Search results for: drying temperature
3814 Lipase-Mediated Formation of Peroxyoctanoic Acid Used in Catalytic Epoxidation of α-Pinene
Authors: N. Wijayati, Kusoro Siadi, Hanny Wijaya, Maggy Thenawijjaja Suhartono
Abstract:
This work describes the lipase-mediated synthesis of α-pinene oxide at ambient temperature. The immobilized lipase from Pseudomonas aeruginosa is used to generate peroxyoctanoic acid directly from octanoic acid and hydrogen peroxide. The peroxy acid formed is then applied for in situ oxidation of α-pinene. High conversion of α-pinene to α-pinene oxide (approximately 78%) was achieved when using 0,1 g enzim lipase, 6 mmol H2O2, dan 5 mmol octanoic acid. Various parameters affecting the conversion of α-pinene to α pinene oxide were studied.Keywords: α-Pinene; P. aeruginosa; Octanoic acid
Procedia PDF Downloads 2783813 Maximum Efficiency of the Photovoltaic Cells Using a Genetic Algorithm
Authors: Latifa Sabri, Mohammed Benzirar, Mimoun Zazoui
Abstract:
The installation of photovoltaic systems is one of future sources to generate electricity without emitting pollutants. The photovoltaic cells used in these systems have demonstrated enormous efficiencies and advantages. Several researches have discussed the maximum efficiency of these technologies, but only a few experiences have succeeded to right weather conditions to get these results. In this paper, two types of cells were selected: crystalline and amorphous silicon. Using the method of genetic algorithm, the results show that for an ambient temperature of 25°C and direct irradiation of 625 W/m², the efficiency of crystalline silicon is 12% and 5% for amorphous silicon.Keywords: PV, maximum efficiency, solar cell, genetic algorithm
Procedia PDF Downloads 4243812 Climate Change Implications on Occupational Health and Productivity in Tropical Countries: Study Results from India
Authors: Vidhya Venugopal, Jeremiah Chinnadurai, Rebekah A. I. Lucas, Tord Kjellstrom, Bruno Lemke
Abstract:
Introduction: The effects of climate change (CC) are largely discussed across the globe in terms of impacts on the environment and the general population, but the impacts on workers remain largely unexplored. The predicted rise in temperatures and heat events in the CC scenario have health implications on millions of workers in physically exerting jobs. The current health and productivity risks associated with heat exposures are characterized, future risk estimates as temperature rises and recommendations towards developing protective and preventive occupational health and safety guidelines for India are discussed. Methodology: Cross-sectional studies were conducted in several occupational sectors with workers engaged in moderate to heavy labor (n=1580). Quantitative data on heat exposures (WBGT°C), physiological heat strain indicators viz., Core temperature (CBT), Urine specific gravity (USG), Sweat rate (SwR) and qualitative data on heat-related health symptoms and productivity losses were collected. Data were analyzed for associations between heat exposures, health and productivity outcomes related to heat stress. Findings: Heat conditions exceeded the Threshold Limit Value (TLV) for safe manual work in 66% of the workers across several sectors (Avg.WBGT of 28.7°C±3.1°C). Widespread concerns about heat-related health outcomes (86%) were prevalent among workers exposed to high TLVs, with excessive sweating, fatigue and tiredness being commonly reported by workers. The heat stress indicators, core temperature (14%), Sweat rate (8%) and USG (9%), were above normal levels in the study population. A significant association was found between rise in Core Temperatures and WBGT exposures (p=0.000179) Elevated USG and SwR in the worker population indicate moderate dehydration, with potential risks of developing heat-related illnesses. In a steel industry with high heat exposures, an alarming 9% prevalence of kidney/urogenital anomalies was observed in a young workforce. Heat exposures above TLVs were associated with significantly increased odds of various adverse health outcomes (OR=2.43, 95% CI 1.88 to 3.13, p-value = <0.0001) and productivity losses (OR=1.79, 95% CI 1.32 to 2.4, p-value = 0.0002). Rough estimates for the number of workers who would be subjected to higher than TLV levels in the various RCP scenarios are RCP2.6 =79%, RCP4.5 & RCP6 = 81% and at RCP 8.5 = 85%. Rising temperatures due to CC has the capacity to further reduce already compromised health and productivity by subjecting the workers to increased heat exposures in the RCP scenarios are of concern for the country’s occupational health and economy. Conclusion: The findings of this study clearly identify that health protection from hot weather will become increasingly necessary in the Indian subcontinent and understanding the various adaptation techniques needs urgent attention. Further research with a multi-targeted approach to develop strategies for implementing interventions to protect the millions of workers is imperative. Approaches to include health aspects of climate change within sectoral and climate change specific policies should be encouraged, via a number of mechanisms, such as the “Health in All Policies” approach to avert adverse health and productivity consequences as climate change proceeds.Keywords: heat stress, occupational health, productivity loss, heat strain, adverse health outcomes
Procedia PDF Downloads 3233811 Ionic Liquids as Substrates for Metal-Organic Framework Synthesis
Authors: Julian Mehler, Marcus Fischer, Martin Hartmann, Peter S. Schulz
Abstract:
During the last two decades, the synthesis of metal-organic frameworks (MOFs) has gained ever increasing attention. Based on their pore size and shape as well as host-guest interactions, they are of interest for numerous fields related to porous materials, like catalysis and gas separation. Usually, MOF-synthesis takes place in an organic solvent between room temperature and approximately 220 °C, with mixtures of polyfunctional organic linker molecules and metal precursors as substrates. Reaction temperatures above the boiling point of the solvent, i.e. solvothermal reactions, are run in autoclaves or sealed glass vessels under autogenous pressures. A relatively new approach for the synthesis of MOFs is the so-called ionothermal synthesis route. It applies an ionic liquid as a solvent, which can serve as a structure-directing template and/or a charge-compensating agent in the final coordination polymer structure. Furthermore, this method often allows for less harsh reaction conditions than the solvothermal route. Here a variation of the ionothermal approach is reported, where the ionic liquid also serves as an organic linker source. By using 1-ethyl-3-methylimidazolium terephthalates ([EMIM][Hbdc] and [EMIM]₂[bdc]), the one-step synthesis of MIL-53(Al)/Boehemite composites with interesting features is possible. The resulting material is already formed at moderate temperatures (90-130 °C) and is stabilized in the usually unfavored ht-phase. Additionally, in contrast to already published procedures for MIL-53(Al) synthesis, no further activation at high temperatures is mandatory. A full characterization of this novel composite material is provided, including XRD, SS-NMR, El-Al., SEM as well as sorption measurements and its interesting features are compared to MIL-53(Al) samples produced by the classical solvothermal route. Furthermore, the syntheses of the applied ionic liquids and salts is discussed. The influence of the degree of ionicity of the linker source [EMIM]x[H(2-x)bdc] on the crystal structure and the achievable synthesis temperature are investigated and give insight into the role of the IL during synthesis. Aside from the synthesis of MIL-53 from EMIM terephthalates, the use of the phosphonium cation in this approach is discussed as well. Additionally, the employment of ILs in the preparation of other MOFs is presented briefly. This includes the ZIF-4 framework from the respective imidazolate ILs and chiral camphorate based frameworks from their imidazolium precursors.Keywords: ionic liquids, ionothermal synthesis, material synthesis, MIL-53, MOFs
