Search results for: industry applications
7729 Biochemical Characterization and Structure Elucidation of a New Cytochrome P450 Decarboxylase
Authors: Leticia Leandro Rade, Amanda Silva de Sousa, Suman Das, Wesley Generoso, Mayara Chagas Ávila, Plinio Salmazo Vieira, Antonio Bonomi, Gabriela Persinoti, Mario Tyago Murakami, Thomas Michael Makris, Leticia Maria Zanphorlin
Abstract:
Alkenes have an economic appeal, especially in the biofuels field, since they are precursors for drop-in biofuels production, which have similar chemical and physical properties to the conventional fossil fuels, with no oxygen in their composition. After the discovery of the first P450 CYP152 OleTJE in 2011, reported with its unique property of decarboxylating fatty acids (FA), by using hydrogen peroxide as a cofactor and producing 1-alkenes as the main product, the scientific and technological interest in this family of enzymes vastly increased. In this context, the present work presents a new decarboxylase (OleTRN) with low similarity with OleTJE (32%), its biochemical characterization, and structure elucidation. As main results, OleTRN presented a high yield of expression and purity, optimum reaction conditions at 35 °C and pH from 6.5 to 8.0, and higher specificity for oleic acid. Besides that, structure-guided mutations were performed and according to the functional characterizations, it was observed that some mutations presented different specificity and chemoselectivity by varying the chain-length of FA substrates from 12 to 20 carbons. These results are extremely interesting from a biotechnological perspective as those characteristics could diversify the applications and contribute to designing better cytochrome P450 decarboxylases. Considering that peroxygenases have the potential activity of decarboxylating and hydroxylating fatty acids and that the elucidation of the intriguing mechanistic involved in the decarboxylation preferential from OleTJE is still a challenge, the elucidation of OleTRN structure and the functional characterizations of OleTRN and its mutants contribute to new information about CYP152. Besides that, the work also contributed to the discovery of a new decarboxylase with a different selectivity profile from OleTJE, which allows a wide range of applications.Keywords: P450, decarboxylases, alkenes, biofuels
Procedia PDF Downloads 2057728 Simulation of High Performance Nanoscale Partially Depleted SOI n-MOSFET Transistors
Authors: Fatima Zohra Rahou, A. Guen Bouazza, B. Bouazza
Abstract:
Invention of transistor is the foundation of electronics industry. Metal Oxide Semiconductor Field Effect Transistor (MOSFET) has been the key for the development of nanoelectronics technology. In the first part of this manuscript, we present a new generation of MOSFET transistors based on SOI (Silicon-On-Insulator) technology. It is a partially depleted Silicon-On-Insulator (PD SOI MOSFET) transistor simulated by using SILVACO software. This work was completed by the presentation of some results concerning the influence of parameters variation (channel length L and gate oxide thickness Tox) on our PDSOI n-MOSFET structure on its drain current and kink effect.Keywords: SOI technology, PDSOI MOSFET, FDSOI MOSFET, kink effect
Procedia PDF Downloads 2637727 Improving Fingerprinting-Based Localization (FPL) System Using Generative Artificial Intelligence (GAI)
Authors: Getaneh Berie Tarekegn, Li-Chia Tai
Abstract:
With the rapid advancement of artificial intelligence, low-power built-in sensors on Internet of Things devices, and communication technologies, location-aware services have become increasingly popular and have permeated every aspect of people’s lives. Global navigation satellite systems (GNSSs) are the default method of providing continuous positioning services for ground and aerial vehicles, as well as consumer devices (smartphones, watches, notepads, etc.). However, the environment affects satellite positioning systems, particularly indoors, in dense urban and suburban cities enclosed by skyscrapers, or when deep shadows obscure satellite signals. This is because (1) indoor environments are more complicated due to the presence of many objects surrounding them; (2) reflection within the building is highly dependent on the surrounding environment, including the positions of objects and human activity; and (3) satellite signals cannot be reached in an indoor environment, and GNSS doesn't have enough power to penetrate building walls. GPS is also highly power-hungry, which poses a severe challenge for battery-powered IoT devices. Due to these challenges, IoT applications are limited. Consequently, precise, seamless, and ubiquitous Positioning, Navigation and Timing (PNT) systems are crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a novel semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine
Procedia PDF Downloads 507726 Study on Capability of the Octocopter Configurations in Finite Element Analysis Simulation Environment
Authors: Jeet Shende, Leonid Shpanin, Misko Abramiuk, Mattew Goodwin, Nicholas Pickett
Abstract:
Energy harvesting on board the Unmanned Ariel Vehicle (UAV) is one of the most rapidly growing emerging technologies and consists of the collection of small amounts of energy, for different applications, from unconventional sources that are incidental to the operation of the parent system or device. Different energy harvesting techniques have already been investigated in the multirotor drones, where the energy collected comes from the systems surrounding ambient environment and typically involves the conversion of solar, kinetic, or thermal energies into electrical energy. The energy harvesting from the vibrated propeller using the piezoelectric components inside the propeller has also been proven to be feasible. However, the impact on the UAV flight performance using this technology has not been investigated. In this contribution the impact on the multirotor drone operation has been investigated at different flight control configurations which support the efficient performance of the propeller vibration energy harvesting. The industrially made MANTIS X8-PRO octocopter frame kit was used to explore the octocopter operation which was modelled using SolidWorks 3D CAD package for simulation studies. The octocopter flight control strategy is developed through integration of the SolidWorks 3D CAD software and MATLAB/Simulink simulation environment for evaluation of the octocopter behaviour under different simulated flight modes and octocopter geometries. Analysis of the two modelled octocopter geometries and their flight performance is presented via graphical representation of simulated parameters. The possibility of not using the landing gear in octocopter geometry is demonstrated. The conducted study evaluates the octocopter’s flight control technique and its impact on the energy harvesting mechanism developed on board the octocopter. Finite Element Analysis (FEA) simulation results of the modelled octocopter in operation are presented exploring the performance of the octocopter flight control and structural configurations. Applications of both octocopter structures and their flight control strategy are discussed.Keywords: energy harvesting, flight control modelling, object modeling, unmanned aerial vehicle
