Search results for: waste heat recovery
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6817

Search results for: waste heat recovery

3337 The Influence of Bentonite on the Rheology of Geothermal Grouts

Authors: A. N. Ghafar, O. A. Chaudhari, W. Oettel, P. Fontana

Abstract:

This study is a part of the EU project GEOCOND-Advanced materials and processes to improve performance and cost-efficiency of shallow geothermal systems and underground thermal storage. In heat exchange boreholes, to improve the heat transfer between the pipes and the surrounding ground, the space between the pipes and the borehole wall is normally filled with geothermal grout. Traditionally, bentonite has been a crucial component in most commercially available geothermal grouts to assure the required stability and impermeability. The investigations conducted in the early stage of this project during the benchmarking tests on some commercial grouts showed considerable sensitivity of the rheological properties of the tested grouts to the mixing parameters, i.e., mixing time and velocity. Further studies on this matter showed that bentonite, which has been one of the important constituents in most grout mixes, was probably responsible for such behavior. Apparently, proper amount of shear should be applied during the mixing process to sufficiently activate the bentonite. The higher the amount of applied shear the more the activation of bentonite, resulting in change in the grout rheology. This explains why, occasionally in the field applications, the flow properties of the commercially available geothermal grouts using different mixing conditions (mixer type, mixing time, mixing velocity) are completely different than expected. A series of tests were conducted on the grout mixes, with and without bentonite, using different mixing protocols. The aim was to eliminate/reduce the sensitivity of the rheological properties of the geothermal grouts to the mixing parameters by replacing bentonite with polymeric (non-clay) stabilizers. The results showed that by replacing bentonite with a proper polymeric stabilizer, the sensitivity of the grout mix on mixing time and velocity was to a great extent diminished. This can be considered as an alternative for the developers/producers of geothermal grouts to provide enhanced materials with less uncertainty in obtained results in the field applications.

Keywords: flow properties, geothermal grout, mixing time, mixing velocity, rheological properties

Procedia PDF Downloads 112
3336 Chemical Modification of Biosorbent for Prconcentation of Cadmium in Water Sample

Authors: Homayon Ahmad Panahi, Niusha Mohseni Darabi, Elham Moniri

Abstract:

A new biosorbent is prepared by coupling a cibacron blue to yeast cells. The modified yeast cells with cibacron blue has been characterized by Fourier transform infrared spectroscopy (FT-IR) and elemental analysis and applied for the preconcentration and solid phase extraction of trace cadmium ion from water samples. The optimum pH value for sorption of the cadmium ions by yeast cells- cibacron blue was 5.5. The sorption capacity of modified biosorbent was 45 mg. g−1. A recovery of 98.2% was obtained for Cd(II) when eluted with 0.5 M nitric acid. The method was applied for Cd(II) preconcentration and determination in sea water sample.

Keywords: solid phase extraction, yeast cells, Nickl, isotherm study

Procedia PDF Downloads 250
3335 Screening and Optimization of Conditions for Pectinase Production by Aspergillus Flavus

Authors: Rumaisa Shahid, Saad Aziz Durrani, Shameel Pervez, Ibatsam Khokhar

Abstract:

Food waste is a prevalent issue in Pakistan, with over 40 percent of food discarded annually. Despite their decay, rotting fruits retain residual nutritional value consumed by microorganisms, notably fungi and bacteria. Fungi, preferred for their extracellular enzyme release, are gaining prominence, particularly for pectinase production. This enzyme offers several advantages, including clarifying juices by breaking down pectic compounds. In this study, three Aspergillus flavus isolates derived from decomposed fruits and manure were selected for pectinase production. The primary aim was to isolate fungi from diverse waste sources, identify the isolates and assess their capacity for pectinase production. The identification was done through morphological characteristics with the help of Light microscopy and Scanning Electron Microscopy (SEM). Pectinolytic potential was screened using pectin minimal salt agar (PMSA) medium, comparing clear zone diameters among isolates. Identification relied on morphological characteristics. Optimizing substrate (lemon and orange peel powder) concentrations, pH, temperature, and incubation period aimed to enhance pectinase yield. Spectrophotometry enabled quantitative analysis. The temperature was set at room temperature (28 ºC). The optimal conditions for Aspergillus flavus strain AF1(isolated from mango) included a pH of 5, an incubation period of 120 hours, and substrate concentrations of 3.3% for orange peels and 6.6% for lemon peels. For AF2 and AF3 (both isolated from soil), the ideal pH and incubation period were the same as AF1 i.e. pH 5 and 120 hours. However, their optimized substrate concentrations varied, with AF2 showing maximum activity at 3.3% for orange peels and 6.6% for lemon peels, while AF3 exhibited its peak activity at 6.6% for orange peels and 8.3% for lemon peels. Among the isolates, AF1 demonstrated superior performance under these conditions, comparatively.

Keywords: pectinase, lemon peel, orange peel, aspergillus flavus

Procedia PDF Downloads 56
3334 Plantar Neuro-Receptor Activation in Total Knee Arthroplasty Patients: Impact on Clinical Function, Pain, and Stiffness - A Randomized Controlled Trial

Authors: Woolfrey K., Woolfrey M., Bolton C. L., Warchuk D.

Abstract:

Objectives: Osteoarthritis is the most common joint disease of adults worldwide. Despite total knee arthroplasty (TKA) demonstrating high levels of success, 20% of patients report dissatisfaction with their result. VOXX Wellness Stasis Socks are embedded with a proprietary pattern of neuro-receptor activation points that have been proven to activate a precise neuro-response, according to the pattern theory of haptic perception, which stimulates improvements in pain and function. The use of this technology in TKA patients may prove beneficial as an adjunct to recovery as many patients suffer from deficits to their proprioceptive system caused by ligamentous damage and alterations to mechanoreceptors during the procedure. We hypothesized that VOXX Wellness Stasis Socks are a safe, cost-effective, and easily scalable strategy to support TKA patients through their recovery. Design: Double-blinded, placebo-controlled randomized trial. Participants: Patients scheduled to receive TKA were considered eligible for inclusion in the trial. Interventions: Intervention group (I): VOXX Wellness Stasis socks containing receptor point-activation technology. Control group (C): VOXX Wellness Stasis socks without receptor point-activation technology. Sock use during the waking hours x 6 weeks. Main Outcome Measures: Western Ontario McMaster Universities Osteoarthritis Index (WOMAC) questionnaire completed at baseline, 2 weeks, and 6 weeks to assess pain, stiffness, and physical function. Results: Data analysis using SPSS software. P-values, effect sizes, and confidence intervals are reported to assess clinical relevance of the finding. Physical status classifications were compared using t-test. Within-subject and between-subject differences in the mean WOMAC were analyzed by ANOVA. Effect size was analyzed using Cramer’s V. Consistent improvement in WOMAC scores for pain and stiffness at 2 weeks post op in the I over the C group. The womac scores assessing physical function showed a consistent improvement at both 2 and 6 weeks post op in the I group compared to C group. Conclusions: VOXX proved to be a low cost, safe intervention in TKA to help patients improve with regard to pain, stiffness, and physical function. Disclosures: None