Procedia PDF Downloads 2083810 Climate Impact on Spider Mite (Tetranychus Sp. Koch) Infesting Som Plant Leaves (Machilus Bombycina King) and Their Sustainable Management
Authors: Sunil Kumar Ghosh
Abstract:
Som plant (Machilus bombycina King) is an important plant in agroforestry system. It is cultivated in north -east part of India. It is cultivated in agricultural land by the marginal farmers for multi-storeyed cultivation with intercropping. Localized cottage industries are involved with this plant like sericulture industry (muga silk worm cultivation). Clothes are produced from this sericulture industry. Leaves of som plants are major food of muga silk worm ( Antherea assama ). Nutritional value of leaves plays an important role in the larval growth and silk productivity. The plant also has timber value. The plant is susceptible to mite pest (Tetranychus sp.) causes heavy damage to tender leaves. Lower population was recorded during 7th to 38th standard week, during 3rd week of February to 4th week of September and higher population was during 46th to 51st standard week, during 3rd week of November to 3rd week of December and peak population (6.06/3 leaves) was recorded on 46th standard week that is on 3rd week of November. Correlation studies revealed that mite population had a significant negative correlation with temperature and non-significant positive correlation with relative humidity. This indicates that activity of mites population increase with the rise of relative humidity and decrease with the rise of temperature. Tobacco leaf extracts was found most effective against mite providing 40.51% suppression, closely followed by extracts of Spilanthes (39.06% suppression). Extracts of Garlic and extracts of Polygonum plant gave moderate results, recording about 38.10% and 37.78% mite suppression respectively. The polygonum (Polygonum hydropiper) plant (floral parts), pongamia (Pongamia pinnata) leaves, garlic (Allium sativum), spilanthes (Spilanthes paniculata) (floral parts) were extracted in methanol. Synthetic insecticides contaminate plant leaves with the toxic chemicals. Plant extracts are of biological origin having low or no hazardous effect on health and environment and so can be incorporated in organic cultivation.Keywords: Abiotic factors, incidence, botanical extracts, organic cultivation, silk industry
Procedia PDF Downloads 1393809 Impact of the Oxygen Content on the Optoelectronic Properties of the Indium-Tin-Oxide Based Transparent Electrodes for Silicon Heterojunction Solar Cells
Authors: Brahim Aissa
Abstract:
Transparent conductive oxides (TCOs) used as front electrodes in solar cells must feature simultaneously high electrical conductivity, low contact resistance with the adjacent layers, and an appropriate refractive index for maximal light in-coupling into the device. However, these properties may conflict with each other, motivating thereby the search for TCOs with high performance. Additionally, due to the presence of temperature sensitive layers in many solar cell designs (for example, in thin-film silicon and silicon heterojunction (SHJ)), low-temperature deposition processes are more suitable. Several deposition techniques have been already explored to fabricate high-mobility TCOs at low temperatures, including sputter deposition, chemical vapor deposition, and atomic layer deposition. Among this variety of methods, to the best of our knowledge, magnetron sputtering deposition is the most established technique, despite the fact that it can lead to damage of underlying layers. The Sn doped In₂O₃ (ITO) is the most commonly used transparent electrode-contact in SHJ technology. In this work, we studied the properties of ITO thin films grown by RF sputtering. Using different oxygen fraction in the argon/oxygen plasma, we prepared ITO films deposited on glass substrates, on one hand, and on a-Si (p and n-types):H/intrinsic a-Si/glass substrates, on the other hand. Hall Effect measurements were systematically conducted together with total-transmittance (TT) and total-reflectance (TR) spectrometry. The electrical properties were drastically affected whereas the TT and TR were found to be slightly impacted by the oxygen variation. Furthermore, the time of flight-secondary ion mass spectrometry (TOF-SIMS) technique was used to determine the distribution of various species throughout the thickness of the ITO and at various interfaces. The depth profiling of indium, oxygen, tin, silicon, phosphorous, boron and hydrogen was investigated throughout the various thicknesses and interfaces, and obtained results are discussed accordingly. Finally, the extreme conditions were selected to fabricate rear emitter SHJ devices, and the photovoltaic performance was evaluated; the lower oxygen flow ratio was found to yield the best performance attributed to lower series resistance.Keywords: solar cell, silicon heterojunction, oxygen content, optoelectronic properties
Procedia PDF Downloads 1593808 X-Ray Energy Release in the Solar Eruptive Flare from 6th of September 2012
Authors: Mirabbos Mirkamalov, Zavkiddin Mirtoshev
Abstract:
The M 1.6 class flare occurred on 6th of September 2012. Our observations correspond to the active region NOAA 11560 with the heliographic coordinates N04W71. The event took place between 04:00 UT and 04:45 UT, and was close to the solar limb at the western region. The flare temperature correlates with flux peak, increases for a short period (between 04:08 UT and 04:12 UT), rises impulsively, attains a maximum value of about 17 MK at 04:12 UT and gradually decreases after peak value. Around the peak we observe significant emissions of X-ray sources. Flux profiles of the X-ray emission exhibit a progressively faster raise and decline as the higher energy channels are considered.Keywords: magnetic reconnection, solar atmosphere, solar flare, X-ray emission
Procedia PDF Downloads 3233807 Metabolic Changes during Reprogramming of Wheat and Triticale Microspores
Authors: Natalia Hordynska, Magdalena Szechynska-Hebda, Miroslaw Sobczak, Elzbieta Rozanska, Joanna Troczynska, Zofia Banaszak, Maria Wedzony
