Search results for: agricultural waste
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4504

Search results for: agricultural waste

1024 Towards Resilient and Sustainable Integrated Agro-ecosystems Through Appropriate Climate-smart Farming Practices in Morocco Rainfed Agriculture

Authors: Abdelali Laamari, Morad Faiz, Ali Amamou And Mohamed Elkoudrim

Abstract:

This research seeks to develop multi-disciplinary, multi-criteria, and multi-institutional approaches that consider the three main pillars of sustainability (environmental, economic, and social aspects) at the level of decision making regarding the adoption of improved technologies in the targeted case study region in Morocco. The study is aimed at combining sound R&I with extensive skills in applied research and policy evaluation. The intention is to provide new simple, and transferable tools and agricultural practices that will enable the uptake of sustainability and the resiliency of agro-ecosystems. The study will understand the state-of-the-art of the impact of climate change and identify the core bottlenecks and climate change’s impact on crop and livestock productivity of the targeted value chains in Morocco. Studies conducted during 2021-2022 showed that most of the farmers are using since 2010 the direct seeding and the system can be improved by adopting new fertilizer and varieties of wheat. The alley-cropping technology is based on Atriplex plant or olive trees. The introduction of new varieties of oat and quinoa has improved biomass and grain production in a dry season. The research is targeting other issues, such as social enterprises, to diversify women’s income resources and create new job opportunities through diversification of end uses of durum wheat and barley grains. Women’s local knowledge is rich on the different end uses of durum and barley grains that can improve their added value if they are transformed as couscous, pasta, or any other products.

Keywords: agriculture, climate, production system, integration

Procedia PDF Downloads 76
1023 Revised Risk Priority Number in Failure Mode and Effects Analysis Model from the Perspective of Healthcare System

Authors: Fatemeh Rezaei, Mohammad H. Yarmohammadian, Masoud Ferdosi, Abbas Haghshnas

Abstract:

Background: Failure Modes and Effect Analysis is now having known as the main methods of risk assessment and the accreditation requirements for many organizations. The Risk Priority Number (RPN) approach is generally preferred, especially for its easiness of use. Indeed it does not require statistical data, but it is based on subjective evaluations given by the experts about the Occurrence (O i), the Severity (Si) and the Detectability (D i) of each cause of failure. Methods: This study is a quantitative – qualitative research. In terms of qualitative dimension, method of focus groups with inductive approach is used. To evaluate the results of the qualitative study, quantitative assessment was conducted to calculate RPN score. Results; We have studied patient’s journey process in surgery ward and the most important phase of the process determined Transport of the patient from the holding area to the operating room. Failures of the phase with the highest priority determined by defining inclusion criteria included severity (clinical effect, claim consequence, waste of time and financial loss), occurrence (time- unit occurrence and degree of exposure to risk) and preventability (degree of preventability and defensive barriers) and quantifying risks priority criteria in the context of RPN index. Ability of improved RPN reassess by root cause (RCA) analysis showed some variations. Conclusions: Finally, It could be concluded that understandable criteria should have been developed according to personnel specialized language and communication field. Therefore, participation of both technical and clinical groups is necessary to modify and apply these models.

Keywords: failure mode, effects analysis, risk priority number(RPN), health system, risk assessment

Procedia PDF Downloads 313
1022 Effects of Application of Rice Husk Charcoal-Coated Urea and Rice Straw Compost on Growth, Yield, and Properties of Lowland Rice

Authors: D. A. S. Gamage, B. F. A. Basnayake, W.A.J.M. De Costa

Abstract:

Rice is the staple food of Sri Lankans thus; rice cultivation is the major agricultural activity of the country. The application of inorganic fertilizer has become a burden to the country. The excessive application of organic and inorganic fertilizers can potentially lead to deterioration of the quality of water. In mixing both urea and rice husk charcoal and rice straw compost in soils causes a slow release of nitrogen fertilizer, thus reducing the cost of importations of nitrogen based fertilizers per unit area of cultivation. Objective of this study was to evaluate rice husk charcoal coated urea as a slow releasing fertilizer and compare the total N,P, K, organic matter in soil and yield of rice production. Five treatments were used for twenty pots (pot size 30 cm diameter and 45 cm height) each replicated four times as: inorganic fertilizer only (Urea, TSP and MOP) (Treatment 1); rice husk charcoal coated urea, TSP and MOP (Treatment 2); inorganic fertilizer (Urea, TSP and MOP) with rice straw compost only (Treatment 3); rice husk charcoal urea, TSP and MOP with rice straw compost (Treatment 4); and no fertilizer as the control (Treatment 5). Rice grain yield was significantly higher in treatment 4 where rice husk charcoal coated urea, TSP and MOP with rice straw compost. The lowest yield was observed in control (treatment 5). The lower the value of the nitrogen to phosphorous ratio in soil, it indicates higher uptake of phosphorous. Charcoal can be used as a soil amendment and organic fertilizer, but adjustment of pH was required at high application rates. K content of soil of treatment 3 and 4 were the highest with compared to the treatment 1. Rice husk charcoal coated urea can potentially be used as a slow releasing nitrogen fertilizer.

Keywords: charcoal, rice husk, nitrogen to phosphorous ratio, soil amendment

Procedia PDF Downloads 308
1021 Laboratory Scale Purification of Water from Copper Waste

Authors: Mumtaz Khan, Adeel Shahid, Waqas Khan

Abstract:

Heavy metals presence in water streams is a big danger for aquatic life and ultimately effects human health. Removal of copper (Cu) by ispaghula husk, maize fibre, and maize oil cake from synthetic solution in batch conditions was studied. Different experimental parameters such as contact time, initial solution pH, agitation rate, initial Cu concentration, biosorbent concentration, and biosorbent particle size has been studied to quantify the Cu biosorption. The rate of adsorption of metal ions was very fast at the beginning and became slow after reaching the saturation point, followed by a slower active metabolic uptake of metal ions into the cells. Up to a certain point, (pH=4, concentration of Cu = ~ 640 mg/l, agitation rate = ~ 400 rpm, biosorbent concentration = ~ 0.5g, 3g, 3g for ispaghula husk, maize fiber and maize oil cake, respectively) increasing the pH, concentration of Cu, agitation rate, and biosorbent concentration, increased the biosorption rate; however the sorption capacity increased by decreasing the particle size. At optimized experimental parameters, the maximum Cu biosorption by ispaghula husk, maize fibre and maize oil cake were 86.7%, 59.6% and 71.3%, respectively. Moreover, the results of the kinetics studies demonstrated that the biosorption of copper on ispaghula husk, maize fibre, and maize oil cake followed pseudo-second order kinetics. The results of adsorption were fitted to both the Langmuir and Freundlich models. The Langmuir model represented the sorption process better than Freundlich, and R² value ~ 0.978. Optimizations of physical and environmental parameters revealed, ispaghula husk as more potent copper biosorbent than maize fibre, and maize oil cake. The sorbent is cheap and available easily, so this study can be applied to remove Cu impurities on pilot and industrial scale after certain modifications.

Keywords: biosorption, copper, ispaghula husk, maize fibre, maize oil cake, purification

Procedia PDF Downloads 410
1020 Use of Geosynthetics as Reinforcement Elements in Unpaved Tertiary Roads

Authors: Vivian A. Galindo, Maria C. Galvis, Jaime R. Obando, Alvaro Guarin

Abstract:

In Colombia, most of the roads of the national tertiary road network are unpaved roads with granular rolling surface. These are very important ways of guaranteeing the mobility of people, products, and inputs from the agricultural sector from the most remote areas to urban centers; however, it has not paid much attention to the search for alternatives to avoid the occurrence of deteriorations that occur shortly after its commissioning. In recent years, geosynthetics have been used satisfactorily to reinforce unpaved roads on soft soils, with geotextiles and geogrids being the most widely used. The interaction of the geogrid and the aggregate minimizes the lateral movement of the aggregate particles and increases the load capacity of the material, which leads to a better distribution of the vertical stresses, consequently reducing the vertical deformations in the subgrade. Taking into account the above, the research aimed at the mechanical behavior of the granular material, used in unpaved roads with and without the presence of geogrids, from the development of laboratory tests through the loaded wheel tester (LWT). For comparison purposes, the reinforced conditions and traffic conditions to which this type of material can be accessed in practice were simulated. In total four types of geogrids, were tested with granular material; this means that five test sets, the reinforced material and the non-reinforced control sample were evaluated. The results of the numbers of load cycles and depth rutting supported by each test body showed the influence of the properties of the reinforcement on the mechanical behavior of the assembly and the significant increases in the number of load cycles of the reinforced specimens in relation to those without reinforcement.

