitals, selected through multistage random sampling. Data was collected by three researcher made tools; demographic, medication error and related factors questionnaires. Data was analyzed by descriptive statistics, Chi-square, Kruskal-Wallis, One-way analysis of variance. Results: Based on the results obtained, the type of medication errors giving drugs to patients later or earlier (55.6%), multiple oral medication together regardless of their interactions (36%) and the postoperative analgesic without a prescription (34.2%), respectively. In addition, factors such as the shortage of nurses to patients’ ratio (57.3%), high load functions (51.1%) and fatigue caused by the extra work (40.4%), were the most important factors affecting the incidence of medication errors. The fear of legal issues (40%) are the most important factor is the lack of reported medication errors. Conclusions: Based on the results, effective management and promotion motivate nurses. Therefore, increasing scientific and clinical expertise in the field of nursing medication orders is recommended to prevent medication errors in various states of nursing intervention. Employing experienced staff in areas with high risk of medication errors and also supervising less-experienced staff through competent personnel are also suggested.

Keywords: medication error, nurse, clinical care, drug errors

Procedia PDF Downloads 267
27125 Management of Municipal Solid Waste in Baghdad, Iraq

Authors: Ayad Sleibi Mustafa, Ahmed Abdulkadhim Mohsin, Layth Noori Ali

Abstract:

The deterioration of solid waste management in Baghdad city is considered as a great challenge in terms of human health and environment. Baghdad city is divided into thirteen districts which are distributed on both Tigris River banks. The west bank is Al-Karkh and the east bank is Al-Rusafa. Municipal Solid Waste Management is one of the most complicated problems facing the environment in Iraq. Population growth led to increase waste production and more load of the waste to the limited capacity infrastructure. The problems of municipal solid waste become more serious after the war in 2003. More waste is disposed in underground landfills in Baghdad with little or no concern for both human health and environment. The results showed that the total annually predicted solid waste is increasing for the period 2015-2030. Municipal solid waste in 2030 will be 6,427,773 tons in Baghdad city according to the population growth rate of 2.4%. This increase is estimated to be approximately 30%.

Keywords: municipal solid waste, solid waste composition and characteristics, Baghdad city, environment, human health

Procedia PDF Downloads 299
27124 Mapping of Geological Structures Using Aerial Photography

Authors: Ankit Sharma, Mudit Sachan, Anurag Prakash

Abstract:

Rapid growth in data acquisition technologies through drones, have led to advances and interests in collecting high-resolution images of geological fields. Being advantageous in capturing high volume of data in short flights, a number of challenges have to overcome for efficient analysis of this data, especially while data acquisition, image interpretation and processing. We introduce a method that allows effective mapping of geological fields using photogrammetric data of surfaces, drainage area, water bodies etc, which will be captured by airborne vehicles like UAVs, we are not taking satellite images because of problems in adequate resolution, time when it is captured may be 1 yr back, availability problem, difficult to capture exact image, then night vision etc. This method includes advanced automated image interpretation technology and human data interaction to model structures and. First Geological structures will be detected from the primary photographic dataset and the equivalent three dimensional structures would then be identified by digital elevation model. We can calculate dip and its direction by using the above information. The structural map will be generated by adopting a specified methodology starting from choosing the appropriate camera, camera’s mounting system, UAVs design ( based on the area and application), Challenge in air borne systems like Errors in image orientation, payload problem, mosaicing and geo referencing and registering of different images to applying DEM. The paper shows the potential of using our method for accurate and efficient modeling of geological structures, capture particularly from remote, of inaccessible and hazardous sites.

Keywords: digital elevation model, mapping, photogrammetric data analysis, geological structures

Procedia PDF Downloads 689
27123 Gardening as a Contextual Scaffold for Learning: Connecting Community Wisdom for Science and Health Learning through Participatory Action Research

Authors: Kamal Prasad Acharya

Abstract:

The related literature suggests that teaching and learning science at the basic level community schools in Nepal is based on book recitation. Consequently, the achievement levels and the understanding of basic science concepts is much below the policy expectations. In this context, this study intended to gain perception in the implementation practices of school gardens ‘One Garden One School’ for science learning and to meet the target of sustainable development goals that connects community wisdom regarding school gardening activities (SGAs) for science learning. This Participatory Action Research (PAR) study was done at the action school located in Province 3, Chitwan of Federal Nepal, supported under the NORHED/Rupantaran project. The purpose of the study was to connect the community wisdom related to gardening activities as contextual scaffolds for science learning. For this, in-depth interviews and focus group discussions were applied to collect data which were analyzed using a thematic analysis. Basic level students, science teachers, and parents reported having wonderful experiences such as active and meaningful engagement in school gardening activities for science learning as well as science teachers’ motivation in activity-based science learning. Overall, teachers, students, and parents reported that the school gardening activities have been found to have had positive effects on students’ science learning as they develop basic scientific concepts by connecting community wisdom as a contextual scaffold. It is recommended that the establishment of a school garden is important for science learning in community schools throughout Nepal.

Keywords: contextual scaffold, community wisdom, science and health learning, school garden

Procedia PDF Downloads 180
27122 Monitoring the Fiscal Health of Taiwan’s Local Government: Application of the 10-Point Scale of Fiscal Distress

Authors: Yuan-Hong Ho, Chiung-Ju Huang

Abstract:

This article presents a monitoring indicators system that predicts whether a local government in Taiwan is heading for fiscal distress and identifies a suitable fiscal policy that would allow the local government to achieve fiscal balance in the long run. This system is relevant to stockholders’ interest, simple for national audit bodies to use, and provides an early warning of fiscal distress that allows preventative action to be taken.

Keywords: fiscal health, fiscal distress, monitoring signals, 10-point scale

Procedia PDF Downloads 463
27121 Using Optical Character Recognition to Manage the Unstructured Disaster Data into Smart Disaster Management System

Authors: Dong Seop Lee, Byung Sik Kim

Abstract:

In the 4th Industrial Revolution, various intelligent technologies have been developed in many fields. These artificial intelligence technologies are applied in various services, including disaster management. Disaster information management does not just support disaster work, but it is also the foundation of smart disaster management. Furthermore, it gets historical disaster information using artificial intelligence technology. Disaster information is one of important elements of entire disaster cycle. Disaster information management refers to the act of managing and processing electronic data about disaster cycle from its’ occurrence to progress, response, and plan. However, information about status control, response, recovery from natural and social disaster events, etc. is mainly managed in the structured and unstructured form of reports. Those exist as handouts or hard-copies of reports. Such unstructured form of data is often lost or destroyed due to inefficient management. It is necessary to manage unstructured data for disaster information. In this paper, the Optical Character Recognition approach is used to convert handout, hard-copies, images or reports, which is printed or generated by scanners, etc. into electronic documents. Following that, the converted disaster data is organized into the disaster code system as disaster information. Those data are stored in the disaster database system. Gathering and creating disaster information based on Optical Character Recognition for unstructured data is important element as realm of the smart disaster management. In this paper, Korean characters were improved to over 90% character recognition rate by using upgraded OCR. In the case of character recognition, the recognition rate depends on the fonts, size, and special symbols of character. We improved it through the machine learning algorithm. These converted structured data is managed in a standardized disaster information form connected with the disaster code system. The disaster code system is covered that the structured information is stored and retrieve on entire disaster cycle such as historical disaster progress, damages, response, and recovery. The expected effect of this research will be able to apply it to smart disaster management and decision making by combining artificial intelligence technologies and historical big data.

Keywords: disaster information management, unstructured data, optical character recognition, machine learning

Procedia PDF Downloads 134
27120 The Knowledge and Attitude of Doping among Junior Athletes and Coaches in Sri Lanka

Authors: Mahadula I. P. Kumari, Kasturiratne A., De Silva AP

Abstract:

Doping refers to an athlete's use of banned substances as a method to improve training and performance in sports. It is known that some young athletes use banned substances in Sri Lanka without knowing their side effects and associated health risks. The main objective of this study was to describe the level of knowledge and attitude among junior athletes and coaches on doping in sports. This is a descriptive cross-sectional study. Four individual sports and six team sports were taken into the study. Schools were selected considering the results of the all-island school sports competitions 2017. Two hundred sixty-two female athletes, 290 male athletes and 30 coaches representing all sports counted into this study. The data collection method was a self-administered questionnaire and SPSS Version 21 was used for the data analysis. According to the result, 79% of athletes have heard of the term "doping," and 21% have never heard of it. This means these children have not been educated on doping. A number of questions were asked to study the level of knowledge of the coaches and players. Those who answered the questions correctly were given a mark. According to the marks, it is evident that the level of knowledge of the players and coaches is very low. All athletes and coaches do not accept the use of banned substances. This shows that athletes and coaches have a good attitude about winning without cheating. It was evident that athletes in athletics, weightlifting, rugby, and badminton had some level of knowledge about banned substances. All coaches stated that school athletes and coaches do not have sufficient knowledge of banned substances. And they should be made aware of it. This study has revealed that school/Junior athletes and coaches have limited knowledge of banned substances. School children and coaches need to be educated about banned substances and their harmful effects.