Abstract:
Albinism is a common problem encountered in wheat and triticale breeding programs, which require in vitro culture steps e.g. generation of doubled haploids via androgenesis process. Genetic factor is a major determinant of albinism, however, environmental conditions such as temperature and media composition influence the frequency of albino plant formation. Cold incubation of wheat and triticale spikes induced a switch from gametophytic to sporophytic development. Further, androgenic structures formed from anthers of the genotypes susceptible to androgenesis or treated with cold stress, had a pool of structurally primitive plastids, with small starch granules or swollen thylakoids. High temperature was a factor inducing andro-genesis of wheat and triticale, but at the same time, it was a factor favoring the formation of albino plants. In genotypes susceptible to albinism or after heat stress conditions, cells formed from anthers were vacuolated, and plastids were eliminated. Partial or complete loss of chlorophyll pigments and incomplete differentiation of chloroplast membranes result in formation of tissues or whole plant unable to perform photosynthesis. Indeed, susceptibility to the andro-genesis process was associated with an increase of total concentration of photosynthetic pigments in anthers, spikes and regenerated plants. The proper balance of the synthesis of various pigments, was the starting point for their proper incorporation into photosynthetic membranes. In contrast, genotypes resistant to the androgenesis process and those treated with heat, contained 100 times lower content of photosynthetic pigments. In particular, the synthesis of violaxanthin, zeaxanthin, lutein and chlorophyll b was limited. Furthermore, deregulation of starch and lipids synthesis, which led to the formation of very complex starch granules and an increased number of oleosomes, respectively, correlated with the reduction of the efficiency of androgenesis. The content of other sugars varied depending on the genotype and the type of stress. The highest content of various sugars was found for genotypes susceptible to andro-genesis, and highly reduced for genotypes resistant to androgenesis. The most important sugars seem to be glucose and fructose. They are involved in sugar sensing and signaling pathways, which affect the expression of various genes and regulate plant development. Sucrose, on the other hand, seems to have minor effect at each stage of the androgenesis. The sugar metabolism was related to metabolic activity of microspores. The genotypes susceptible to androgenesis process had much faster mitochondrium- and chloroplast-dependent energy conversion and higher heat production by tissues. Thus, the effectiveness of metabolic processes, their balance and the flexibility under the stress was a factor determining the direction of microspore development, and in the later stages of the androgenesis process, a factor supporting the induction of androgenic structures, chloroplast formation and the regeneration of green plants. The work was financed by Ministry of Agriculture and Rural Development within Program: ‘Biological Progress in Plant Production’, project no HOR.hn.802.15.2018.Keywords: androgenesis, chloroplast, metabolism, temperature stress
Procedia PDF Downloads 2603806 Phase Diagram Including a Negative Pressure Region for a Thermotropic Liquid Crystal in a Metal Berthelot Tube
Abstract:
Thermodynamic properties of liquids under negative pressures are interesting and important in fields of scienceand technology. Here, phase transitions of a thermotropic liquid crystal are investigatedin a range from positive to negative pressures with a metal Berthelot tube using a commercial pressure transducer.Two co-existinglines, namely crystal (Kr) – nematic (N), and isotropic liquid (I) - nematic (N) lines, weredrawn in a pressure - temperature plane. The I-N line was drawn to ca. -5 (MPa).Keywords: Berthelot method, liquid crystal, negative pressure, phase transitions
Procedia PDF Downloads 4033805 Removal of Vanadium from Industrial Effluents by Natural Ion Exchanger
Authors: Shashikant R. Kuchekar, Haribhau R. Aher, Priti M. Dhage
Abstract:
The removal vanadium from aqueous solution using natural exchanger was investigated. The effects of pH, contact time and exchanger dose were studied at ambient temperature (25 0C ± 2 0C). The equilibrium process was described by the Langmuir isotherm model with adsorption capacity for vanadium. The natural exchanger i.e. tamarindus seeds powder was treated with formaldehyde and sulpuric acid to increase the adsorptivity of metals. The maximum exchange level was attained as 80.1% at pH 3 with exchanger dose 5 g and contact time 60 min. Method is applied for removal of vanadium from industrial effluents.Keywords: industrial effluent, natural ion exchange, Tamarindous indica, vanadium
Procedia PDF Downloads 2513804 Prediction of Thermodynamic Properties of N-Heptane in the Critical Region
Authors: Sabrina Ladjama, Aicha Rizi, Azzedine Abbaci
Abstract:
In this work, we use the crossover model to formulate a comprehensive fundamental equation of state for the thermodynamic properties for several n-alkanes in the critical region that extends to the classical region. This equation of state is constructed on the basis of comparison of selected measurements of pressure-density-temperature data, isochoric and isobaric heat capacity. The model can be applied in a wide range of temperatures and densities around the critical point for n-heptane. It is found that the developed model represents most of the reliable experimental data accurately.Keywords: crossover model, critical region, fundamental equation, n-heptane
Procedia PDF Downloads 4753803 Thermal Analysis of Adsorption Refrigeration System Using Silicagel–Methanol Pair
Authors: Palash Soni, Vivek Kumar Gaba, Shubhankar Bhowmick, Bidyut Mazumdar
Abstract:
Refrigeration technology is a fast developing field at the present era since it has very wide application in both domestic and industrial areas. It started from the usage of simple ice coolers to store food stuffs to the present sophisticated cold storages along with other air conditioning system. A variety of techniques are used to bring down the temperature below the ambient. Adsorption refrigeration technology is a novel, advanced and promising technique developed in the past few decades. It gained attention due to its attractive property of exploiting unlimited natural sources like solar energy, geothermal energy or even waste heat recovery from plants or from the exhaust of locomotives to fulfill its energy need. This will reduce the exploitation of non-renewable resources and hence reduce pollution too. This work is aimed to develop a model for a solar adsorption refrigeration system and to simulate the same for different operating conditions. In this system, the mechanical compressor is replaced by a thermal compressor. The thermal compressor uses renewable energy such as solar energy and geothermal energy which makes it useful for those areas where electricity