Keywords: osteoarthritis, RCT, pain management, total knee arthroplasty

Procedia PDF Downloads 517
3333 Cultural Innovation in Uruena: A Path Against Depopulation

Authors: S. Sansone-Casaburi

Abstract:

The pandemic that the world is going through is causing important changes in the daily life of all cities, which can translate into opportunities to rearrange pending situations. Among others: the town-city relationship and sustainability. On the one hand, the city continues to be the center of attention, and the countryside is assumed as the supplier of food. However, the temporary closure of cities highlighted the importance of the rural environment, and many people are reassessing this context as an alternative for life. Furthermore, the countryside is not simply the home and the center of activity of the people who inhabit it, but rather constitutes the active group of all citizens, both rural and urban. On the other hand, the pandemic is the opportunity to meet sustainable development goals. Sustainable development is understood as the capital to be transferred to future generations made up of three types of wealth: natural capital (environment), human capital (people, relationships, culture), and artificial or built capital, made up of buildings and infrastructure, or by cities and towns. The 'new normal' can mean going back to the countryside, but not to a merely agricultural place but to a sustainable, affordable, and healthy place, which, with the appropriate infrastructures, allows work from a distance, a new post-COVID-19 modality. The contribution of the research is towards the recovery of traditional villages from the perspective of populations that have managed to maintain their vitality with innovative solutions. It is assumed that innovation is a path for the recovery of traditional villages, so we ask: what conditions are necessary for innovation to be successful and sustainable? In the research, several variables were found, among which culture is named, so the objective of this article is to understand Uruena, a town in the province of Valladolid, which with only 182 inhabitants houses five museums and twelve bookstores that make up the first Villa del Libro in Spain. The methodology used is mixed: inductive and deductive and the results were specified in determining the formula of innovative peoples in culture: PIc = Pt + C [E (Aec) + S (pp) + A (T + s + t + enc)]. Where the innovative villages in culture PIc are the result of traditional villages Pt that from a cultural innovation C, integrates into the economic, economic and cultural activities E (Aec); in the social sphere, the public and private actors S (pp); and in the environmental (A), Territory (T), services (s), technology (t) and natural and built spaces (enc). The results of this analysis will focus on determining what makes the structure of innovative peoples sustainable and understanding what variables make up that structure to verify if they can be applied in other contexts and repower abandoned places to provide a solution for people who migrate to this context. That is, learn from what has been done to replicate it in similar cases.

Keywords: culture as innovation, depopulation, sustainability, traditional villages

Procedia PDF Downloads 79
3332 Numerical Modeling of Turbulent Natural Convection in a Square Cavity

Authors: Mohammadreza Sedighi, Mohammad Said Saidi, Hesamoddin Salarian

Abstract:

A numerical study has been performed to investigate the effect of using different turbulent models on natural convection flow field and temperature distributions in partially heated square cavity compare to benchmark. The temperature of the right vertical wall is lower than that of heater while other walls are insulated. The commercial CFD codes are used to model. Standard k-w model provided good agreement with the experimental data.

Keywords: Buoyancy, Cavity, CFD, Heat Transfer, Natural Convection, Turbulence

Procedia PDF Downloads 324
3331 Molecular Dynamic Simulation of CO2 Absorption into Mixed Aqueous Solutions MDEA/PZ

Authors: N. Harun, E. E. Masiren, W. H. W. Ibrahim, F. Adam

Abstract:

Amine absorption process is an approach for mitigation of CO2 from flue gas that produces from power plant. This process is the most common system used in chemical and oil industries for gas purification to remove acid gases. On the challenges of this process is high energy requirement for solvent regeneration to release CO2. In the past few years, mixed alkanolamines have received increasing attention. In most cases, the mixtures contain N-methyldiethanolamine (MDEA) as the base amine with the addition of one or two more reactive amines such as PZ. The reason for the application of such blend amine is to take advantage of high reaction rate of CO2 with the activator combined with the advantages of the low heat of regeneration of MDEA. Several experimental and simulation studies have been undertaken to understand this process using blend MDEA/PZ solvent. Despite those studies, the mechanism of CO2 absorption into the aqueous MDEA is not well understood and available knowledge within the open literature is limited. The aim of this study is to investigate the intermolecular interaction of the blend MDEA/PZ using Molecular Dynamics (MD) simulation. MD simulation was run under condition 313K and 1 atm using NVE ensemble at 200ps and NVT ensemble at 1ns. The results were interpreted in term of Radial Distribution Function (RDF) analysis through two system of interest i.e binary and tertiary. The binary system will explain the interaction between amine and water molecule while tertiary system used to determine the interaction between the amine and CO2 molecule. For the binary system, it was observed that the –OH group of MDEA is more attracted to water molecule compared to –NH group of MDEA. The –OH group of MDEA can form the hydrogen bond with water that will assist the solubility of MDEA in water. The intermolecular interaction probability of –OH and –NH group of MDEA with CO2 in blended MDEA/PZ is higher than using single MDEA. This findings show that PZ molecule act as an activator to promote the intermolecular interaction between MDEA and CO2.Thus, blend of MDEA with PZ is expecting to increase the absorption rate of CO2 and reduce the heat regeneration requirement.