Procedia PDF Downloads 807725 Supply Chain Design: Criteria Considered in Decision Making Process
Authors: Lenka Krsnakova, Petr Jirsak
Abstract:
Prior research on facility location in supply chain is mostly focused on improvement of mathematical models. It is due to the fact that supply chain design has been for the long time the area of operational research that underscores mainly quantitative criteria. Qualitative criteria are still highly neglected within the supply chain design research. Facility location in the supply chain has become multi-criteria decision-making problem rather than single criteria decision due to changes of market conditions. Thus, both qualitative and quantitative criteria have to be included in the decision making process. The aim of this study is to emphasize the importance of qualitative criteria as key parameters of relevant mathematical models. We examine which criteria are taken into consideration when Czech companies decide about their facility location. A literature review on criteria being used in facility location decision making process creates a theoretical background for the study. The data collection was conducted through questionnaire survey. Questionnaire was sent to manufacturing and business companies of all sizes (small, medium and large enterprises) with the representation in the Czech Republic within following sectors: automotive, toys, clothing industry, electronics and pharmaceutical industry. Comparison of which criteria prevail in the current research and which are considered important by companies in the Czech Republic is made. Despite the number of articles focused on supply chain design, only minority of them consider qualitative criteria and rarely process supply chain design as a multi-criteria decision making problem. Preliminary results of the questionnaire survey outlines that companies in the Czech Republic see the qualitative criteria and their impact on facility location decision as crucial. Qualitative criteria as company strategy, quality of working environment or future development expectations are confirmed to be considered by Czech companies. This study confirms that the qualitative criteria can significantly influence whether a particular location could or could not be right place for a logistic facility. The research has two major limitations: researchers who focus on improving of mathematical models mostly do not mention criteria that enter the model. Czech supply chain managers selected important criteria from the group of 18 available criteria and assign them importance weights. It does not necessarily mean that these criteria were taken into consideration when the last facility location was chosen, but how they perceive that today. Since the study confirmed the necessity of future research on how qualitative criteria influence decision making process about facility location, the authors have already started in-depth interviews with participating companies to reveal how the inclusion of qualitative criteria into decision making process about facility location influence the company´s performance.Keywords: criteria influencing facility location, Czech Republic, facility location decision-making, qualitative criteria
Procedia PDF Downloads 3297724 Magnetic Properties of Nickel Oxide Nanoparticles in Superparamagnetic State
Authors: Navneet Kaur, S. D. Tiwari
Abstract:
Superparamagnetism is an interesting phenomenon and observed in small particles of magnetic materials. It arises due to a reduction in particle size. In the superparamagnetic state, as the thermal energy overcomes magnetic anisotropy energy, the magnetic moment vector of particles flip their magnetization direction between states of minimum energy. Superparamagnetic nanoparticles have been attracting the researchers due to many applications such as information storage, magnetic resonance imaging, biomedical applications, and sensors. For information storage, thermal fluctuations lead to loss of data. So that nanoparticles should have high blocking temperature. And to achieve this, nanoparticles should have a higher magnetic moment and magnetic anisotropy constant. In this work, the magnetic anisotropy constant of the antiferromagnetic nanoparticles system is determined. Magnetic studies on nanoparticles of NiO (nickel oxide) are reported well. This antiferromagnetic nanoparticle system has high blocking temperature and magnetic anisotropy constant of order 105 J/m3. The magnetic study of NiO nanoparticles in the superparamagnetic region is presented. NiO particles of two different sizes, i.e., 6 and 8 nm, are synthesized using the chemical route. These particles are characterized by an x-ray diffractometer, transmission electron microscope, and superconducting quantum interference device magnetometry. The magnetization vs. applied magnetic field and temperature data for both samples confirm their superparamagnetic nature. The blocking temperature for 6 and 8 nm particles is found to be 200 and 172 K, respectively. Magnetization vs. applied magnetic field data of NiO is fitted to an appropriate magnetic expression using a non-linear least square fit method. The role of particle size distribution and magnetic anisotropy is taken in to account in magnetization expression. The source code is written in Python programming language. This fitting provides us the magnetic anisotropy constant for NiO and other magnetic fit parameters. The particle size distribution estimated matches well with the transmission electron micrograph. The value of magnetic anisotropy constants for 6 and 8 nm particles is found to be 1.42 X 105 and 1.20 X 105 J/m3, respectively. The obtained magnetic fit parameters are verified using the Neel model. It is concluded that the effect of magnetic anisotropy should not be ignored while studying the magnetization process of nanoparticles.Keywords: anisotropy, superparamagnetic, nanoparticle, magnetization
Procedia PDF Downloads 1367723 Self-Healing Coatings and Electrospun Fibers
Authors: M. Grandcolas, N. Rival, H. Bu, S. Jahren, R. Schmid, H. Johnsen
Abstract:
The concept of an autonomic self-healing material, where initiation of repair is integrated to the material, is now being considered for engineering applications and is a hot topic in the literature. Among several concepts/techniques, two are most interesting: i) Capsules: Integration of microcapsules in or at the surface of coatings or fibre-like structures has recently gained much attention. Upon damage-induced cracking, the microcapsules are broken by the propagating crack fronts resulting in a release of an active chemical (healing agent) by capillary action, subsequently repairing and avoiding further crack growth. ii) Self-healing polymers: Interestingly, the introduction of dynamic covalent bonds into polymer networks has also recently been used as a powerful approach towards the design of various intrinsically self-healing polymer systems. The idea behind this is to reconnect the chemical crosslinks which are broken when a material fractures, restoring the integrity of the material and thereby prolonging its lifetime. We propose here to integrate both self-healing concepts (capsules, self-healing polymers) in electrospun fibres and coatings. Different capsule preparation approaches have been investigated in SINTEF. The most advanced method to produce capsules is based on emulsification to create a water-in-oil emulsion before polymerisation. The healing agent is a polyurethane-based dispersion that was encapsulated in shell materials consisting of urea-benzaldehyde resins. Results showed the successful preparation of microcapsules and release of the agent when capsules break. Since capsules are produced in water-in-oil systems we mainly investigated organic solvent based coatings while a major challenge resides in the incorporation of capsules into water-based coatings. We also focused on developing more robust microcapsules to prevent premature rupture of the capsules. The capsules have been characterized in terms of size, and encapsulation and release might be visualized by incorporating fluorescent dyes and examine the capsules by microscopy techniques. Alternatively, electrospinning is an innovative technique that has attracted enormous attention due to unique properties of the produced nano-to-micro fibers, ease of fabrication and functionalization, and versatility in controlling parameters. Especially roll-to-roll electrospinning is a unique method which has been used in industry to produce nanofibers continuously. Electrospun nanofibers can usually reach a diameter down to 100 nm, depending on the polymer used, which is of interest for the concept with self-healing polymer systems. In this work, we proved the feasibility of fabrication of POSS-based (POSS: polyhedral oligomeric silsesquioxanes, tradename FunzioNano™) nanofibers via electrospinning. Two different formulations based on aqueous or organic solvents have shown nanofibres with a diameter between 200 – 450nm with low defects. The addition of FunzioNano™ in the polymer blend also showed enhanced properties in term of wettability, promising for e.g. membrane technology. The self-healing polymer systems developed are here POSS-based materials synthesized to develop dynamic soft brushes.Keywords: capsules, coatings, electrospinning, fibers
Procedia PDF Downloads 2637722 Different Processing Methods to Obtain a Carbon Composite Element for Cycling
Authors: Maria Fonseca, Ana Branco, Joao Graca, Rui Mendes, Pedro Mimoso
Abstract:
The present work is focused on the production of a carbon composite element for cycling through different techniques, namely, blow-molding and high-pressure resin transfer injection (HP-RTM). The main objective of this work is to compare both processes to produce carbon composite elements for the cycling industry. It is well known that the carbon composite components for cycling are produced mainly through blow-molding; however, this technique depends strongly on manual labour, resulting in a time-consuming production process. Comparatively, HP-RTM offers a more automated process which should lead to higher production rates. Nevertheless, a comparison of the elements produced through both techniques must be done, in order to assess if the final products comply with the required standards of the industry. The main difference between said techniques lies in the used material. Blow-moulding uses carbon prepreg (carbon fibres pre-impregnated with a resin system), and the material is laid up by hand, piece by piece, on a mould or on a hard male. After that, the material is cured at a high temperature. On the other hand, in the HP-RTM technique, dry carbon fibres are placed on a mould, and then resin is injected at high pressure. After some research regarding the best material systems (prepregs and braids) and suppliers, an element was designed (similar to a handlebar) to be constructed. The next step was to perform FEM simulations in order to determine what the best layup of the composite material was. The simulations were done for the prepreg material, and the obtained layup was transposed to the braids. The selected material was a prepreg with T700 carbon fibre (24K) and an epoxy resin system, for the blow-molding technique. For HP-RTM, carbon fibre elastic UD tubes and ± 45º braids were used, with both 3K and 6K filaments per tow, and the resin system was an epoxy as well. After the simulations for the prepreg material, the optimized layup was: [45°, -45°,45°, -45°,0°,0°]. For HP-RTM, the transposed layup was [ ± 45° (6k); 0° (6k); partial ± 45° (6k); partial ± 45° (6k); ± 45° (3k); ± 45° (3k)]. The mechanical tests showed that both elements can withstand the maximum load (in this case, 1000 N); however, the one produced through blow-molding can support higher loads (≈1300N against 1100N from HP-RTM). In what concerns to the fibre volume fraction (FVF), the HP-RTM element has a slightly higher value ( > 61% compared to 59% of the blow-molding technique). The optical microscopy has shown that both elements have a low void content. In conclusion, the elements produced using HP-RTM can compare to the ones produced through blow-molding, both in mechanical testing and in the visual aspect. Nevertheless, there is still space for improvement in the HP-RTM elements since the layup of the braids, and UD tubes could be optimized.Keywords: HP-RTM, carbon composites, cycling, FEM
Procedia PDF Downloads 1357721 Analysis of the Potential of Biomass Residues for Energy Production and Applications in New Materials
Authors: Sibele A. F. Leite, Bernno S. Leite, José Vicente H. D´Angelo, Ana Teresa P. Dell’Isola, Julio CéSar Souza
Abstract:
The generation of bioenergy is one of the oldest and simplest biomass applications and is one of the safest options for minimizing emissions of greenhouse gasses and replace the use of fossil fuels. In addition, the increasing development of technologies for energy biomass conversion parallel to the advancement of research in biotechnology and engineering has enabled new opportunities for exploitation of biomass. Agricultural residues offer great potential for energy use, and Brazil is in a prominent position in the production and export of agricultural products such as banana and rice. Despite the economic importance of the growth prospects of these activities and the increasing of the agricultural waste, they are rarely explored for energy and production of new materials. Brazil products almost 10.5 million tons/year of rice husk and 26.8 million tons/year of banana stem. Thereby, the aim of this study was to analysis the potential of biomass residues for energy production and applications in new materials. Rice husk (specify the type) and banana stem (specify the type) were characterized by physicochemical analyses using the following parameters: organic carbon, nitrogen (NTK), proximate analyses, FT-IR spectroscopy, thermogravimetric analyses (TG), calorific values and silica content. Rice husk and banana stem presented attractive superior calorific (from 11.5 to 13.7MJ/kg), and they may be compared to vegetal coal (21.25 MJ/kg). These results are due to the high organic matter content. According to the proximate analysis, biomass has high carbon content (fixed and volatile) and low moisture and ash content. In addition, data obtained by Walkley–Black method point out that most of the carbon present in the rice husk (50.5 wt%) and in banana stalk (35.5 wt%) should be understood as organic carbon (readily oxidizable). Organic matter was also detected by Kjeldahl method which gives the values of nitrogen (especially on the organic form) for both residues: 3.8 and 4.7 g/kg of rice husk and banana stem respectively. TG and DSC analyses support the previous results, as they can provide information about the thermal stability of the samples allowing a correlation between thermal behavior and chemical composition. According to the thermogravimetric curves, there were two main stages of mass-losses. The first and smaller one occurred below 100 °C, which was suitable for water losses and the second event occurred between 200 and 500 °C which indicates decomposition of the organic matter. At this broad peak, the main loss was between 250-350 °C, and it is because of sugar decomposition (components readily oxidizable). Above 350 °C, mass loss of the biomass may be associated with lignin decomposition. Spectroscopic characterization just provided qualitative information about the organic matter, but spectra have shown absorption bands around 1030 cm-1 which may be identified as species containing silicon. This result is expected for the rice husk and deserves further investigation to the stalk of banana, as it can bring a different perspective for this biomass residue.Keywords: rice husk, banana stem, bioenergy, renewable feedstock
Procedia PDF Downloads 2807720 Reducing the Impact of Pathogenic Fungi on Barley Using Bacteria: Bacterial Biocontrol in the Barley-Malt-Beer Industry
Authors: Eusèbe Gnonlonfoun, Xavier Framboisier, Michel Fick, Emmanuel Rondags
Abstract:
Pathogenic fungi represent a generic problem for cereals, including barley, as they can produce a number of thermostable toxic metabolites such as mycotoxins that contaminate plants and food products, leading to serious health issues for humans and animals and causing significant losses in global food production. In addition, mycotoxins represent a significant technological concern for the malting and brewing industries, as they may affect the quality and safety of raw materials (barley and malt) and final products (beer). Moreover, this situation is worsening due to the highly variable climatic conditions that favor microbial development and the societal desire to reduce the use of phytosanitary products, including fungicides. In this complex environmental, regulatory and economic context for the French barley-malt-beer industry, this project aims to develop an innovative biocontrol process by using technological bacteria, isolated from infection-resistant barley cultures, that are able to reduce the development of spoilage fungi and the associated mycotoxin production. The experimental approach consists of i) coculturing bacterial and pathogenic fungal strains in solid and liquid media to access the growth kinetics of these microorganisms and to evaluate the impact of these bacteria on fungal growth and mycotoxin production; then ii) the results will be used to carry out a micro-malting process in order to develop the aforementioned process, and iii) the technological and sanitary properties of the generated barley malts will finally be evaluated in order to validate the biocontrol process developed. The process is expected to make it possible to guarantee, with controlled costs, an irreproachable hygienic and technological quality of the malt, despite the increasingly complex and variable conditions for barley production. Thus, the results will not only make it possible to maintain the dominant world position of the French barley-malt chain but will also allow it to conquer emerging markets, mainly in Africa and Asia. The use of this process will also contribute to the reduction of the use of phytosanitary products in the field for barley production while reducing the level of contamination of malting plant effluents. Its environmental impact would therefore be significant, especially considering that barley is the fourth most-produced cereal in the world.Keywords: barley, pathogenic fungi, mycotoxins, malting, bacterial biocontrol
Procedia PDF Downloads 1797719 ROSgeoregistration: Aerial Multi-Spectral Image Simulator for the Robot Operating System
Authors: Andrew R. Willis, Kevin Brink, Kathleen Dipple
Abstract:
This article describes a software package called ROS-georegistration intended for use with the robot operating system (ROS) and the Gazebo 3D simulation environment. ROSgeoregistration provides tools for the simulation, test, and deployment of aerial georegistration algorithms and is available at github.com/uncc-visionlab/rosgeoregistration. A model creation package is provided which downloads multi-spectral images from the Google Earth Engine database and, if necessary, incorporates these images into a single, possibly very large, reference image. Additionally a Gazebo plugin which uses the real-time sensor pose and image formation model to generate simulated imagery using the specified reference image is provided along with related plugins for UAV relevant data. The novelty of this work is threefold: (1) this is the first system to link the massive multi-spectral imaging database of Google’s Earth Engine to the Gazebo simulator, (2) this is the first example of a system that can simulate geospatially and radiometrically accurate imagery from multiple sensor views of the same terrain region, and (3) integration with other UAS tools creates a new holistic UAS simulation environment to support UAS system and subsystem development where real-world testing would generally be prohibitive. Sensed imagery and ground truth registration information is published to client applications which can receive imagery synchronously with telemetry from other payload sensors, e.g., IMU, GPS/GNSS, barometer, and windspeed sensor data. To highlight functionality, we demonstrate ROSgeoregistration for simulating Electro-Optical (EO) and Synthetic Aperture Radar (SAR) image sensors and an example use case for developing and evaluating image-based UAS position feedback, i.e., pose for image-based Guidance Navigation and Control (GNC) applications.Keywords: EO-to-EO, EO-to-SAR, flight simulation, georegistration, image generation, robot operating system, vision-based navigation