is not available. Refrigerants normally in use like chlorofluorocarbon/perfluorocarbon have harmful effects like ozone depletion and greenhouse warming. It is another advantage of adsorption systems that it can replace these refrigerants with less harmful natural refrigerants like water, methanol, ammonia, etc. Thus the double benefit of reduction in energy consumption and pollution can be achieved. A thermodynamic model was developed for the proposed adsorber, and a universal MATLAB code was used to simulate the model. Simulations were carried out for a different operating condition for the silicagel-methanol working pair. Various graphs are plotted between regeneration temperature, adsorption capacities, the coefficient of performance, desorption rate, specific cooling power, adsorption/desorption times and mass. The results proved that adsorption system could be installed successfully for refrigeration purpose as it has saving in terms of power and reduction in carbon emission even though the efficiency is comparatively less as compared to conventional systems. The model was tested for its compliance in a cold storage refrigeration with a cooling load of 12 TR.Keywords: adsorption, refrigeration, renewable energy, silicagel-methanol
Procedia PDF Downloads 2063802 Desulphurization of Waste Tire Pyrolytic Oil (TPO) Using Photodegradation and Adsorption Techniques
Authors: Moshe Mello, Hilary Rutto, Tumisang Seodigeng
Abstract:
The nature of tires makes them extremely challenging to recycle due to the available chemically cross-linked polymer and, therefore, they are neither fusible nor soluble and, consequently, cannot be remolded into other shapes without serious degradation. Open dumping of tires pollutes the soil, contaminates underground water and provides ideal breeding grounds for disease carrying vermins. The thermal decomposition of tires by pyrolysis produce char, gases and oil. The composition of oils derived from waste tires has common properties to commercial diesel fuel. The problem associated with the light oil derived from pyrolysis of waste tires is that it has a high sulfur content (> 1.0 wt.%) and therefore emits harmful sulfur oxide (SOx) gases to the atmosphere when combusted in diesel engines. Desulphurization of TPO is necessary due to the increasing stringent environmental regulations worldwide. Hydrodesulphurization (HDS) is the commonly practiced technique for the removal of sulfur species in liquid hydrocarbons. However, the HDS technique fails in the presence of complex sulfur species such as Dibenzothiopene (DBT) present in TPO. This study aims to investigate the viability of photodegradation (Photocatalytic oxidative desulphurization) and adsorptive desulphurization technologies for efficient removal of complex and non-complex sulfur species in TPO. This study focuses on optimizing the cleaning (removal of impurities and asphaltenes) process by varying process parameters; temperature, stirring speed, acid/oil ratio and time. The treated TPO will then be sent for vacuum distillation to attain the desired diesel like fuel. The effect of temperature, pressure and time will be determined for vacuum distillation of both raw TPO and the acid treated oil for comparison purposes. Polycyclic sulfides present in the distilled (diesel like) light oil will be oxidized dominantly to the corresponding sulfoxides and sulfone via a photo-catalyzed system using TiO2 as a catalyst and hydrogen peroxide as an oxidizing agent and finally acetonitrile will be used as an extraction solvent. Adsorptive desulphurization will be used to adsorb traces of sulfurous compounds which remained during photocatalytic desulphurization step. This desulphurization convoy is expected to give high desulphurization efficiency with reasonable oil recovery.Keywords: adsorption, asphaltenes, photocatalytic oxidation, pyrolysis
Procedia PDF Downloads 2723801 Improvement of Reaction Technology of Decalin Halogenation
Authors: Dmitriy Yu. Korulkin, Ravshan M. Nuraliev, Raissa A. Muzychkina
Abstract:
In this research paper, we investigated the main regularities of a radical bromination reaction of decalin. We studied the temperature effect, durations of reaction, frequency rate of process, ratio of initial components, type and number of the initiator on decalin bromination degree. We found specified optimum conditions of synthesis of a perbromodecalin by the method of a decalin bromination. We developed the technological flowchart of receiving a perbromodecalin and the mass balance of process on the first and the subsequent loadings of components. The results of the research of antibacterial and antifungal activity of synthesized bromoderivatives have been represented.Keywords: decalin, optimum technology, perbromodecalin, radical bromination
Procedia PDF Downloads 2253800 Tracking Maximum Power Point Utilizing Artificial Immunity System
Authors: Marwa Ahmed Abd El Hamied
Abstract:
In this paper In this paper, a new technique based on Artificial Immunity System (AIS) technique has been developed to track Maximum Power Point (MPP). AIS system is implemented in a photovoltaic system that is subjected to variable temperature and insulation condition. The proposed novel is simulated using Mat Lab program. The results of simulation have been compared to those who are generated from Observation Controller. The proposed model shows promising results as it provide better accuracy comparing to classical model.Keywords: component, artificial immunity technique, solar energy, perturbation and observation, power based methods
Procedia PDF Downloads 4273799 Identification of Phenolic Compounds and Study the Antimicrobial Property of Eleaocarpus Ganitrus Fruits
Authors: Velvizhi Dharmalingam, Rajalaksmi Ramalingam, Rekha Prabhu, Ilavarasan Raju
Abstract:
Background: The use of herbal products for various therapeutic regimens has increased tremendously in the developing countries. Elaeocarpus ganitrus(Rudraksha) is a broad-leaved tree, belonging to the family Elaeocarpaceae found in tropical and subtropical areas. It is popular in an indigenous system of medicine like Ayurveda, Siddha, and Unani. According to Ayurvedic medicine, Rudraksha is used in the managing of blood pressure, asthma, mental disorders, diabetes, gynaecological disorders, neurological disorders such as epilepsy and liver diseases. Objectives: The present study aimed to study the physicochemical parameters of Elaeocarpus ganitrus(fruits) and identify the phenolic compounds (gallic acid, ellagic acid, and chebulinic acid). To estimate the microbial load and the antibacterial activity of extract of Elaeocarpus ganitrus for selective pathogens. Methodology: The dried powdered fruit of Elaeocarpus ganitrus was performed the physicochemical parameters (such as Loss on drying, Alcohol soluble extractive, Water soluble extractive, Total ash and Acid insoluble ash) and pH was measured. The dried coarse powdered fruit of Elaeocarpus ganitrus was extracted successively with hexane, chloroform, ethylacetate and aqueous alcohol by cold percolation method. Identification of phenolic compounds (gallic acid, ellagic acid, chebulinic acid) was done by HPTLC method and confirmed by co-TLC using different solvent system.The successive extracts of Elaeocarpus ganitrus and standards (like gallic acid, ellagic acid, and chebulinic acid) was approximately weighed and made up with alcohol. HPTLC (CAMAG) analysis was performed on a TLC over silica gel 60F254 precoated aluminium plate, layer thickness 0.2 mm (E.Merck, Germany) by using ATS4, Visualizer and Scanner with wavelength at 254 nm, 366 nm and derivatized with different reagents. The microbial load such as total bacterial count, total fungal count, Enterobacteria, Escherichia coli, Salmonella species, Staphylococcus aureus and Pseudomonas aeruginosa by serial dilution method and antibacterial activity of was measured by Kirby bauer method for selective pathogens. Results: The physicochemical parameter of Elaeocarpus ganitrus was studied for standardization of crude drug. Among all the successive extracts were identified with phenolic compounds and Elaeocarpus ganitrus extract having potent antibacterial activity against gram-positive and gram-negative bacteria.Keywords: antimicrobial activity, Elaeocarpus ganitrus, HPTLC, phenolic compounds
Procedia PDF Downloads 3423798 Understanding Hydrodynamic in Lake Victoria Basin in a Catchment Scale: A Literature Review
Authors: Seema Paul, John Mango Magero, Prosun Bhattacharya, Zahra Kalantari, Steve W. Lyon
Abstract:
The purpose of this review paper is to develop an understanding of lake hydrodynamics and the potential climate impact on the Lake Victoria (LV) catchment scale. This paper briefly discusses the main problems of lake hydrodynamics and its’ solutions that are related to quality assessment and climate effect. An empirical methodology in modeling and mapping have considered for understanding lake hydrodynamic and visualizing the long-term observational daily, monthly, and yearly mean dataset results by using geographical information system (GIS) and Comsol techniques. Data were obtained for the whole lake and five different meteorological stations, and several geoprocessing tools with spatial analysis are considered to produce results. The linear regression analyses were developed to build climate scenarios and a linear trend on lake rainfall data for a long period. A potential evapotranspiration rate has been described by the MODIS and the Thornthwaite method. The rainfall effect on lake water level observed by Partial Differential Equations (PDE), and water quality has manifested by a few nutrients parameters. The study revealed monthly and yearly rainfall varies with monthly and yearly maximum and minimum temperatures, and the rainfall is high during cool years and the temperature is high associated with below and average rainfall patterns. Rising temperatures are likely to accelerate evapotranspiration rates and more evapotranspiration is likely to lead to more rainfall, drought is more correlated with temperature and cloud is more correlated with rainfall. There is a trend in lake rainfall and long-time rainfall on the lake water surface has affected the lake level. The onshore and offshore have been concentrated by initial literature nutrients data. The study recommended that further studies should consider fully lake bathymetry development with flow analysis and its’ water balance, hydro-meteorological processes, solute transport, wind hydrodynamics, pollution and eutrophication these are crucial for lake water quality, climate impact assessment, and water sustainability.Keywords: climograph, climate scenarios, evapotranspiration, linear trend flow, rainfall event on LV, concentration
Procedia PDF Downloads 993797 Mechanical and Long Term Ageing Properties of PMMA Silica Nanoparticles
Authors: M. Khlifa, A. Youssef. M. Almakki
Abstract:
The addition of silica nanoparticles to poly(methyl methacrylate) (PMMA) can influence its mechanical and aging properties. Dispersed PMMA in colloidal and aggregated silica revealed considerable increase in modulus above the glass transition temperature when aggregated silica nanoparticles were used, whereas colloidally dispersed silica nanoparticles showed only a marginal improvement. In addition, Dispersed PMMA in both aggregated and colloidally silica nanoparticles accelerated physical ageing.Keywords: nanoparticles, physical aging, PMMA, chemical and molecular engineering
Procedia PDF Downloads 5223796 Understanding Magnetic Properties of Cd1-xSnxCr2Se4 Using Local Structure Probes
Authors: P. Suchismita Behera, V. G. Sathe, A. K. Nigam, P. A. Bhobe
Abstract:
Co-existence of long-range ferromagnetism and semi-conductivity with correlated behavior of structural, magnetic, optical and electrical properties in various sites doping at CdCr2Se4 makes it a most promising candidate for spin-based electronic applications and magnetic devices. It orders ferromagnetically below TC = 130 K with a direct band gap of ~ 1.5 eV. The magnetic ordering is believed to result from strong competition between the direct antiferromagnetic Cr-Cr spin couplings and the ferromagnetic Cr-Se-Cr exchange interactions. With an aim of understanding the influence of crystal structure on its magnetic properties without disturbing the magnetic site, we investigated four compositions with 3%, 5%, 7% and 10% of Sn-substitution at Cd-site. Partial substitution of Cd2+ (0.78Å) by small sized nonmagnetic ion, Sn4+ (0.55Å), is expected to bring about local lattice distortion as well as a change in electronic charge distribution. The structural disorder would affect the Cd/Sn – Se bonds thus affecting the Cr-Cr and Cr-Se-Cr bonds. Whereas, the charge imbalance created due to Sn4+ substitution at Cd2+ leads to the possibility of Cr mixed valence state. Our investigation of the local crystal structure using the EXAFS, Raman spectroscopy and magnetic properties using SQUID magnetometry of the Cd1-xSnxCr2Se4 series reflects this premise. All compositions maintain the Fd3m cubic symmetry with tetrahedral distribution of Sn at Cd-site, as confirmed by XRD analysis. Lattice parameters were determined from the Rietveld refinement technique of the XRD data and further confirmed from the EXAFS spectra recorded at Cr K-edge. Presence of five Raman-active phonon vibrational modes viz. (T2g (1), T2g (2), T2g (3), Eg, A1g) in the Raman spectra further confirms the crystal symmetry. Temperature dependence of the Raman data provides interesting insight to the spin– phonon coupling, known to dominate the magneto-capacitive properties in the parent compound. Below the magnetic ordering temperature, the longitudinal damping of Eg mode associated with Se-Cd/Sn-Se bending and T2g (2) mode associated to Cr-Se-Cr interaction, show interesting deviations with respect to increase in Sn substitution. Besides providing the estimate of TC, the magnetic measurements recorded as a function of field provide the values of total magnetic moment for all the studied compositions indicative of formation of multiple Cr valences.Keywords: exchange interactions, EXAFS, ferromagnetism, Raman spectroscopy, spinel chalcogenides