Keywords: attitude, doping, knowledge, Sri Lanka

Procedia PDF Downloads 254
27119 Predicting Seoul Bus Ridership Using Artificial Neural Network Algorithm with Smartcard Data

Authors: Hosuk Shin, Young-Hyun Seo, Eunhak Lee, Seung-Young Kho

Abstract:

Currently, in Seoul, users have the privilege to avoid riding crowded buses with the installation of Bus Information System (BIS). BIS has three levels of on-board bus ridership level information (spacious, normal, and crowded). However, there are flaws in the system due to it being real time which could provide incomplete information to the user. For example, a bus comes to the station, and on the BIS it shows that the bus is crowded, but on the stop that the user is waiting many people get off, which would mean that this station the information should show as normal or spacious. To fix this problem, this study predicts the bus ridership level using smart card data to provide more accurate information about the passenger ridership level on the bus. An Artificial Neural Network (ANN) is an interconnected group of nodes, that was created based on the human brain. Forecasting has been one of the major applications of ANN due to the data-driven self-adaptive methods of the algorithm itself. According to the results, the ANN algorithm was stable and robust with somewhat small error ratio, so the results were rational and reasonable.

Keywords: smartcard data, ANN, bus, ridership

Procedia PDF Downloads 170
27118 Combination of Artificial Neural Network Model and Geographic Information System for Prediction Water Quality

Authors: Sirilak Areerachakul

Abstract:

Water quality has initiated serious management efforts in many countries. Artificial Neural Network (ANN) models are developed as forecasting tools in predicting water quality trend based on historical data. This study endeavors to automatically classify water quality. The water quality classes are evaluated using 6 factor indices. These factors are pH value (pH), Dissolved Oxygen (DO), Biochemical Oxygen Demand (BOD), Nitrate Nitrogen (NO3N), Ammonia Nitrogen (NH3N) and Total Coliform (T-Coliform). The methodology involves applying data mining techniques using multilayer perceptron (MLP) neural network models. The data consisted of 11 sites of Saen Saep canal in Bangkok, Thailand. The data is obtained from the Department of Drainage and Sewerage Bangkok Metropolitan Administration during 2007-2011. The results of multilayer perceptron neural network exhibit a high accuracy multilayer perception rate at 94.23% in classifying the water quality of Saen Saep canal in Bangkok. Subsequently, this encouraging result could be combined with GIS data improves the classification accuracy significantly.

Keywords: artificial neural network, geographic information system, water quality, computer science

Procedia PDF Downloads 346
27117 Assessment of Nurse's Knowledge Toward Infection Control for Wound Care in Governmental Hospital at Amran City-Yemen

Authors: Fares Mahdi

Abstract:

Background: Infection control is an important concern for all health care professionals, especially nurses. Nurses have a higher risk for both self-acquiring and transmitting infections to other patients. Aim of this study: to assess nurses' knowledge regarding infection control for wound care. Methodology: a descriptive research design was used in the study. The total number studied sample was 200 nurses, were conducting in Amran Public Hospitals in Amran City- Yemen. The study covered sample nurses in the hospital according to the study population; a standard closed-ended questionnaire was used to collect the data. Results: The results showed less than half (37.5 %) of nurses were from 22 May Hospital, also followed by (62.5%) of them were from Maternal and Child Hospital. Also according to the department name. Most (22.5%) of nurses worked in an intensive care unit, followed by (20%) of them were working in the pediatric world, also about (19%) of them were working in the surgical department. While in finally, only about (8.5%) of them worked from another department. According to course training, The results showed about (21%) of nurses had course training in wound care management. At the same time, others (79%) of them have not had course training in wound care management. According to the total nurse's knowledge of infection control for wound care, that find more than two-thirds (68%) of nurses had fair knowledge according to total all of nurse's knowledge of infection control wound care. Conclusion:The results showed that more than two-thirds (68%) of nurses had fair knowledge according to total all of the nurse's knowledge of infection control for wound care. Recommendations: There should be providing training program about infection control masseurs and it's important for new employees of nurses. Providing continuing refreshment training courses about infection control programs and about evidence-based practice in infection control for all health care teams.