Keywords: amine absorption process, blend MDEA/PZ, CO2 capture, molecular dynamic simulation, radial distribution function

Procedia PDF Downloads 280
3330 Geospatial and Statistical Evidences of Non-Engineered Landfill Leachate Effects on Groundwater Quality in a Highly Urbanised Area of Nigeria

Authors: David A. Olasehinde, Peter I. Olasehinde, Segun M. A. Adelana, Dapo O. Olasehinde

Abstract:

An investigation was carried out on underground water system dynamics within Ilorin metropolis to monitor the subsurface flow and its corresponding pollution. Africa population growth rate is the highest among the regions of the world, especially in urban areas. A corresponding increase in waste generation and a change in waste composition from predominantly organic to non-organic waste has also been observed. Percolation of leachate from non-engineered landfills, the chief means of waste disposal in many of its cities, constitutes a threat to the underground water bodies. Ilorin city, a transboundary town in southwestern Nigeria, is a ready microcosm of Africa’s unique challenge. In spite of the fact that groundwater is naturally protected from common contaminants such as bacteria as the subsurface provides natural attenuation process, groundwater samples have been noted to however possesses relatively higher dissolved chemical contaminants such as bicarbonate, sodium, and chloride which poses a great threat to environmental receptors and human consumption. The Geographic Information System (GIS) was used as a tool to illustrate, subsurface dynamics and the corresponding pollutant indicators. Forty-four sampling points were selected around known groundwater pollutant, major old dumpsites without landfill liners. The results of the groundwater flow directions and the corresponding contaminant transport were presented using expert geospatial software. The experimental results were subjected to four descriptive statistical analyses, namely: principal component analysis, Pearson correlation analysis, scree plot analysis, and Ward cluster analysis. Regression model was also developed aimed at finding functional relationships that can adequately relate or describe the behaviour of water qualities and the hypothetical factors landfill characteristics that may influence them namely; distance of source of water body from dumpsites, static water level of groundwater, subsurface permeability (inferred from hydraulic gradient), and soil infiltration. The regression equations developed were validated using the graphical approach. Underground water seems to flow from the northern portion of Ilorin metropolis down southwards transporting contaminants. Pollution pattern in the study area generally assumed a bimodal pattern with the major concentration of the chemical pollutants in the underground watershed and the recharge. The correlation between contaminant concentrations and the spread of pollution indicates that areas of lower subsurface permeability display a higher concentration of dissolved chemical content. The principal component analysis showed that conductivity, suspended solids, calcium hardness, total dissolved solids, total coliforms, and coliforms were the chief contaminant indicators in the underground water system in the study area. Pearson correlation revealed a high correlation of electrical conductivity for many parameters analyzed. In the same vein, the regression models suggest that the heavier the molecular weight of a chemical contaminant of a pollutant from a point source, the greater the pollution of the underground water system at a short distance. The study concludes that the associative properties of landfill have a significant effect on groundwater quality in the study area.

Keywords: dumpsite, leachate, groundwater pollution, linear regression, principal component

Procedia PDF Downloads 101
3329 Numerical Simulation of Convective and Transport Processes in the Nocturnal Atmospheric Surface Layer

Authors: K. R. Sreenivas, Shaurya Kaushal

Abstract:

After sunset, under calm & clear-sky nocturnal conditions, the air layer near the surface containing aerosols cools through radiative processes to the upper atmosphere. Due to this cooling, surface air-layer temperature can fall 2-6 degrees C lower than the ground-surface temperature. This unstable convection layer, on the top, is capped by a stable inversion-boundary layer. Radiative divergence, along with the convection within the surface layer, governs the vertical transport of heat and moisture. Micro-physics in this layer have implications for the occurrence and growth of the fog layer. This particular configuration, featuring a convective mixed layer beneath a stably stratified inversion layer, exemplifies a classic case of penetrative convection. In this study, we conduct numerical simulations of the penetrative convection phenomenon within the nocturnal atmospheric surface layer and elucidate its relevance to the dynamics of fog layers. We employ field and laboratory measurements of aerosol number density to model the strength of the radiative cooling. Our analysis encompasses horizontally averaged, vertical profiles of temperature, density, and heat flux. The energetic incursion of the air from the mixed layer into the stable inversion layer across the interface results in entrainment and the growth of the mixed layer, modeling of which is the key focus of our investigation. In our research, we ascertain the appropriate length scale to employ in the Richardson number correlation, which allows us to estimate the entrainment rate and model the growth of the mixed layer. Our analysis of the mixed layer and the entrainment zone reveals a close alignment with previously reported laboratory experiments on penetrative convection. Additionally, we demonstrate how aerosol number density influences the growth or decay of the mixed layer. Furthermore, our study suggests that the presence of fog near the ground surface can induce extensive vertical mixing, a phenomenon observed in field experiments.

Keywords: inversion layer, penetrative convection, radiative cooling, fog occurrence

Procedia PDF Downloads 57
3328 Towards a Conscious Design in AI by Overcoming Dark Patterns

Authors: Ayse Arslan

Abstract:

One of the important elements underpinning a conscious design is the degree of toxicity in communication. This study explores the mechanisms and strategies for identifying toxic content by avoiding dark patterns. Given the breadth of hate and harassment attacks, this study explores a threat model and taxonomy to assist in reasoning about strategies for detection, prevention, mitigation, and recovery. In addition to identifying some relevant techniques such as nudges, automatic detection, or human-ranking, the study suggests the use of major metrics such as the overhead and friction of solutions on platforms and users or balancing false positives (e.g., incorrectly penalizing legitimate users) against false negatives (e.g., users exposed to hate and harassment) to maintain a conscious design towards fairness.

Keywords: AI, ML, algorithms, policy, system design

Procedia PDF Downloads 107
3327 Improvement in Blast Furnace Performance Using Softening - Melting Zone Profile Prediction Model at G Blast Furnace, Tata Steel Jamshedpur

Authors: Shoumodip Roy, Ankit Singhania, K. R. K. Rao, Ravi Shankar, M. K. Agarwal, R. V. Ramna, Uttam Singh

Abstract:

The productivity of a blast furnace and the quality of the hot metal produced are significantly dependent on the smoothness and stability of furnace operation. The permeability of the furnace bed, as well as the gas flow pattern, influences the steady control of process parameters. The softening – melting zone that is formed inside the furnace contributes largely in distribution of the gas flow and the bed permeability. A better shape of softening-melting zone enhances the performance of blast furnace, thereby reducing the fuel rates and improving furnace life. Therefore, predictive model of the softening- melting zone profile can be utilized to control and improve the furnace operation. The shape of softening-melting zone depends upon the physical and chemical properties of the agglomerates and iron ore charged in the furnace. The variations in the agglomerate proportion in the burden at G Blast furnace disturbed the furnace stability. During such circumstances, it was analyzed that a w-shape softening-melting zone profile was formed inside the furnace. The formation of w-shape zone resulted in poor bed permeability and non-uniform gas flow. There was a significant increase in the heat loss at the lower zone of the furnace. The fuel demand increased, and the huge production loss was incurred. Therefore, visibility of softening-melting zone profile was necessary in order to pro-actively optimize the process parameters and thereby to operate the furnace smoothly. Using stave temperatures, a model was developed that predicted the shape of the softening-melting zone inside the furnace. It was observed that furnace operated smoothly during inverse V-shape of the zone and vice-versa during w-shape. This model helped to control the heat loss, optimize the burden distribution and lower the fuel rate at G Blast Furnace, TSL Jamshedpur. As a result of furnace stabilization productivity increased by 10% and fuel rate reduced by 80 kg/thm. Details of the process have been discussed in this paper.