Procedia PDF Downloads 1077718 A New Binder Mineral for Cement Stabilized Road Pavements Soils
Authors: Aydın Kavak, Özkan Coruk, Adnan Aydıner
Abstract:
Long-term performance of pavement structures is significantly impacted by the stability of the underlying soils. In situ subgrades often do not provide enough support required to achieve acceptable performance under traffic loading and environmental demands. NovoCrete® is a powder binder-mineral for cement stabilized road pavements soils. NovoCrete® combined with Portland cement at optimum water content increases the crystallize formations during the hydration process, resulting in higher strengths, neutralizes pH levels, and provides water impermeability. These changes in soil properties may lead to transforming existing unsuitable in-situ materials into suitable fill materials. The main features of NovoCrete® are: They are applicable to all types of soil, reduce premature cracking and improve soil properties, creating base and subbase course layers with high bearing capacity by reducing hazardous materials. It can be used also for stabilization of recyclable aggregates and old asphalt pavement aggregate, etc. There are many applications in Germany, Turkey, India etc. In this paper, a few field application in Turkey will be discussed. In the road construction works, this binder material is used for cement stabilization works. In the applications 120-180 kg cement is used for 1 m3 of soil with a 2 % of binder NovoCrete® material for the stabilization. The results of a plate loading test in a road construction site show 1 mm deformation which is very small under 7 kg/cm2 loading. The modulus of subgrade reaction increase from 611 MN/m3 to 3673 MN/m3.The soaked CBR values for stabilized soils increase from 10-20 % to 150-200 %. According to these data weak subgrade soil can be used as a base or sub base after the modification. The potential reduction in the need for quarried materials will help conserve natural resources. The use of on-site or nearby materials in fills, will significantly reduce transportation costs and provide both economic and environmental benefits.Keywords: soil, stabilization, cement, binder, Novocrete, additive
Procedia PDF Downloads 2247717 Comparison of Stereotactic Body Radiation Therapy Virtual Treatment Plans Obtained With Different Collimators in the Cyberknife System in Partial Breast Irradiation: A Retrospective Study
Authors: Öznur Saribaş, Si̇bel Kahraman Çeti̇ntaş
Abstract:
It is aimed to compare target volume and critical organ doses by using CyberKnife (CK) in accelerated partial breast irradiation (APBI) in patients with early stage breast cancer. Three different virtual plans were made for Iris, fixed and multi-leaf collimator (MLC) for 5 patients who received radiotherapy in the CyberKnife system. CyberKnife virtual plans were created, with 6 Gy per day totaling 30 Gy. Dosimetric parameters for the three collimators were analyzed according to the restrictions in the NSABP-39/RTOG 0413 protocol. The plans ensured critical organs were protected and GTV received 95 % of the prescribed dose. The prescribed dose was defined by the isodose curve of a minimum of 80. Homogeneity index (HI), conformity index (CI), treatment time (min), monitor unit (MU) and doses taken by critical organs were compared. As a result of the comparison of the plans, a significant difference was found for the duration of treatment, MU. However, no significant difference was found for HI, CI. V30 and V15 values of the ipsi-lateral breast were found in the lowest MLC. There was no significant difference between Dmax values for lung and heart. However, the mean MU and duration of treatment were found in the lowest MLC. As a result, the target volume received the desired dose in each collimator. The contralateral breast and contralateral lung doses were the lowest in the Iris. Fixed collimator was found to be more suitable for cardiac doses. But these values did not make a significant difference. The use of fixed collimators may cause difficulties in clinical applications due to the long treatment time. The choice of collimator in breast SBRT applications with CyberKnife may vary depending on tumor size, proximity to critical organs and tumor localization.Keywords: APBI, CyberKnife, early stage breast cancer, radiotherapy.
Procedia PDF Downloads 1217716 The Islamic Grand Tour: The Case of Caravan Hajj Routes
Authors: Akram Atef Rawshdeh
Abstract:
This research aims to prove the role of Islamic pilgrimage caravans in formulating the concept of the tourism industry and the concept of Grand Tours before that which was found in Europe in the medieval and modern Ages, through its duration and the number of tourists who participated in it and its role in providing tourism services from the establishment of castles and inns that were built To accommodate pilgrims during their travels from different regions of the Islamic world to the holy places in Saudi Arabia, as well as food and beverage services, transportation and support services like tourist security and tourist guide services. This research will depend on the historical methodKeywords: grand tour, hajj caravan routes, tourism services, transportation
Procedia PDF Downloads 1667715 Investigation of Amorphous Silicon A-Si Thin Films Deposited on Silicon Substrate by Raman Spectroscopy
Authors: Amirouche Hammouda, Nacer Boucherou, Aicha Ziouche, Hayet Boudjellal
Abstract:
Silicon has excellent physical and electrical properties for optoelectronics industry. It is a promising material with many advantages. On Raman characterization of thin films deposited on crystalline silicon substrate, the signal Raman of amorphous silicon is often disturbed by the Raman signal of the crystalline silicon substrate. In this paper, we propose to characterize thin layers of amorphous silicon deposited on crystalline silicon substrates. The results obtained have shown the possibility to bring out the Raman spectrum of deposited layers by optimizing experimental parameters.Keywords: raman scattering, amorphous silicon, crystalline silicon, thin films
Procedia PDF Downloads 777714 China’s Hotel m-Bookers’ Perceptions of their Booking Experiences
Authors: Weiqi Xia
Abstract:
We assess the perceptions of China’s hotel m-bookers using the E-SERVQUAL model and technology affordance assessment metrics. The data analysis provides insight into Chinese hotel m-bookers’ perceptions of information quality items, system quality items, and functional quality items. Respondents’ perceived value of such items is greatly enhanced via mini-program support and self-service innovation, which are predicted to be of increasing importance in the future. The findings of this study help close the gap between hotel operators’ understanding and customers’ perceptions. Our findings may also provide valuable insights into the functioning of China’s hotel industry.Keywords: mobile hotel booking, hotel m-bookers, user perception, China’s WeChat mini program, hotel booking apps.