Keywords: assessment, knowledge, infection control, wound care, nurses, amran hospitals

Procedia PDF Downloads 101
27116 Socio-Economic Impact of Covid-19 in Ethiopia

Authors: Kebron Abich Asnake

Abstract:

The outbreak of COVID-19 has had far-reaching socio-economic consequences globally, and Ethiopia is no exception. This abstract provides a summary of a research study on the socio-economic impact of COVID-19 in Ethiopia. The study analyzes the health impact, economic repercussions, social consequences, government response measures, and opportunities for post-crisis recovery. In terms of health impact, the research explores the spread and transmission of the virus, the capacity and response of the healthcare system, and the mortality rate, with a focus on vulnerable populations. The economic impact analysis entails investigating the contraction of the GDP, employment and income loss, disruption in key sectors such as agriculture, tourism, and manufacturing, and the specific implications for small and medium-sized enterprises (SMEs), foreign direct investment, and remittances. The social impact section looks at the disruptions in education and the digital divide, food security and nutrition challenges, increased poverty and inequality, gender-based violence, and mental health issues. The research also examines the measures taken by the Ethiopian government, including health and safety regulations, economic stimulus packages, social protection programs, and support for vulnerable populations. Furthermore, the study outlines long-term recovery prospects, social cohesion, and community resilience challenges. It highlights the need to strengthen the healthcare system and finds a balance between health and economic priorities. The research concludes by presenting recommendations for policy-makers and stakeholders, emphasizing opportunities for post-crisis recovery such as diversification of the economy, enhanced healthcare infrastructure, investment in digital infrastructure and technology, and support for domestic tourism and local industries. This research provides valuable insights into the socio-economic impact of COVID-19 in Ethiopia, offering a comprehensive analysis of the challenges faced and potential pathways towards recovery.

Keywords: impact, covid, ethiopia, health

Procedia PDF Downloads 88
27115 The Incidence of Prostate Cancer in Previous Infected E. Coli Population

Authors: Andreea Molnar, Amalia Ardeljan, Lexi Frankel, Marissa Dallara, Brittany Nagel, Omar Rashid

Abstract:

Background: Escherichia coli is a gram-negative, facultative anaerobic bacteria that belongs to the family Enterobacteriaceae and resides in the intestinal tracts of individuals. E.Coli has numerous strains grouped into serogroups and serotypes based on differences in antigens in their cell walls (somatic, or “O” antigens) and flagella (“H” antigens). More than 700 serotypes of E. coli have been identified. Although most strains of E. coli are harmless, a few strains, such as E. coli O157:H7 which produces Shiga toxin, can cause intestinal infection with symptoms of severe abdominal cramps, bloody diarrhea, and vomiting. Infection with E. Coli can lead to the development of systemic inflammation as the toxin exerts its effects. Chronic inflammation is now known to contribute to cancer development in several organs, including the prostate. The purpose of this study was to evaluate the correlation between E. Coli and the incidence of prostate cancer. Methods: Data collected in this cohort study was provided by a Health Insurance Portability and Accountability Act (HIPAA) compliant national database to evaluate patients infected with E.Coli infection and prostate cancer using the International Classification of Disease (ICD-10 and ICD-9 codes). Permission to use the database was granted by Holy Cross Health, Fort Lauderdale for the purpose of academic research. Data analysis was conducted through the use of standard statistical methods. Results: Between January 2010 and December 2019, the query was analyzed and resulted in 81, 037 patients after matching in both infected and control groups, respectively. The two groups were matched by Age Range and CCI score. The incidence of prostate cancer was 2.07% and 1,680 patients in the E. Coli group compared to 5.19% and 4,206 patients in the control group. The difference was statistically significant by a p-value p<2.2x10-16 with an Odds Ratio of 0.53 and a 95% CI. Based on the specific treatment for E.Coli, the infected group vs control group were matched again with a result of 31,696 patients in each group. 827 out of 31,696 (2.60%) patients with a prior E.coli infection and treated with antibiotics were compared to 1634 out of 31,696 (5.15%) patients with no history of E.coli infection (control) and received antibiotic treatment. Both populations subsequently developed prostate carcinoma. Results remained statistically significant (p<2.2x10-16), Odds Ratio=0.55 (95% CI 0.51-0.59). Conclusion: This retrospective study shows a statistically significant correlation between E.Coli infection and a decreased incidence of prostate cancer. Further evaluation is needed in order to identify the impact of E.Coli infection and prostate cancer development.