Keywords: agglomerate, blast furnace, permeability, softening-melting

Procedia PDF Downloads 238
3326 Secured Transmission and Reserving Space in Images Before Encryption to Embed Data

Authors: G. R. Navaneesh, E. Nagarajan, C. H. Rajam Raju

Abstract:

Nowadays the multimedia data are used to store some secure information. All previous methods allocate a space in image for data embedding purpose after encryption. In this paper, we propose a novel method by reserving space in image with a boundary surrounded before encryption with a traditional RDH algorithm, which makes it easy for the data hider to reversibly embed data in the encrypted images. The proposed method can achieve real time performance, that is, data extraction and image recovery are free of any error. A secure transmission process is also discussed in this paper, which improves the efficiency by ten times compared to other processes as discussed.

Keywords: secure communication, reserving room before encryption, least significant bits, image encryption, reversible data hiding

Procedia PDF Downloads 398
3325 Optimum Design of Heat Exchanger in Diesel Engine Cold EGR for Pollutants Reduction

Authors: Nasser Ghassembaglou, Armin Rahmatfam, Faramarz Ranjbar

Abstract:

Using of cold EGR method with variable venturi and turbocharger has a very significant affection on the reduction of NOX and grime simultaneously. EGR cooler is one of the most important parts in the cold EGR circuit. In this paper optimum design of cooler for working in different percents of EGR and for determining of optimum temperature of exhausted gases, growth of efficiency, reduction of weight, reduction of dimension and expenditures, and reduction of sediment and optimum performance by using gas oil which has significant amounts of brimstone are investigated and optimized.

Keywords: cold EGR, NOX, cooler, gas oil

Procedia PDF Downloads 477
3324 ISIS Resurgence in the Era of COVID-19

Authors: Stacey Pollard, Henry Baraket, Girish Ganesan, Natalie Kim

Abstract:

One year after U.S.-led coalition operations liberated ISIS-held territories in Iraq and Syria and killed ISIS core leader Abu Bakr al-Baghdadi, ISIS is resurging. Taking a page from its old playbook, the organization is capitalizing on social unrest and a rapidly deteriorating security environment—exacerbated by the COVID-19 pandemic—to reconstitute in permissive areas of Iraq and Syria. This Short examines ISIS’s pandemic-era ground and information operations through the lens of its state- and nation-making efforts to help analysts and decisionmakers better understand the imminence and scope of the threat. ISIS is rapidly overcoming U.S.-supported counterterrorism gains and, without direct pressure to reverse these advances, is poised for recovery.

Keywords: Terrorism, COVID-19, Islamic State, Instability, Iraq, Syria, Global, Resurgence

Procedia PDF Downloads 57
3323 Application of Electrochromic Glazing for Reducing Peak Cooling Loads

Authors: Ranojoy Dutta

Abstract:

HVAC equipment capacity has a direct impact on occupant comfort and energy consumption of a building. Glazing gains, especially in buildings with high window area, can be a significant contributor to the total peak load on the HVAC system, leading to over-sized systems that mostly operate at poor part load efficiency. In addition, radiant temperature, which largely drives occupant comfort in glazed perimeter zones, is often not effectively controlled despite the HVAC being designed to meet the air temperature set-point. This is due to short wave solar radiation transmitted through windows, that is not sensed by the thermostat until much later when the thermal mass in the room releases the absorbed solar heat to the indoor air. The implication of this phenomenon is increased cooling energy despite poor occupant comfort. EC glazing can significantly eliminate direct solar transmission through windows, reducing both the space cooling loads for the building and improving comfort for occupants near glazing. This paper will review the exact mechanism of how EC glazing would reduce the peak load under design day conditions, leading to reduced cooling capacity vs regular high-performance glazing. Since glazing heat transfer only affects the sensible load, system sizing will be evaluated both with and without the availability of a DOAS to isolate the downsizing potential of the primary cooling equipment when outdoor air is conditioned separately. Given the dynamic nature of glazing gains due to the sun’s movement, effective peak load mitigation with EC requires an automated control system that can predict solar movement and radiation levels so that the right tint state with the appropriate SHGC is utilized at any given time for a given façade orientation. Such an automated EC product will be evaluated for a prototype commercial office model situated in four distinct climate zones.

Keywords: electrochromic glazing, peak sizing, thermal comfort, glazing load

Procedia PDF Downloads 115
3322 Stuttering Persistence in Children: Effectiveness of the Psicodizione Method in a Small Italian Cohort

Authors: Corinna Zeli, Silvia Calati, Marco Simeoni, Chiara Comastri

Abstract:

Developmental stuttering affects about 10% of preschool children; although the high percentage of natural recovery, a quarter of them will become an adult who stutters. An effective early intervention should help those children with high persistence risk for the future. The Psicodizione method for early stuttering is an Italian behavior indirect treatment for preschool children who stutter in which method parents act as good guides for communication, modeling their own fluency. In this study, we give a preliminary measure to evaluate the long-term effectiveness of Psicodizione method on stuttering preschool children with a high persistence risk. Among all Italian children treated with the Psicodizione method between 2018 and 2019, we selected 8 kids with at least 3 high risk persistence factors from the Illinois Prediction Criteria proposed by Yairi and Seery. The factors chosen for the selection were: one parent who stutters (1pt mother; 1.5pt father), male gender, ≥ 4 years old at onset; ≥ 12 months from onset of symptoms before treatment. For this study, the families were contacted after an average period of time of 14,7 months (range 3 - 26 months). Parental reports were gathered with a standard online questionnaire in order to obtain data reflecting fluency from a wide range of the children’s life situations. The minimum worthwhile outcome was set at "mild evidence" in a 5 point Likert scale (1 mild evidence- 5 high severity evidence). A second group of 6 children, among those treated with the Piscodizione method, was selected as high potential for spontaneous remission (low persistence risk). The children in this group had to fulfill all the following criteria: female gender, symptoms for less than 12 months (before treatment), age of onset <4 years old, none of the parents with persistent stuttering. At the time of this follow-up, the children were aged 6–9 years, with a mean of 15 months post-treatment. Among the children in the high persistence risk group, 2 (25%) hadn’t had stutter anymore, and 3 (37,5%) had mild stutter based on parental reports. In the low persistency risk group, the children were aged 4–6 years, with a mean of 14 months post-treatment, and 5 (84%) hadn’t had stutter anymore (for the past 16 months on average).62,5% of children at high risk of persistence after Psicodizione treatment showed mild evidence of stutter at most. 75% of parents confirmed a better fluency than before the treatment. The low persistence risk group seemed to be representative of spontaneous recovery. This study’s design could help to better evaluate the success of the proposed interventions for stuttering preschool children and provides a preliminary measure of the effectiveness of the Psicodizione method on high persistence risk children.