Procedia PDF Downloads 477713 The Maximum Throughput Analysis of UAV Datalink 802.11b Protocol
Authors: Inkyu Kim, SangMan Moon
Abstract:
This IEEE 802.11b protocol provides up to 11Mbps data rate, whereas aerospace industry wants to seek higher data rate COTS data link system in the UAV. The Total Maximum Throughput (TMT) and delay time are studied on many researchers in the past years This paper provides theoretical data throughput performance of UAV formation flight data link using the existing 802.11b performance theory. We operate the UAV formation flight with more than 30 quad copters with 802.11b protocol. We may be predicting that UAV formation flight numbers have to bound data link protocol performance limitations.Keywords: UAV datalink, UAV formation flight datalink, UAV WLAN datalink application, UAV IEEE 802.11b datalink application
Procedia PDF Downloads 3967712 Photophysics and Photochemistry of Cross-Conjugated Y-Shaped Enediyne Fluorophores
Authors: Anuja Singh, Avik K. Pati, Ashok K. Mishra
Abstract:
Organic fluorophores with π-conjugated scaffolds are important because of their interesting optoelectronic properties. In recent years, our lab has been engaged in understanding the photophysics of small diacetylene bridged fluorophores and found the diynes as a promising class of π-conjugated fluorophores. Building on this understanding, recently we have focused on the photophysics of a less explored class of cross-conjugated Y-shaped enediynes (one double and two triple bonds). Here we present the photophysical properties of such enediynes which show interesting photophysical properties that include dual emissions from locally excited (LE) and intramolecular charge transfer (ICT) states and ring size dependent aggregate fluorescence in non-aqueous media. The dyes also show prominent aggregate fluorescence in mixed-aqueous solvents and solid powder form. We further show that the solid state fluorescence can be reversibly switched multiple of cycles by external stimuli, highlighting their potential applications in solid states. The enediynes with push-pull electronic substituents/moieties exhibit high contrast fluorescence color switching upon continuous photon illumination. The intriguing photophysical outcomes of the enediynyl fluorophores are judiciously exploited to generate single-component white light emission in binary solvent mixtures and sense polar aprotic vapor in polymer film matrices. The photophysical behavior of the dyes is further successfully utilized to monitor the microenvironment changes of biologically relevant anisotropic media such as bile salts. In summary, the newly introduced cross-conjugated enediynes enrich the toolbox of organic fluorophores and vouch to display versatile applications.Keywords: aggregation in solution and solid state, enediynes, physical photochemistry and photophysics, vapor sensing and white light emission
Procedia PDF Downloads 4817711 Research Trends in High Voltage Power Transmission
Authors: Tlotlollo Sidwell Hlalele, Shengzhi Du
Abstract:
High voltage transmission is the most pivotal process in the electrical power industry. It requires a robust infrastructure that can last for decades without causing impairment in human life. Due to the so-called global warming, power transmission system has started to experience some challenges which could presumably escalate more in future. These challenges are earthquake resistance, transmission power losses, and high electromagnetic field. In this paper, research efforts aim to address these challenges are discussed. We focus in particular on the research in regenerative electric energy such as: wind, hydropower, biomass and sea-waves based on the energy storage and transmission possibility. We conclude by drawing attention to specific areas that we believe need more research.Keywords: power transmission, regenerative energy, power quality, energy storage
Procedia PDF Downloads 3547710 Technology Assessment: Exploring Possibilities to Encounter Problems Faced by Intellectual Property through Blockchain
Authors: M. Ismail, E. Grifell-Tatjé, A. Paz
Abstract:
A significant discussion on the topic of blockchain as a solution to the issues of intellectual property highlights the relevance that this topic holds. Some experts label this technology as destructive since it holds immense potential to change course of traditional practices. The extent and areas to which this technology can be of use are still being researched. This paper provides an in-depth review on the intellectual property and blockchain technology. Further it explores what makes blockchain suitable for intellectual property, the practical solutions available and the support different governments are offering. This paper further studies the framework of universities in context of its outputs and how can they be streamlined using blockchain technology. The paper concludes by discussing some limitations and future research question.Keywords: blockchain, decentralization, open innovation, intellectual property, patents, university-industry relationship
Procedia PDF Downloads 1877709 The Role of Microfinance in Economic Development
Authors: Babak Salekmahdy
Abstract:
Microfinance is often seen as a means of repairing credit markets and unleashing the potential contribution of impoverished people who rely on self-employment. Since the 1990s, the microfinance industry has expanded rapidly, opening the path for additional kinds of social entrepreneurship and social investment. However, current data indicate relatively few average consumer effects, opposing pushback against microfinance. This research reconsiders microfinance statements, stressing the variety of data on impacts and the essential (but limited) role of reimbursements. The report finishes by explaining a shift in thinking: from microfinance as a strictly defined enterprise finance to microfinance as a more widely defined home finance. Microfinance, under this perspective, provides advantages by providing liquidity for various requirements rather than just by increasing income.Keywords: microfinance, small business, economic development, credit markets
Procedia PDF Downloads 847708 Advertising Appeals and Cultural Values in Social Media Commercials in Uk, Brasil and India: Cases Study of Nokia and Samsung
Authors: Han Nguyen
Abstract:
The objective of this study is to investigate the impact of culture on advertising appeals in mobile phone industry via social media channel in UK, Brazil and India. Content analysis on Samsung and Nokia commercials in YouTube is conducted. The result indicates that the advertising appeals are both congruent and incongruent with cultural dimensions in UK, Brazil and India. The result suggests that Hofstede and value paradoxes might be the tools to predict the relationship between cultural values and advertising appeals.Keywords: mobile phone advertising, international advertising, social media advertising.