Procedia PDF Downloads 2763795 Effect of the Fluid Temperature on the Crude Oil Fouling in the Heat Exchangers of Algiers Refinery
Authors: Rima Harche, Abdelkader Mouheb
Abstract:
The Algiers refinery as all the other refineries always suffers from the problem of stopping of the tubes of heat exchanger. For that a study experimental of this phenomenon was undertaken in site on the cell of heat exchangers E101 (E101 CBA and E101 EDF) intended for the heating of the crude before its fractionation, which are exposed to the problem of the fouling on the side tubes exchangers. It is of tube-calenders type with head floating. Each cell is made up of three heat exchangers, laid out in series.Keywords: fouling, fluid temperatue , oil, tubular heat exchanger, fouling resistance, modeling, heat transfer coefficient
Procedia PDF Downloads 4323794 Free-Standing Pd-Based Metallic Glass Membranes for MEMS Applications
Authors: Wei-Shan Wang, Klaus Vogel, Felix Gabler, Maik Wiemer, Thomas Gessner
Abstract:
Metallic glasses, which are free of grain boundaries, have superior properties including large elastic limits, high strength, and excellent wear and corrosion resistance. Therefore, bulk metallic glasses (BMG) and thin film metallic glasses (TFMG) have been widely developed and investigated. Among various kinds of metallic glasses, Pd-Cu-Si TFMG, which has lower elastic modulus and better resistance of oxidation and corrosions compared to Zr- and Fe-based TFMGs, can be a promising candidate for MEMS applications. However, the study of Pd-TFMG membrane is still limited. This paper presents free-standing Pd-based metallic glass membranes with large area fabricated on wafer level for the first time. Properties of Pd-Cu-Si thin film metallic glass (TFMG) with various deposition parameters are investigated first. When deposited at 25°C, compressive stress occurs in the Pd76Cu6Si18 thin film regardless of Ar pressure. When substrate temperature is increased to 275°C, the stress state changes from compressive to tensile. Thin film stresses are slightly decreased when Ar pressure is higher. To show the influence of temperature on Pd-TFMGs, thin films without and with post annealing below (275°C) and within (370°C) supercooled liquid region are investigated. Results of XRD and TEM analysis indicate that Pd-TFMGs remain amorphous structure with well-controlled parameters. After verification of amorphous structure of the Pd-TFMGs, free-standing Pd-Cu-Si membranes were fabricated by depositing Pd-Cu-Si thin films directly on 200nm-thick silicon nitride membranes, followed by post annealing and dry etching of silicon nitride layer. Post annealing before SiNx removal is used to further release internal stress of Pd-TFMGs. The edge length of the square membrane ranges from 5 to 8mm. The effect of post annealing on Pd-Cu-Si membranes are discussed as well. With annealing at 370°C for 5 min, Pd-MG membranes are fully distortion-free after removal of SiNx layer. Results show that, by introducing annealing process, the stress-relief, distortion-free Pd-TFMG membranes with large area can be a promising candidate for sensing applications such as pressure and gas sensors.Keywords: amorphous alloy, annealing, metallic glasses, TFMG membrane
Procedia PDF Downloads 3523793 Effect of Modification on the Properties of Blighia sapida (Ackee) Seed Starch
Authors: Olufunmilola A. Abiodun, Adegbola O. Dauda, Ayobami Ojo, Samson A. Oyeyinka
Abstract:
Blighia sapida (Ackee) seed is a neglected and under-utilised crop. The fruit is cultivated for the aril which is used as meat substitute in soup while the seed is discarded. The seed is toxic due to the presence of hypoglycin which causes vomiting and death. The seed is shining black and bigger than the legume seeds. The seed contains high starch content which could serve as a cheap source of starch hereby reducing wastage of the crop during its season. Native starch had limitation in their use; therefore, modification of starch had been reported to improve the functional properties of starches. Therefore, this work determined the effect of modification on the properties of Blighia sapida seed starch. Blighia sapida seed was dehulled manually, milled and the starch extracted using standard method. The starch was subjected to modification using four methods (acid, alkaline, oxidized and acetylated methods). The morphological structure, form factor, granule size, amylose, swelling power, hypoglycin and pasting properties of the starches were determined. The structure of Blighia sapida using light microscope showed that the seed starch demonstrated an oval, round, elliptical, dome-shaped and also irregular shape. The form factors of the starch ranged from 0.32-0.64. Blighia sapida seed starches were smaller in granule sizes ranging from 2-6 µm. Acid modified starch had the highest amylose content (24.83%) and was significantly different ( < 0.05) from other starches. Blighia sapida seed starches showed a progressive increase in swelling power as temperature increased in native, acidified, alkalized, oxidized and acetylated starches but reduced with increasing temperature in pregelatinized starch. Hypoglycin A ranged from 3.89 to 5.74 mg/100 g with pregelatinized starch having the lowest value and alkalized starch having the highest value. Hypoglycin B ranged from 7.17 to 8.47 mg/100 g. Alkali-treated starch had higher peak viscosity (3973 cP) which was not significantly different (p > 0.05) from the native starch. Alkali-treated starch also was significantly different (p > 0.05) from other starches in holding strength value while acetylated starch had higher breakdown viscosity (1161.50 cP). Native starch was significantly different (p > 0.05) from other starches in final and setback viscosities. Properties of Blighia sapida modified starches showed that it could be used as a source of starch in food and other non-food industries and the toxic compound found in the starch was very low when compared to lethal dosage.Keywords: Blighia sapida seed, modification, starch, hypoglycin
Procedia PDF Downloads 2373792 Simultaneous Electrochemical Detection of Chromium(III), Arsenic(III), and Mercury (II) In Water Using Anodic Stripping Voltammetry
Authors: V. Sai Geethika, Sai Snehitha Yadavalli, Swati Ghosh Acharyya
Abstract:
This study involves a single element and simultaneous electrochemical detection of heavy metal ions through square wave anodic stripping voltammetry. A glassy carbon electrode was used to detect and quantify heavy metals such as As(III), Hg(II), Cr(VI) ions in water. Under optimized conditions, peak separation was obtained by varying concentrations, scan rates, and temperatures. As (III), Hg (II), Cr (III) were simultaneously detected with GCE. Several analytical methods, such as inductively coupled plasma mass spectroscopy (ICP-MS), atomic absorption spectroscopy (AAS), were used previously to detect heavy metal ions, which are authentic but are not good enough for online monitoring due to the bulkiness of the equipment. The study provides a good alternative that is simple, more efficient, and low-cost, involving a portable potentiostat. Heavy metals having different oxidation states can be detected by anodic stripping voltammetry. This method can be easily integrated with electronics. Square wave Anodic stripping voltammetry is used with a potential range of -2.5 V – 2.5 V for single ion detection by a three-electrode cell consisting of silver/silver chloride(Ag/AgCl) as reference and platinum (Pt) counter and glassy carbon (GCE) working electrodes. All three ions are optimized by varying the parameters like concentration, scan rate, pH, temperature, and all these optimized parameters were used for studying the effects of simultaneous detection. The procedure involves preparing an electrolyte using deionized water, cleaning the surface of GCE, depositing the ions by applying the redox potentials obtained from cyclic voltammetry (CV), and then detecting by applying oxidizing potential, i.e., stripping voltage. So this includes ASV techniques such as open-circuit voltage (OCV), chronoamperometry (CA), and square wave voltammetry (SWV). Firstly, the concentration of the ions varied from 50 ppb to 5000 ppb, and an optimum concentration was determined where the three ions were detected. A concentration of 400 ppb was used while varying the temperatures in the range of 25°C – 45°C. Optimum peak intensity was obtained at a temperature of 30°C with a low scan rate of 0.005 V-s⁻¹. All the parameters were optimized, and several effects have been noticed while three ions As(II), Cr(III), Hg(II) were detected alone and simultaneously.Keywords: Arsenic(III), Chromium(III), glassy carbon electrode, Mercury (II), square wave anodic stripping voltammetry
Procedia PDF Downloads 853791 Molecular Dynamics Simulation of Irradiation-Induced Damage Cascades in Graphite
Authors: Rong Li, Brian D. Wirth, Bing Liu
Abstract:
Graphite is the matrix, and structural material in the high temperature gas-cooled reactor exhibits an irradiation response. It is of significant importance to analyze the defect production and evaluate the role of graphite under irradiation. A vast experimental literature exists for graphite on the dimensional change, mechanical properties, and thermal behavior. However, simulations have not been applied to the atomistic perspective. Remarkably few molecular dynamics simulations have been performed to study the irradiation response in graphite. In this paper, irradiation-induced damage cascades in graphite were investigated with molecular dynamics simulation. Statistical results of the graphite defects were obtained by sampling a wide energy range (1–30 KeV) and 10 different runs for every cascade simulation with different random number generator seeds to the velocity scaling thermostat function. The chemical bonding in carbon was described using the adaptive intermolecular reactive empirical bond-order potential (AIREBO) potential coupled with the standard Ziegler–Biersack–Littmack (ZBL) potential to describe close-range pair interactions. This study focused on analyzing the number of defects, the final cascade morphology and the distribution of defect clusters in space, the length-scale cascade properties such as the cascade length and the range of primary knock-on atom (PKA), and graphite mechanical properties’ variation. It can be concluded that the number of surviving Frenkel pairs increased remarkably with the increasing initial PKA energy but did not exhibit a thermal spike at slightly lower energies in this paper. The PKA range and cascade length approximately linearly with energy which indicated that increasing the PKA initial energy will come at expensive computation cost such as 30KeV in this study. The cascade morphology and the distribution of defect clusters in space mainly related to the PKA energy meanwhile the temperature effect was relatively negligible. The simulations are in agreement with known experimental results and the Kinchin-Pease model, which can help to understand the graphite damage cascades and lifetime span under irradiation and provide a direction to the designs of these kinds of structural materials in the future reactors.Keywords: graphite damage cascade, molecular dynamics, cascade morphology, cascade distribution
Procedia PDF Downloads 1553790 Eucalyptus camaldulensis Leaves Attacked by the Gall Wasp Leptocybe invasa: A Phyto-Volatile Constituents Study
Authors: Maged El-Sayed Mohamed
Abstract:
Eucalyptus camaldulensis is one on the most well-known species of the genus Eucalyptus in the Middle east, its importance relay on the high production of its unique volatile constituents which exhibits many medicinal and pharmacological activities. The gall-forming wasp (Leptocybe invasa) has recently come into sight as the main pest attacking E. camaldulensis and causing severe injury. The wasp lays its eggs in the petiole and midrib of leaves and stems of young shoots of E. camaldulensis, which leads to gall formation. Gall formation by L. invasa damages growing shoot and leaves of Eucalyptus, resulting in abscission of leaves and drying. AIM: This study is an attempt to investigate the effect of the gall wasp (Leptocybe invasa) attack on the volatile constitutes of E. camaldulensis. This could help in the control of this wasp through stimulating plant defenses or production of a new allelochemicals or insecticide. The study of volatile constitutes of Eucalyptus before and after attack by the wasp can help the re-use and recycle of the infected Eucalyptus trees for new pharmacological and medicinal activities. Methodology: The fresh gall wasp-attacked and healthy leaves (100 g each) were cut and immediately subjected to hydrodistillation using Clevenger-type apparatus for 3 hours. The volatile fractions isolated were analyzed using Gas chromatography/mass spectrometry (GC/MS). Kovat’s retention indices (RI) were calculated with respect to a set of co-injected standard hydrocarbons (C10-C28). Compounds were identified by comparing their spectral data and retention indices with Wiley Registry of Mass Spectral Data 10th edition (April 2013), NIST 11 Mass Spectral Library (NIST11/2011/EPA/NIH) and literature data. Results: Fifty-nine components representing 89.13 and 88.60% of the total volatile fraction content respectively were quantitatively analyzed. Twenty-six major compounds at an average concentration greater than 0.1 ± 0.02% have been used for the statistical comparison. From those major components, twenty-one were found in both the attacked and healthy Eucalyptus leaves’ fractions in different concentration and five components, mono terpene p-Mentha-2-4(8) diene and the sesquiterpenes δ-elemene, β-elemene, E-caryophyllene and Bicyclogermacrene, were unique and only produced in the attacked-leaves’ fraction. CONCLUSION: Newly produced components or those commonly found in the volatile fraction and changed in concentration could represent a part of the plant defense mechanisms or might be an element of the plant allelopathic and communication mechanisms. Identification of the components of the gall wasp-damaged leaves can help in their recycling for different physiological, pharmacological and medicinal uses.Keywords: Eucalyptus camaldulensis, eucalyptus recycling, gall wasp, Leptocybe invasa, plant defense mechanisms, Terpene fraction