Keywords: early treatment, fluency, preschool children, stuttering

Procedia PDF Downloads 195
3321 Quantification of River Ravi Pollution and Oxidation Pond Treatment to Improve the Drain Water Quality

Authors: Yusra Mahfooz, Saleha Mehmood

Abstract:

With increase in industrialization and urbanization, water contaminating rivers through effluents laden with diverse chemicals in developing countries. The study was based on the waste water quality of the four drains (Outfall, Gulshan -e- Ravi, Hudiara, and Babu Sabu) which enter into river Ravi in Lahore, Pakistan. Different pollution parameters were analyzed including pH, DO, BOD, COD, turbidity, EC, TSS, nitrates, phosphates, sulfates and fecal coliform. Approximately all the water parameters of drains were exceeded the permissible level of wastewater standards. In calculation of pollution load, Hudiara drains showed highest pollution load in terms of COD i.e. 429.86 tons/day while in Babu Sabu drain highest pollution load was calculated in terms of BOD i.e. 162.82 tons/day (due to industrial and sewage discharge in it). Lab scale treatment (oxidation ponds) was designed in order to treat the waste water of Babu Sabu drain, through combination of different algae species i.e. chaetomorphasutoria, sirogoniumsticticum and zygnema sp. Two different sizes of ponds (horizontal and vertical), and three different concentration of algal samples (25g/3L, 50g/3L, and 75g/3L) were selected. After 6 days of treatment, 80 to 97% removal efficiency was found in the pollution parameters. It was observed that in the vertical pond, maximum reduction achieved i.e. turbidity 62.12%, EC 79.3%, BOD 86.6%, COD 79.72%, FC 100%, nitrates 89.6%, sulphates 96.9% and phosphates 85.3%. While in the horizontal pond, the maximum reduction in pollutant parameters, turbidity 69.79%, EC 83%, BOD 88.5%, COD 83.01%, FC 100%, nitrates 89.8%, sulphates 97% and phosphates 86.3% was observed. Overall treatment showed that maximum reduction was carried out in 50g algae setup in the horizontal pond due to large surface area, after 6 days of treatment. Results concluded that algae-based treatment are most energy efficient, which can improve drains water quality in cost effective manners.

Keywords: oxidation pond, ravi pollution, river water quality, wastewater treatment

Procedia PDF Downloads 279
3320 Microbial Fuel Cells: Performance and Applications

Authors: Andrea Pietrelli, Vincenzo Ferrara, Bruno Allard, Francois Buret, Irene Bavasso, Nicola Lovecchio, Francesca Costantini, Firas Khaled

Abstract:

This paper aims to show some applications of microbial fuel cells (MFCs), an energy harvesting technique, as clean power source to supply low power device for application like wireless sensor network (WSN) for environmental monitoring. Furthermore, MFC can be used directly as biosensor to analyse parameters like pH and temperature or arranged in form of cluster devices in order to use as small power plant. An MFC is a bioreactor that converts energy stored in chemical bonds of organic matter into electrical energy, through a series of reactions catalysed by microorganisms. We have developed a lab-scale terrestrial microbial fuel cell (TMFC), based on soil that acts as source of bacteria and flow of nutrient and a lab-scale waste water microbial fuel cell (WWMFC), where waste water acts as flow of nutrient and bacteria. We performed large series of tests to exploit the capability as biosensor. The pH value has strong influence on the open circuit voltage (OCV) delivered from TMFCs. We analyzed three condition: test A and B were filled with same soil but changing pH from 6 to 6.63, test C was prepared using a different soil with a pH value of 6.3. Experimental results clearly show how with higher pH value a higher OCV was produced; indeed reactors are influenced by different values of pH which increases the voltage in case of a higher pH value until the best pH value of 7 is achieved. The influence of pH on OCV of lab-scales WWMFC was analyzed at pH value of 6.5, 7, 7.2, 7.5 and 8. WWMFCs are influenced from temperature more than TMFCs. We tested the power performance of WWMFCs considering four imposed values of ambient temperature. Results show how power performance increase proportionally with higher temperature values, doubling the output power from 20° to 40°. The best value of power produced from our lab-scale TMFC was equal to 310 μW using peaty soil, at 1KΩ, corresponding to a current of 0.5 mA. A TMFC can supply proper energy to low power devices of a WSN by means of the design of three stages scheme of an energy management system, which adapts voltage level of TMFC to those required by a WSN node, as 3.3V. Using a commercial DC/DC boost converter, that needs an input voltage of 700 mV, the current source of 0.5 mA, charges a capacitor of 6.8 mF until it will have accumulated an amount of charge equal to 700 mV in a time of 10 s. The output stage includes an output switch that close the circuit after a time of 10s + 1.5ms because the converter can boost the voltage from 0.7V to 3.3V in 1.5 ms. Furthermore, we tested in form of clusters connected in series up to 20 WWMFCs, we have obtained a high voltage value as output, around 10V, but low current value. MFC can be considered a suitable clean energy source to be used to supply low power devices as a WSN node or to be used directly as biosensor.

Keywords: energy harvesting, low power electronics, microbial fuel cell, terrestrial microbial fuel cell, waste-water microbial fuel cell, wireless sensor network

Procedia PDF Downloads 200
3319 Characteristics of Smoked Edible Film Made from Myofibril, Collagen and Carrageenan

Authors: Roike Iwan Montolalu, Henny Adeleida Dien, Feny Mentang, Kristhina P. Rahael, Tomy Moga, Ayub Meko, Siegfried Berhimpon

Abstract:

In the last 20 years, packaging materials derived from petrochemicals polymers were widely used as packaging materials. This due to various advantages such as flexible, strong, transparent, and the price is relatively cheap. However, the plastic polymer also has various disadvantages, such as the transmission monomer contamination into the material to be packed, and waste is non-biodegradable. Edible film (EF) is an up to date materials, generated after the biodegradable packaging materials. The advantages of the EF materials, is the materials can be eat together with food, and the materials can be applied as a coating materials for a widely kind of foods especially snack foods. The aims of this research are to produce and to analyze the characteristics of smoked EF made from carrageenan, myofibril and collagen of Black Marlin (Makaira indica) industrial waste. Smoked EF made with an addition of 0.8 % smoke liquid. Three biopolymers i.e. carrageenan, myofibril, and collagen were used as treatments, and homogenate for 1 hours at speed of 1500 rpm. The analysis carried out on the pH and physical properties i.e. thickness, solubility, tensile strength, % elongation, and water vapor transmission rate (WVTR), as well as on the sensory characteristics of texture i.e. wateriness, firmness, elasticity, hardness, and juiciness of the coated products. The result shown that the higher the concentration the higher the thickness of EF, where as for myofibril proteins appeared higher than carrageenan and collagen. Both of collagen and myofibril shown that concentration of 6% was most soluble, while for carrageenan were in concentration of 2 to 2.5%. For tensile strength, carrageenan was significantly higher than myofibril and collagen; while for elongation, collagen film more elastic than carragenan and myofibril protein. Water vapor transmission rate, shown that myofibril protein film lower than carrageenan and collagen film. From sensory assessment of texture, carrageenan has a high elasticity and juiciness, while collagen and myofibril have a high in firmness and hardness.