Procedia PDF Downloads 5217707 Review of Vehicle to Grid Applications in Recent Years
Authors: Afsane Amiri
Abstract:
Electric Vehicle (EV) technology is expected to take a major share in the light-vehicle market in the coming decades. Charging of EVs will put an extra burden on the distribution grid and in some cases adjustments will need to be made. In this paper a review of different plug-in and vehicle to grid (V2G) capable vehicles are given along with their power electronics topologies. The economic implication of charging the vehicle or sending power back to the utility is described in brief.Keywords: energy storage system, battery unit, cost, optimal sizing, plug-in electric vehicles (PEVs), smart grid
Procedia PDF Downloads 6047706 Rheological Properties and Thermal Performance of Suspensions of Microcapsules Containing Phase Change Materials
Authors: Vinh Duy Cao, Carlos Salas-Bringas, Anna M. Szczotok, Marianne Hiorth, Anna-Lena Kjøniksen
Abstract:
The increasing cost of energy supply for the purposes of heating and cooling creates a demand for more energy efficient buildings. Improved construction techniques and enhanced material technology can greatly reduce the energy consumption needed for the buildings. Microencapsulated phase change materials (MPCM) suspensions utilized as heat transfer fluids for energy storage and heat transfer applications provide promising potential solutions. A full understanding of the flow and thermal characteristics of microcapsule suspensions is needed to optimize the design of energy storage systems, in order to reduce the capital cost, system size, and energy consumption. The MPCM suspensions exhibited pseudoplastic and thixotropic behaviour, and significantly improved the thermal performance of the suspensions. Three different models were used to characterize the thixotropic behaviour of the MPCM suspensions: the second-order structural, kinetic model was found to give a better fit to the experimental data than the Weltman and Figoni-Shoemaker models. For all samples, the initial shear stress increased, and the breakdown rate accelerated significantly with increasing concentration. The thermal performance and rheological properties, especially the selection of rheological models, will be useful for developing the applications of microcapsules as heat transfer fluids in thermal energy storage system such as calculation of an optimum MPCM concentration, pumping power requirement, and specific power consumption. The effect of temperature on the shear thinning properties of the samples suggests that some of the phase change material is located outside the capsules, and contributes to agglomeration of the samples.Keywords: latent heat, microencapsulated phase change materials, pseudoplastic, suspension, thixotropic behaviour
Procedia PDF Downloads 2687705 Electrical and Structural Properties of Solid Electrolyte Systems
Authors: Yasin Polat, Yılmaz Dağdemir, Mehmet Arı
Abstract:
Samarium (III) oxide and Ytterbium (III) oxide doped Bismuth trioxide solid solutions, the nano ceramic (Bi2O3)1-x-y(Sm2O3)x(Yb2O3)y ternary system were obtained with x=5, 20 mol %, and y=5, 20 mol % dopant concentrations have been synthesized in air atmosphere with solid state reaction. Temperature dependent electrical conductivity of the samples have been investigated by 4-point probe technique by heating and cooling process. Doped-Bi2O3 materials of solid electrolyte systems are good oxygen anions O2-conductors which have collected much attention as potential solid ceramic electrolytes for solid oxide fuel cells (SOFCs) because of their relatively high oxygen ionic conductivity at lower temperatures.(Bi2O3)-based electrolytes have also wide other technological applications in devices with high economical interest such as oxygen sensors, ceramic membranes for oxygen separation, oxygen pumps, catalyzing of some heterogeneous reactions, partial oxidation of the hydrocarbons, and additive material in paints. In recent years, many experimental researches have mostly focused on improving of the Bi-based electrolytes which have high oxide ionic conductivity at low temperatures and better performance as alternatives to traditional stabilized zirconia has taken place. Generally, these systems are much better solid electrolytes than well-known stabilized zirconia, because some of the bismuth trioxide phases exhibit higher ion conductivity than other oxide ionic conductors. Crystal structure of the Nano ceramic (Bi2O3)1-x-y(Sm2O3)x(Yb2O3)y has been determined by X-Ray powder diffractions (XRD) measurements before and after electrical conductivity measurements of the samples. Surface and grain structure properties of the samples were determined by SEM analysis. The samples which synthesized in this study can be used in industrial applications such as electrolytes of the solid oxide fuel cells (SOFC).Keywords: 4-point probe technique, bismuth trioxide, solid state reaction, solid oxide fuel cell
Procedia PDF Downloads 3087704 Time Temperature Dependence of Long Fiber Reinforced Polypropylene Manufactured by Direct Long Fiber Thermoplastic Process
Authors: K. A. Weidenmann, M. Grigo, B. Brylka, P. Elsner, T. Böhlke
Abstract:
In order to reduce fuel consumption, the weight of automobiles has to be reduced. Fiber reinforced polymers offer the potential to reach this aim because of their high stiffness to weight ratio. Additionally, the use of fiber reinforced polymers in automotive applications has to allow for an economic large-scale production. In this regard, long fiber reinforced thermoplastics made by direct processing offer both mechanical performance and processability in injection moulding and compression moulding. The work presented in this contribution deals with long glass fiber reinforced polypropylene directly processed in compression moulding (D-LFT). For the use in automotive applications both the temperature and the time dependency of the materials properties have to be investigated to fulfill performance requirements during crash or the demands of service temperatures ranging from -40 °C to 80 °C. To consider both the influence of temperature and time, quasistatic tensile tests have been carried out at different temperatures. These tests have been complemented by high speed tensile tests at different strain rates. As expected, the increase in strain rate results in an increase of the elastic modulus which correlates to an increase of the stiffness with decreasing service temperature. The results are in good accordance with results determined by dynamic mechanical analysis within the range of 0.1 to 100 Hz. The experimental results from different testing methods were grouped and interpreted by using different time temperature shift approaches. In this regard, Williams-Landel-Ferry and Arrhenius approach based on kinetics have been used. As the theoretical shift factor follows an arctan function, an empirical approach was also taken into consideration. It could be shown that this approach describes best the time and temperature superposition for glass fiber reinforced polypropylene manufactured by D-LFT processing.Keywords: composite, dynamic mechanical analysis, long fibre reinforced thermoplastics, mechanical properties, time temperature superposition
Procedia PDF Downloads 2017703 The Semiotics of Soft Power; An Examination of the South Korean Entertainment Industry
Authors: Enya Trenholm-Jensen
Abstract:
This paper employs various semiotic methodologies to examine the mechanism of soft power. Soft power refers to a country’s global reputation and their ability to leverage that reputation to achieve certain aims. South Korea has invested heavily in their soft power strategy for a multitude of predominantly historical and geopolitical reasons. On account of this investment and the global prominence of their strategy, South Korea was considered to be the optimal candidate for the aims of this investigation. Having isolated the entertainment industry as one of the most heavily funded segments of the South Korean soft power strategy, the analysis restricted itself to this sector. Within this industry, two entertainment products were selected as case studies. The case studies were chosen based on commercial success according to metrics such as streams, purchases, and subsequent revenue. This criterion was deemed to be the most objective and verifiable indicator of the products general appeal. The entertainment products which met the chosen criterion were Netflix’ “Squid Game” and BTS’ hit single “Butter”. The methodologies employed were chosen according to the medium of the entertainment products. For “Squid Game,” an aesthetic analysis was carried out to investigate how multi- layered meanings were mobilized in a show popularized by its visual grammar. To examine “Butter”, both music semiology and linguistic analysis were employed. The music section featured an analysis underpinned by denotative and connotative music semiotic theories borrowing from scholars Theo van Leeuwen and Martin Irvine. The linguistic analysis focused on stance and semantic fields according to scholarship by George Yule and John W. DuBois. The aesthetic analysis of the first case study revealed intertextual references to famous artworks, which served to augment the emotional provocation of the Squid Game narrative. For the second case study, the findings exposed a set of musical meaning units arranged in a patchwork of familiar and futuristic elements to achieve a song that existed on the boundary between old and new. The linguistic analysis of the song’s lyrics found a deceptively innocuous surface level meaning that bore implications for authority, intimacy, and commercial success. Whether through means of visual metaphor, embedded auditory associations, or linguistic subtext, the collective findings of the three analyses exhibited a desire to conjure a form of positive arousal in the spectator. In the synthesis section, this process is likened to that of branding. Through an exploration of branding, the entertainment products can be understood as cogs in a larger operation aiming to create positive associations to Korea as a country and a concept. Limitations in the form of a timeframe biased perspective are addressed, and directions for future research are suggested. This paper employs semiotic methodologies to examine two entertainment products as mechanisms of soft power. Through means of visual metaphor, embedded auditory associations, or linguistic subtext, the findings reveal a desire to conjure positive arousal in the spectator. The synthesis finds similarities to branding, thus positioning the entertainment products as cogs in a larger operation aiming to create positive associations to Korea as a country and a concept.Keywords: BTS, cognitive semiotics, entertainment, soft power, south korea, squid game
Procedia PDF Downloads 1567702 Predicting the Turbulence Intensity, Excess Energy Available and Potential Power Generated by Building Mounted Wind Turbines over Four Major UK City
Authors: Emejeamara Francis
Abstract:
The future of potentials wind energy applications within suburban/urban areas are currently faced with various problems. These include insufficient assessment of urban wind resource, and the effectiveness of commercial gust control solutions as well as unavailability of effective and cheaper valuable tools for scoping the potentials of urban wind applications within built-up environments. In order to achieve effective assessment of the potentials of urban wind installations, an estimation of the total energy that would be available to them were effective control systems to be used, and evaluating the potential power to be generated by the wind system is required. This paper presents a methodology of predicting the power generated by a wind system operating within an urban wind resource. This method was developed by using high temporal resolution wind measurements from eight potential sites within the urban and suburban environment as inputs to a vertical axis wind turbine multiple stream tube model. A relationship between the unsteady performance coefficient obtained from the stream tube model results and turbulence intensity was demonstrated. Hence, an analytical methodology for estimating the unsteady power coefficient at a potential turbine site is proposed. This is combined with analytical models that were developed to predict the wind speed and the excess energy (EEC) available in estimating the potential power generated by wind systems at different heights within a built environment. Estimates of turbulence intensities, wind speed, EEC and turbine performance based on the current methodology allow a more complete assessment of available wind resource and potential urban wind projects. This methodology is applied to four major UK cities namely Leeds, Manchester, London and Edinburgh and the potential to map the turbine performance at different heights within a typical urban city is demonstrated.Keywords: small-scale wind, turbine power, urban wind energy, turbulence intensity, excess energy content
Procedia PDF Downloads 2787701 Pulse Generator with Constant Pulse Width
Authors: Rozita Borhan, Hanif Che Lah, Wee Leong Son
Abstract:
This paper is about method to produce a stable and accurate constant output pulse width regardless of the amplitude, period and pulse width variation of the input signal source. The pulse generated is usually being used in numerous applications as the reference input source to other circuits in the system. Therefore, it is crucial to produce a clean and constant pulse width to make sure the system is working accurately as expected.Keywords: amplitude, Constant Pulse Width, frequency divider, pulse generator
Procedia PDF Downloads 3987700 Genetically Modified Organisms
Authors: Mudrika Singhal
Abstract:
The research paper is basically about how the genetically modified organisms evolved and their significance in today’s world. It also highlights about the various pros and cons of the genetically modified organisms and the progress of India in this field. A genetically modified organism is the one whose genetic material has been altered using genetic engineering techniques. They have a wide range of uses such as transgenic plants, genetically modified mammals such as mouse and also in insects and aquatic life. Their use is rooted back to the time around 12,000 B.C. when humans domesticated plants and animals. At that humans used genetically modified organisms produced by the procedure of selective breeding and not by genetic engineering techniques. Selective breeding is the procedure in which selective traits are bred in plants and animals and then are domesticated. Domestication of wild plants into a suitable cultigen is a well known example of this technique. GMOs have uses in varied fields ranging from biological and medical research, production of pharmaceutical drugs to agricultural fields. The first organisms to be genetically modified were the microbes because of their simpler genetics. At present the genetically modified protein insulin is used to treat diabetes. In the case of plants transgenic plants, genetically modified crops and cisgenic plants are the examples of genetic modification. In the case of mammals, transgenic animals such as mice, rats etc. serve various purposes such as researching human diseases, improvement in animal health etc. Now coming upon the pros and cons related to the genetically modified organisms, pros include crops with higher yield, less growth time and more predictable in comparison to traditional breeding. Cons include that they are dangerous to mammals such as rats, these products contain protein which would trigger allergic reactions. In India presently, group of GMOs include GM microorganisms, transgenic crops and animals. There are varied applications in the field of healthcare and agriculture. In the nutshell, the research paper is about the progress in the field of genetic modification, taking along the effects in today’s world.Keywords: applications, mammals, transgenic, engineering and technology
Procedia PDF Downloads 599