Keywords: geosynthetics, load wheel tester LWT, tertiary roads, unpaved road, vertical deformation

Procedia PDF Downloads 250
1019 Experimental Study on Strength Development of Low Cement Concrete Using Mix Design for Both Binary and Ternary Mixes

Authors: Mulubrhan Berihu, Supratic Gupta, Zena Gebriel

Abstract:

Due to the design versatility, availability, and cost efficiency, concrete is continuing to be the most used construction material on earth. However, the production of Portland cement, the primary component of concrete mix is causing to have a serious effect on environmental and economic impacts. This shows there is a need to study using of supplementary cementitious materials (SCMs). The most commonly used supplementary cementitious materials are wastes and the use of these industrial waste products has technical, economical and environmental benefits besides the reduction of CO2 emission from cement production. The study aims to document the effect on strength property of concrete due to use of low cement by maximizing supplementary cementitious materials like fly ash or marble powder. Based on the different mix proportion of pozzolana and marble powder a range of mix design was formulated. The first part of the project is to study the strength of low cement concrete using fly ash replacement experimentally. The test results showed that using up to 85 kg/m3 of cement is possible for plain concrete works like hollow block concrete to achieve 9.8 Mpa and the experimental results indicates that strength is a function of w/b. In the second part a new set of mix design has been carried out with fly ash and marble powder to study the strength of both binary and ternary mixes. In this experimental study, three groups of mix design (c+FA, c+FA+m and c+m), four sets of mixes for each group were taken up. Experimental results show that c+FA has maintained the best strength and impermeability whereas c+m obtained less compressive strength, poorer permeability and split tensile strength. c+FA shows a big difference in gaining of compressive strength from 7 days to 28 days compression strength compared to others and this obviously shows the slow rate of hydration of fly ash concrete. As the w/b ratio increases the strength decreases significantly. At the same time higher permeability has been seen in the specimens which were tested for three hours than one hour.

Keywords: efficiency factor, cement content, compressive strength, mix proportion, w/c ratio, water permeability, SCMs

Procedia PDF Downloads 209
1018 Integration of Edible Insects into the Animal Husbandry Curriculum in Senior Secondary Schools in Nigeria: Teachers’ Perception

Authors: Ali Christian Chinedu, Asogwa Vincent Chidindu, Ejiofor Toochukwu Eleazar, Okadi Ashagwu Ojang

Abstract:

The increasing rate of Boko Haram insurgency, farmer-herder clashes, and kidnapping in Nigeria has resulted in food shortages and high cost of protein sources like beef and fish. This challenge could be curbed with the production of edible insects, which contain several nutritional benefits like calories, protein, fat, vitamins, and minerals, depending on their species, metamorphic stage, and diet. Unfortunately, the benefits and competencies in producing, preserving, and marketing edible insects are still unknown to the public, including prospective farmers in Nigeria. Hence, this study determined teachers’ perception of integrating edible insects into the Animal Husbandry Curriculum in Senior Secondary Schools in Nigeria to equip the future generation with the relevant competencies for alternative sustainable protein supply. The study was carried out in Enugu State, Nigeria. The participants for the study comprised 162 agricultural science teachers. A questionnaire titled: Edible Insects Integration in Animal Husbandry Curriculum Questionnaire (EIIAHCQ) was used to collect data using a descriptive survey research design. We conducted data collection with the help of six research assistants. The study identified 11 objectives, 11 contents, 10 teaching methods, and 9 evaluation methods that could be integrated into the existing curriculum of animal husbandry in Nigeria. Among others, the Ministry of Education should integrate the finding of this study into the curriculum of Animal Husbandry in Nigeria to enhance the protein supply and curb food insecurity now and in the future.