Keywords: edible film, collagen, myofibril, carrageenan

Procedia PDF Downloads 417
3318 Membranes for Direct Lithium Extraction (DLE)

Authors: Amir Razmjou, Elika Karbassi Yazdi

Abstract:

Several direct lithium extraction (DLE) technologies have been developed for Li extraction from different brines. Although laboratory studies showed that they can technically recover Li to 90%, challenges still remain in developing a sustainable process that can serve as a foundation for the lithium dependent low-carbon economy. There is a continuing quest for DLE technologies that do not need extensive pre-treatments, fewer materials, and have simplified extraction processes with high Li selectivity. Here, an overview of DLE technologies will be provided with an emphasis on the basic principles of the materials’ design for the development of membranes with nanochannels and nanopores with Li ion selectivity. We have used a variety of building blocks such as nano-clay, organic frameworks, Graphene/oxide, MXene, etc., to fabricate the membranes. Molecular dynamic simulation (MD) and density functional theory (DFT) were used to reveal new mechanisms by which high Li selectivity was obtained.

Keywords: lithium recovery, membrane, lithium selectivity, decarbonization

Procedia PDF Downloads 94
3317 Thermodynamic Evaluation of Coupling APR-1400 with a Thermal Desalination Plant

Authors: M. Gomaa Abdoelatef, Robert M. Field, Lee, Yong-Kwan

Abstract:

Growing human populations have placed increased demands on water supplies and a heightened interest in desalination infrastructure. Key elements of the economics of desalination projects are thermal and electrical inputs. With growing concerns over the use of fossil fuels to (indirectly) supply these inputs, coupling of desalination with nuclear power production represents a significant opportunity. Individually, nuclear and desalination technologies have a long history and are relatively mature. For desalination, Reverse Osmosis (RO) has the lowest energy inputs. However, the economically driven output quality of the water produced using RO, which uses only electrical inputs, is lower than the output water quality from thermal desalination plants. Therefore, modern desalination projects consider that RO should be coupled with thermal desalination technologies (MSF, MED, or MED-TVC) with attendant steam inputs to permit blending to produce various qualities of water. A large nuclear facility is well positioned to dispatch large quantities of both electrical and thermal power. This paper considers the supply of thermal energy to a large desalination facility to examine heat balance impact on the nuclear steam cycle. The APR1400 nuclear plant is selected as prototypical from both a capacity and turbine cycle heat balance perspective to examine steam supply and the impact on electrical output. Extraction points and quantities of steam are considered parametrically along with various types of thermal desalination technologies to form the basis for further evaluations of economically optimal approaches to the interface of nuclear power production with desalination projects. In our study, the thermodynamic evaluation will be executed by DE-TOP which is the IAEA desalination program, it is approved to be capable of analyzing power generation systems coupled to desalination systems through various steam extraction positions, taking into consideration the isolation loop between the APR-1400 and the thermal desalination plant for safety concern.

Keywords: APR-1400, desalination, DE-TOP, IAEA, MSF, MED, MED-TVC, RO

Procedia PDF Downloads 514
3316 The Use of Additives to Prevent Fouling in Polyethylene and Polypropylene Gas and Slurry Phase Processes

Authors: L. Shafiq, A. Rigby

Abstract:

All polyethylene processes are highly exothermic, and the safe removal of the heat of reaction is a fundamental issue in the process design. In slurry and gas processes, the velocity of the polymer particles in the reactor and external coolers can be very high, and under certain conditions, this can lead to static charging of these particles. Such static charged polymer particles may start building up on the reactor wall, limiting heat transfer, and ultimately leading to severe reactor fouling and forced reactor shut down. Statsafe™ is an FDA approved anti-fouling additive currently used around the world for polyolefin production as an anti-fouling additive. The unique polymer chemistry aids static discharge, which prevents the build-up of charged polyolefin particles, which could lead to fouling. Statsafe™ is being used and trailed in gas, slurry, and a combination of these technologies around the world. We will share data to demonstrate how the use of Statsafe™ allows more stable operation at higher solids level by eliminating static, which would otherwise prevent closer packing of particles in the hydrocarbon slurry. Because static charge generation depends also on the concentration of polymer particles in the slurry, the maximum slurry concentration can be higher when using Statsafe™, leading to higher production rates. The elimination of fouling also leads to less downtime. Special focus will be made on the impact anti-static additives have on catalyst performance within the polymerization process and how this has been measured. Lab-scale studies have investigated the effect on the activity of Ziegler Natta catalysts when anti-static additives are used at various concentrations in gas and slurry, polyethylene and polypropylene processes. An in-depth gas phase study investigated the effect of additives on the final polyethylene properties such as particle size, morphology, fines, bulk density, melt flow index, gradient density, and melting point.

Keywords: anti-static additives, catalyst performance, FDA approved anti-fouling additive, polymerisation

Procedia PDF Downloads 186
3315 Numerical Study of Homogeneous Nanodroplet Growth

Authors: S. B. Q. Tran

Abstract:

Drop condensation is the phenomenon that the tiny drops form when the oversaturated vapour present in the environment condenses on a substrate and makes the droplet growth. Recently, this subject has received much attention due to its applications in many fields such as thin film growth, heat transfer, recovery of atmospheric water and polymer templating. In literature, many papers investigated theoretically and experimentally in macro droplet growth with the size of millimeter scale of radius. However few papers about nanodroplet condensation are found in the literature especially theoretical work. In order to understand the droplet growth in nanoscale, we perform the numerical simulation work to study nanodroplet growth. We investigate and discuss the role of the droplet shape and monomer diffusion on drop growth and their effect on growth law. The effect of droplet shape is studied by doing parametric studies of contact angle and disjoining pressure magnitude. Besides, the effect of pinning and de-pinning behaviours is also studied. We investigate the axisymmetric homogeneous growth of 10–100 nm single water nanodroplet on a substrate surface. The main mechanism of droplet growth is attributed to the accumulation of laterally diffusing water monomers, formed by the absorption of water vapour in the environment onto the substrate. Under assumptions of quasi-steady thermodynamic equilibrium, the nanodroplet evolves according to the augmented Young–Laplace equation. Using continuum theory, we model the dynamics of nanodroplet growth including the coupled effects of disjoining pressure, contact angle and monomer diffusion with the assumption of constant flux of water monomers at the far field. The simulation result is validated by comparing with the published experimental result. For the case of nanodroplet growth with constant contact angle, our numerical results show that the initial droplet growth is transient by monomer diffusion. When the flux at the far field is small, at the beginning, the droplet grows by the diffusion of initially available water monomers on the substrate and after that by the flux at the far field. In the steady late growth rate of droplet radius and droplet height follow a power law of 1/3, which is unaffected by the substrate disjoining pressure and contact angle. However, it is found that the droplet grows faster in radial direction than high direction when disjoining pressure and contact angle increase. The simulation also shows the information of computational domain effect in the transient growth period. When the computational domain size is larger, the mass coming in the free substrate domain is higher. So the mass coming in the droplet is also higher. The droplet grows and reaches the steady state faster. For the case of pinning and de-pinning droplet growth, the simulation shows that the disjoining pressure does not affect the droplet radius growth law 1/3 in steady state. However the disjoining pressure modifies the growth rate of the droplet height, which then follows a power law of 1/4. We demonstrate how spatial depletion of monomers could lead to a growth arrest of the nanodroplet, as observed experimentally.

Keywords: augmented young-laplace equation, contact angle, disjoining pressure, nanodroplet growth

Procedia PDF Downloads 258
3314 The Review of Coiled Tubing Intelligent Sidetracking Steering Technology

Authors: Zhao Xueran, Yang Dong

Abstract:

In order to improve the problem that old wells in oilfields are shut down due to low oil recovery, sidetracking has become one of the main technical means to restore the vitality of old wells. A variety of sidetracking technologies have been researched and formed internationally. Among them, coiled tubing sidetracking horizontal wells have significant advantages over conventional sidetracking methods: underbalanced pressure operations; reducing the number of trips of tubing, while drilling and production, saving construction costs, less ground equipment and less floor space, orienter guidance to reduce drilling friction, etc. This paper mainly introduces the steering technology in coiled tubing intelligent sidetracking at home and abroad, including the orienter and the rotary steerable system.

Keywords: sidetracking, coiled tubing, orienter, rotary steering system

Procedia PDF Downloads 136
3313 Phase Composition Analysis of Ternary Alloy Materials for Gas Turbine Applications

Authors: Mayandi Ramanathan

Abstract:

Gas turbine blades see the most aggressive thermal stress conditions within the engine, due to high Turbine Entry Temperatures in the range of 1500 to 1600°C. The blades rotate at very high rotation rates and remove a significant amount of thermal power from the gas stream. At high temperatures, the major component failure mechanism is a creep. During its service over time under high thermal loads, the blade will deform, lengthen and rupture. High strength and stiffness in the longitudinal direction up to elevated service temperatures are certainly the most needed properties of turbine blades and gas turbine components. The proposed advanced Ti alloy material needs a process that provides a strategic orientation of metallic ordering, uniformity in composition and high metallic strength. The chemical composition of the proposed Ti alloy material (25% Ta/(Al+Ta) ratio), unlike Ti-47Al-2Cr-2Nb, has less excess Al that could limit the service life of turbine blades. Properties and performance of Ti-47Al-2Cr-2Nb and Ti-6Al-4V materials will be compared with that of the proposed Ti alloy material to generalize the performance metrics of various gas turbine components. This paper will involve the summary of the effects of additive manufacturing and heat treatment process conditions on the changes in the phase composition, grain structure, lattice structure of the material, tensile strength, creep strain rate, thermal expansion coefficient and fracture toughness at different temperatures. Based on these results, additive manufacturing and heat treatment process conditions will be optimized to fabricate turbine blade with Ti-43Al matrix alloyed with an optimized amount of refractory Ta metal. Improvement in service temperature of the turbine blades and corrosion resistance dependence on the coercivity of the alloy material will be reported. A correlation of phase composition and creep strain rate will also be discussed.

Keywords: high temperature materials, aerospace, specific strength, creep strain, phase composition

Procedia PDF Downloads 99
3312 A Way to Recognize Origin of Soil Conditioners

Authors: Laura Santagostini, Vittoria Guglielmi

Abstract:

The meaning of the word 'Nature' (literally 'that which is about to be born') has accompanied researchers throughout their study of the environment and has led to the design of technical means to improve the properties of the soil, modifying its structure and/or consistency, thus favouring the emergence and growth of plants. These include soil improvers, i.e. any substance, natural or synthetic, mineral or organic, capable of modifying and improving the chemical, physical, biological and mechanical properties and characteristics of the soil. In particular, GCSCs (Green Composted Soil Conditioners) are soil conditioners produced through a controlled process of transforming selected organic green waste materials, such as clippings from the maintenance of ornamental greenery, crop residues and other plant waste. The use of GCSC in horticulture, fruit growing, industrial cultivation and nursery gardening is an active way to return organic carbon to the soil, thus limiting CO2 emissions and the production of greenhouse gases, and also to limit the environmental impact of peat extraction, which is normally used in these areas of application. With a view to distinguish between GCSC and peats and to assess what further contributions GCSC can provide to the soil and growing plants, we studied the behaviour of the two substrates by chromatographic techniques. After treating the individual soil improvers with different solvents, used individually or by applying a polarity gradient, the extracts obtained were analysed by HPLC and LCMS in order to assess their composition mainly from a qualitative point of view. Data obtained show in GCSC the presence of polyphenolic derivatives attributable to the degradation of plant material and potentially useful for the development and growth of young plants, while commercial peat-based products only sporadically showed the presence of recognisable molecules, confirming the lower complexity of the matrix under analysis. These results allowed us to distinguish the two different types of soil conditioner based on their chromatographic profiles.