Keywords: E. Coli, prostate cancer, protective, microbiology

Procedia PDF Downloads 220
27114 Improving Temporal Correlations in Empirical Orthogonal Function Expansions for Data Interpolating Empirical Orthogonal Function Algorithm

Authors: Ping Bo, Meng Yunshan

Abstract:

Satellite-derived sea surface temperature (SST) is a key parameter for many operational and scientific applications. However, the disadvantage of SST data is a high percentage of missing data which is mainly caused by cloud coverage. Data Interpolating Empirical Orthogonal Function (DINEOF) algorithm is an EOF-based technique for reconstructing the missing data and has been widely used in oceanographic field. The reconstruction of SST images within a long time series using DINEOF can cause large discontinuities and one solution for this problem is to filter the temporal covariance matrix to reduce the spurious variability. Based on the previous researches, an algorithm is presented in this paper to improve the temporal correlations in EOF expansion. Similar with the previous researches, a filter, such as Laplacian filter, is implemented on the temporal covariance matrix, but the temporal relationship between two consecutive images which is used in the filter is considered in the presented algorithm, for example, two images in the same season are more likely correlated than those in the different seasons, hence the latter one is less weighted in the filter. The presented approach is tested for the monthly nighttime 4-km Advanced Very High Resolution Radiometer (AVHRR) Pathfinder SST for the long-term period spanning from 1989 to 2006. The results obtained from the presented algorithm are compared to those from the original DINEOF algorithm without filtering and from the DINEOF algorithm with filtering but without taking temporal relationship into account.

Keywords: data interpolating empirical orthogonal function, image reconstruction, sea surface temperature, temporal filter

Procedia PDF Downloads 327
27113 Artificial Intelligence in Patient Involvement: A Comprehensive Review

Authors: Igor A. Bessmertny, Bidru C. Enkomaryam

Abstract:

Active involving patients and communities in health decisions can improve both people’s health and the healthcare system. Adopting artificial intelligence can lead to more accurate and complete patient record management. This review aims to identify the current state of researches conducted using artificial intelligence techniques to improve patient engagement and wellbeing, medical domains used in patient engagement context, and lastly, to assess opportunities and challenges for patient engagement in the wellness process. A search of peer-reviewed publications, reviews, conceptual analyses, white papers, author’s manuscripts and theses was undertaken. English language literature published in 2013– 2022 period and publications, report and guidelines of World Health Organization (WHO) were also assessed. About 281 papers were retrieved. Duplicate papers in the databases were removed. After application of the inclusion and exclusion criteria, 41 papers were included to the analysis. Patient counseling in preventing adverse drug events, in doctor-patient risk communication, surgical, drug development, mental healthcare, hypertension & diabetes, metabolic syndrome and non-communicable chronic diseases are implementation areas in healthcare where patient engagement can be implemented using artificial intelligence, particularly machine learning and deep learning techniques and tools. The five groups of factors that potentially affecting patient engagement in safety are related to: patient, health conditions, health care professionals, tasks and health care setting. Active involvement of patients and families can help accelerate the implementation of healthcare safety initiatives. In sub-Saharan Africa, using digital technologies like artificial intelligence in patient engagement context is low due to poor level of technological development and deployment. The opportunities and challenges available to implement patient engagement strategies vary greatly from country to country and from region to region. Thus, further investigation will be focused on methods and tools using the potential of artificial intelligence to support more simplified care that might be improve communication with patients and train health care professionals.