Procedia PDF Downloads 3583789 Skin-to-Skin Contact Simulation: Improving Health Outcomes for Medically Fragile Newborns in the Neonatal Intensive Care Unit
Authors: Gabriella Zarlenga, Martha L. Hall
Abstract:
Introduction: Premature infants are at risk for neurodevelopmental deficits and hospital readmissions, which can increase the financial burden on the health care system and families. Kangaroo care (skin-to-skin contact) is a practice that can improve preterm infant health outcomes. Preterm infants can acquire adequate body temperature, heartbeat, and breathing regulation through lying directly on the mother’s abdomen and in between her breasts. Due to some infant’s condition, kangaroo care is not a feasible intervention. The purpose of this proof-of-concept research project is to create a device which simulates skin-to-skin contact for pre-term infants not eligible for kangaroo care, with the aim of promoting baby’s health outcomes, reducing the incidence of serious neonatal and early childhood illnesses, and/or improving cognitive, social and emotional aspects of development. Methods: The study design is a proof-of-concept based on a three-phase approach; (1) observational study and data analysis of the standard of care for 2 groups of pre-term infants, (2) design and concept development of a novel device for pre-term infants not currently eligible for standard kangaroo care, and (3) prototyping, laboratory testing, and evaluation of the novel device in comparison to current assessment parameters of kangaroo care. A single center study will be conducted in an area hospital offering Level III neonatal intensive care. Eligible participants include newborns born premature (28-30 weeks of age) admitted to the NICU. The study design includes 2 groups: a control group receiving standard kangaroo care and an experimental group not eligible for kangaroo care. Based on behavioral analysis of observational video data collected in the NICU, the device will be created to simulate mother’s body using electrical components in a thermoplastic polymer housing covered in silicone. It will be designed with a microprocessor that controls simulated respiration, heartbeat, and body temperature of the 'simulated caregiver' by using a pneumatic lung, vibration sensors (heartbeat), pressure sensors (weight/position), and resistive film to measure temperature. A slight contour of the simulator surface may be integrated to help position the infant correctly. Control and monitoring of the skin-to-skin contact simulator would be performed locally by an integrated touchscreen. The unit would have built-in Wi-Fi connectivity as well as an optional Bluetooth connection in which the respiration and heart rate could be synced with a parent or caregiver. A camera would be integrated, allowing a video stream of the infant in the simulator to be streamed to a monitoring location. Findings: Expected outcomes are stabilization of respiratory and cardiac rates, thermoregulation of those infants not eligible for skin to skin contact with their mothers, and real time mother Bluetooth to the device to mimic the experience in the womb. Results of this study will benefit clinical practice by creating a new standard of care for premature neonates in the NICU that are deprived of skin to skin contact due to various health restrictions.Keywords: kangaroo care, wearable technology, pre-term infants, medical design
Procedia PDF Downloads 1573788 High Temperature Volume Combustion Synthesis of Ti3Al with Low Porosities
Authors: Nese Ozturk Korpe, Muhammed H. Karas
Abstract:
Reaction synthesis, or combustion synthesis, is a processing technique in which the thermal activation energy of formation of a compound is sustained by its exothermic heat of reaction. The aim of the present study was to investigate the effect of high initial pressing pressures (420 MPa, 630 MPa, and 850 MPa) on porosity of Ti3Al which produced by volume combustion synthesis. Microstructure examinations were performed by optical microscope (OM) and scanning electron microscope (SEM). Phase analyses were performed with X-ray diffraction device (XRD). A significant decrease in porosity was obtained due to an increase in the initial pressing pressure.Keywords: Titanium Aluminide, Volume Combustion Synthesis, Intermetallic, Porosity
Procedia PDF Downloads 1713787 Regulating Hydrogen Energy Evaluation During Aluminium Hydrolysis in Alkaline Solutions Containing Different Surfactants
Authors: Mohamed A. Deyab, Omnia A. A. El-Shamy
Abstract:
The purpose of this study is to reveal on the systematic evaluation of hydrogen production by aluminum hydrolysis in alkaline solutions containing different surfactants using hydrogen evolution measurements and supplemented by scan electron microscope (SEM) and energy dispersive X-ray analysis (EDX). It has been demonstrated that when alkaline concentration and solution temperature rise, the rate of H2 generation and, consequently, aluminum hydrolysis also rises. The addition of nonionic and cationic surfactants solution retards the rate of H2 production. The work is a promising option for carbon-free hydrogen production from renewable resources.Keywords: energy, hydrogen, hydrolysis, surfactants
Procedia PDF Downloads 903786 Analysis of a CO₂ Two-Phase Ejector Performances with Taguchi and Anova Optimization
Authors: Karima Megdouli
Abstract:
The ejector, a central element within the CO₂ transcritical ejection refrigeration system, holds significant importance in enhancing refrigeration capacity and minimizing compressor power usage. This study's objective is to introduce a technique for enhancing the effectiveness of the CO₂ transcritical two-phase ejector, utilizing Taguchi and ANOVA analysis. The investigation delves into the impact of geometric parameters, secondary flow temperature, and primary flow pressure on the efficiency of the ejector. Results indicate that employing a combination of Taguchi and ANOVA offers increased reliability and superior performance when optimizing the design of the CO₂ two-phase ejector.Keywords: ejector, supersonic, Taguchi, ANOVA, optimization
Procedia PDF Downloads 883785 A Physically-Based Analytical Model for Reduced Surface Field Laterally Double Diffused MOSFETs
Authors: M. Abouelatta, A. Shaker, M. El-Banna, G. T. Sayah, C. Gontrand, A. Zekry
Abstract:
In this paper, a methodology for physically modeling the intrinsic MOS part and the drift region of the n-channel Laterally Double-diffused MOSFET (LDMOS) is presented. The basic physical effects like velocity saturation, mobility reduction, and nonuniform impurity concentration in the channel are taken into consideration. The analytical model is implemented using MATLAB. A comparison of the simulations from technology computer aided design (TCAD) and that from the proposed analytical model, at room temperature, shows a satisfactory accuracy which is less than 5% for the whole voltage domain.Keywords: LDMOS, MATLAB, RESURF, modeling, TCAD
Procedia PDF Downloads 199