Keywords: chromatographic profile, HPLC, polyphenols, soil conditioners

Procedia PDF Downloads 105
3311 Investigation of Projected Organic Waste Impact on a Tropical Wetland in Singapore

Authors: Swee Yang Low, Dong Eon Kim, Canh Tien Trinh Nguyen, Yixiong Cai, Shie-Yui Liong

Abstract:

Nee Soon swamp forest is one of the last vestiges of tropical wetland in Singapore. Understanding the hydrological regime of the swamp forest and implications for water quality is critical to guide stakeholders in implementing effective measures to preserve the wetland against anthropogenic impacts. In particular, although current field measurement data do not indicate a concern with organic pollution, reviewing the ways in which the wetland responds to elevated organic waste influx (and the corresponding impact on dissolved oxygen, DO) can help identify potential hotspots, and the impact on the outflow from the catchment which drains into downstream controlled watercourses. An integrated water quality model is therefore developed in this study to investigate spatial and temporal concentrations of DO levels and organic pollution (as quantified by biochemical oxygen demand, BOD) within the catchment’s river network under hypothetical, projected scenarios of spiked upstream inflow. The model was developed using MIKE HYDRO for modelling the study domain, as well as the MIKE ECO Lab numerical laboratory for characterising water quality processes. Model parameters are calibrated against time series of observed discharges at three measurement stations along the river network. Over a simulation period of April 2014 to December 2015, the calibrated model predicted that a continuous spiked inflow of 400 mg/l BOD will elevate downstream concentrations at the catchment outlet to an average of 12 mg/l, from an assumed nominal baseline BOD of 1 mg/l. Levels of DO were decreased from an initial 5 mg/l to 0.4 mg/l. Though a scenario of spiked organic influx at the swamp forest’s undeveloped upstream sub-catchments is currently unlikely to occur, the outcomes nevertheless will be beneficial for future planning studies in understanding how the water quality of the catchment will be impacted should urban redevelopment works be considered around the swamp forest.

Keywords: hydrology, modeling, water quality, wetland

Procedia PDF Downloads 126
3310 Experimental and Simulation Results for the Removal of H2S from Biogas by Means of Sodium Hydroxide in Structured Packed Columns

Authors: Hamadi Cherif, Christophe Coquelet, Paolo Stringari, Denis Clodic, Laura Pellegrini, Stefania Moioli, Stefano Langè

Abstract:

Biogas is a promising technology which can be used as a vehicle fuel, for heat and electricity production, or injected in the national gas grid. It is storable, transportable, not intermittent and substitutable for fossil fuels. This gas produced from the wastewater treatment by degradation of organic matter under anaerobic conditions is mainly composed of methane and carbon dioxide. To be used as a renewable fuel, biogas, whose energy comes only from methane, must be purified from carbon dioxide and other impurities such as water vapor, siloxanes and hydrogen sulfide. Purification of biogas for this application particularly requires the removal of hydrogen sulfide, which negatively affects the operation and viability of equipment especially pumps, heat exchangers and pipes, causing their corrosion. Several methods are available to eliminate hydrogen sulfide from biogas. Herein, reactive absorption in structured packed column by means of chemical absorption in aqueous sodium hydroxide solutions is considered. This study is based on simulations using Aspen Plus™ V8.0, and comparisons are done with data from an industrial pilot plant treating 85 Nm3/h of biogas which contains about 30 ppm of hydrogen sulfide. The rate-based model approach has been used for simulations in order to determine the efficiencies of separation for different operating conditions. To describe vapor-liquid equilibrium, a γ/ϕ approach has been considered: the Electrolyte NRTL model has been adopted to represent non-idealities in the liquid phase, while the Redlich-Kwong equation of state has been used for the vapor phase. In order to validate the thermodynamic model, Henry’s law constants of each compound in water have been verified against experimental data. Default values available in Aspen Plus™ V8.0 for the properties of pure components properties as heat capacity, density, viscosity and surface tension have also been verified. The obtained results for physical and chemical properties are in a good agreement with experimental data. Reactions involved in the process have been studied rigorously. Equilibrium constants for equilibrium reactions and the reaction rate constant for the kinetically controlled reaction between carbon dioxide and the hydroxide ion have been checked. Results of simulations of the pilot plant purification section show the influence of low temperatures, concentration of sodium hydroxide and hydrodynamic parameters on the selective absorption of hydrogen sulfide. These results show an acceptable degree of accuracy when compared with the experimental data obtained from the pilot plant. Results show also the great efficiency of sodium hydroxide for the removal of hydrogen sulfide. The content of this compound in the gas leaving the column is under 1 ppm.

Keywords: biogas, hydrogen sulfide, reactive absorption, sodium hydroxide, structured packed column

Procedia PDF Downloads 330
3309 Efficiency Enhancement in Solar Panel

Authors: R. S. Arun Raj

Abstract:

In today's climate of growing energy needs and increasing environmental issues, alternatives to the use of non-renewable and polluting fossil fuels have to be investigated. One such alternative is the solar energy. The SUN provides every hour as much energy as mankind consumes in one year. This paper clearly explains about the solar panel design and new models and methodologies that can be implemented for better utilization of solar energy. Minimisation of losses in solar panel as heat is my innovative idea revolves around. The pay back calculations by implementation of solar panels is also quoted.

Keywords: on-grid and off-grid systems, pyro-electric effect, pay-back calculations, solar panel

Procedia PDF Downloads 576
3308 Green Economy and Environmental Protection Economic Policy Challenges in Georgia

Authors: Gulnaz Erkomaishvili

Abstract:

Introduction. One of the most important issues of state economic policy in the 21st century is the problem of environmental protection. The Georgian government considers the green economy as one of the most important means of sustainable economic development and takes the initiative to implement voluntary measures to promote sustainable development. In this context, it is important to promote the development of ecosystem services, clean production, environmental education and green jobs.The development of the green economy significantly reduces the inefficient use of natural resources, waste generation, emissions into the atmosphere and the discharge of untreated water into bodies of water.It is, therefore, an important instrument in the environmental orientation of sustainable development. Objectives.The aim of the paper is to analyze the current status of the green economy in Georgia and identify effective ways to improve the environmental, economic policy of sustainable development. Methodologies: This paper uses general and specific methods, in particular, analysis, synthesis, induction, deduction, scientific abstraction, comparative and statistical methods, as well as experts’ evaluation. bibliographic research of scientific works and reports of organizations was conducted; Publications of the National Statistics Office of Georgia are used to determine the regularity between analytical and statistical estimations. Also, theoretical and applied research of international organizations and scientist-economists are used. Contributions: The country should implement such an economic policy that ensures the transition to a green economy, in particular, revising water, air and waste laws, strengthening existing environmental management tools and introcing new tools (including economic tools). Perfecting the regulatory legal framework of the environmental impact assessment system, which includes the harmonization of Georgian legislation with the requirements of the European Union. To ensure the protection and rational use of Georgia's forests, emphasis should be placed on sustainable forestry, protection and restoration of forests.

Keywords: green economy, environmental protection, environmental protection economic policy, environmental protection policy challanges

Procedia PDF Downloads 48