Keywords: artificial intelligence, patient engagement, machine learning, patient involvement

Procedia PDF Downloads 83
27112 Sparse Unmixing of Hyperspectral Data by Exploiting Joint-Sparsity and Rank-Deficiency

Authors: Fanqiang Kong, Chending Bian

Abstract:

In this work, we exploit two assumed properties of the abundances of the observed signatures (endmembers) in order to reconstruct the abundances from hyperspectral data. Joint-sparsity is the first property of the abundances, which assumes the adjacent pixels can be expressed as different linear combinations of same materials. The second property is rank-deficiency where the number of endmembers participating in hyperspectral data is very small compared with the dimensionality of spectral library, which means that the abundances matrix of the endmembers is a low-rank matrix. These assumptions lead to an optimization problem for the sparse unmixing model that requires minimizing a combined l2,p-norm and nuclear norm. We propose a variable splitting and augmented Lagrangian algorithm to solve the optimization problem. Experimental evaluation carried out on synthetic and real hyperspectral data shows that the proposed method outperforms the state-of-the-art algorithms with a better spectral unmixing accuracy.

Keywords: hyperspectral unmixing, joint-sparse, low-rank representation, abundance estimation

Procedia PDF Downloads 266
27111 Awareness of Drug Interactions among Physicians at Governmental Health Centers in Bahrain

Authors: Yasin I. Tayem, Jamil Ahmed, Mahmood Bahzad, Abdullah Alnama, Fahad Al Asfoor, Mahmood A. Jalil, Mohammed Radhi, Ahmed Alenezi, Khalid A. J. Al-Khaja

Abstract:

Drug-drug interactions (DDIs) represent a significant cause of patient’s morbidity and mortality. The rate of DDIs is rapidly increasing worldwide with the increasing proportion of ageing population and frequent requirement of polypharmacy-prescription of multiple drugs to treat comorbidities. Prescribing physicians are responsible for checking their prescriptions for the presence and severity of DDIs. However, since a large number of new drugs are approved and marketed every year, new interactions between medications are increasingly reported. Consequently, it is no longer practical for physicians to rely only upon their previous knowledge of medicine to avoid potential DDIs. The aim of this study was to explore the perceptions of physicians working at primary healthcare centers in Bahrain towards DDIs and how they manage them during their practice. Methodology: In this cross-sectional study, physicians working at all governmental primary healthcare centers in Bahrain were invited to voluntarily, privately and anonymously respond to a self-administered questionnaire. The questionnaire aims to assess their self-reported knowledge of DDIs and how they check for them in their practice. The participants were requested to provide socio demographic data and information related to their attitudes towards DDIs including strategies they employ for detecting and managing them, and their awareness of drugs which commonly cause DDIs. At the end of the questionnaire, an open-ended item was added to allow participants to further add any comment. Findings and Conclusions: The study is going on currently, and the results and conclusions will be presented at the conference.

Keywords: awareness, drug interactions, health centres, physicians

Procedia PDF Downloads 245
27110 Developing Pavement Structural Deterioration Curves

Authors: Gregory Kelly, Gary Chai, Sittampalam Manoharan, Deborah Delaney

Abstract:

A Structural Number (SN) can be calculated for a road pavement from the properties and thicknesses of the surface, base course, sub-base, and subgrade. Historically, the cost of collecting structural data has been very high. Data were initially collected using Benkelman Beams and now by Falling Weight Deflectometer (FWD). The structural strength of pavements weakens over time due to environmental and traffic loading factors, but due to a lack of data, no structural deterioration curve for pavements has been implemented in a Pavement Management System (PMS). International Roughness Index (IRI) is a measure of the road longitudinal profile and has been used as a proxy for a pavement’s structural integrity. This paper offers two conceptual methods to develop Pavement Structural Deterioration Curves (PSDC). Firstly, structural data are grouped in sets by design Equivalent Standard Axles (ESA). An ‘Initial’ SN (ISN), Intermediate SN’s (SNI) and a Terminal SN (TSN), are used to develop the curves. Using FWD data, the ISN is the SN after the pavement is rehabilitated (Financial Accounting ‘Modern Equivalent’). Intermediate SNIs, are SNs other than the ISN and TSN. The TSN was defined as the SN of the pavement when it was approved for pavement rehabilitation. The second method is to use Traffic Speed Deflectometer data (TSD). The road network already divided into road blocks, is grouped by traffic loading. For each traffic loading group, road blocks that have had a recent pavement rehabilitation, are used to calculate the ISN and those planned for pavement rehabilitation to calculate the TSN. The remaining SNs are used to complete the age-based or if available, historical traffic loading-based SNI’s.

Keywords: conceptual, pavement structural number, pavement structural deterioration curve, pavement management system

Procedia PDF Downloads 546