Keywords: animal husbandry curriculum, edible insects, entomophagy, integration, secondary school, Nigeria

Procedia PDF Downloads 92
1017 Effect of Sodium Hydroxide Treatment on the Mechanical Properties of Crushed and Uncrushed Luffa cylindrica Fibre Reinforced rLDPE Composites

Authors: Paschal A. Ubi, Salawu Abdul Rahman Asipita

Abstract:

The use of suitable engineering materials which poses less harm to ,an and the environment is sort for in recent times, thus giving rise to polymer composites filled with natural organic reinforcement which are biodegradable. Treatment of natural fibres is essential in improving matrix to filler adhesion, hence improving its mechanical properties. In this study, investigations were carried out to determine the effect of sodium hydroxide treatment on the tensile, flexural, impact and hardness properties of crushed and uncrushed luffa cylindrica fibre reinforced recycled low density polyethylene composites. The LC (Luffa Cylindrica) fibres were treated with 0%, 2%, 4%, 6%, 8%, and 10% wt. NaOH concentrations for a period of 24 hours under room temperature conditions. The compounding of the waste LDPE was done using a two roll mill at a temperature of 150 oC and cured in a hydraulic press at a temperature of 150oC for 3 minutes at 3 metric tonnes. A formulation of 20/80g (reinforcement to matrix ratio in grams) was maintained for all fabricated samples. Analysis of the results showed that the uncrushed luffa fibre samples gave better mechanical properties compared with the crushed luffa fibre samples. The uncrushed luffa fibre composites had optimum tensile and flexural strengths of 7.65MPa and 17.08Mpa respectively corresponding to a young modulus and flexural modulus of 21.08MPa and 232.22MPa for the 8% and 4%wt. NaOH concentration respectively. Results obtained in the research showed that NaOH treatment with the 8% NaOH concentration improves the mechanical properties of the LC fibre reinforced composites when compared with other NaOH treatment concentration values.

Keywords: LC fibres, NaOH concentration, LC/rLDPE composite, tensile strength, flexural strength

Procedia PDF Downloads 281
1016 Evaluation of Stable Isotope in Life History and Mating Behaviour of Mediterranean Fruit Fly Ceratitis capitata (Diptera: Tephidae) in Laboratory Conditions

Authors: Hasan AL-Khshemawee, Manjree Agarwal, Xin Du, Yonglin Ren

Abstract:

The possibility use of stable isotopes to study Medfly mating and life history were investigated in these experiments. 13C6 glucose was incorporated in the diet of the Mediterranean fruit fly Ceratitis capitata (Diptera: Tephidae). Treatments included labelling and unlabelled of either the media or adult sugar water. The measured started from egg hatching till the adults have died. After mating, the adults were analysed for 13C6 glucose ratio using Liquid chromatography-mass spectrometry LC-MS in two periods of time immediately and after three days of mating. Results showed that stable isotopes were used successfully for labelling Medfly in laboratory conditions, and there were significant differences between labelled and unlabelled treatment in eggs hatching, larval development, pupae emergence, survival of adults and mating behaviour. Labelling during larval development and combined labelling of larvae and adults resulted in detectable values. The label glucose in larvae stage did not effect on mating behaviour, however, the label glucose in adults’ stage was affected by mating behaviour. We recommended that it is possible to label adults of Mediterranean fruit fly C. capitata and detected the label after mating. This method offers good tools to study mating behaviour in Medfly and other types of insects and could be providing useful tools in genetic studies, sterile insect technique (SIT) or agricultural pest management. Also, we recommended using this technique in the field.

Keywords: stable isotope, sterile insect technique (SIT), medfly, mating behaviour

Procedia PDF Downloads 256
1015 Assessment of Risk Factors in Residential Areas of Bosso in Minna, Nigeria

Authors: Junaid Asimiyu Mohammed, Olakunle Docas Tosin

Abstract:

The housing environment in many developing countries is fraught with risks that have potential negative impacts on the lives of the residents. The study examined the risk factors in residential areas of two neighborhoods in Bosso Local Government Areas of Minna in Nigeria with a view to determining the level of their potential impacts. A sample of 378 households was drawn from the estimated population of 22,751 household heads. The questionnaire and direct observation were used as instruments for data collection. The data collected were analyzed using the Relative Importance Index (RII) rule to determine the level of the potential impact of the risk factors while ArcGIS was used for mapping the spatial distribution of the risks. The study established that the housing environment of Angwan Biri and El-Waziri areas of Bosso is poor and vulnerable as 26% of the houses were not habitable and 57% were only fairly habitable. The risks of epidemics, building collapse and rainstorms were evident in the area as 53% of the houses had poor ventilation; 20% of residents had no access to toilets; 47% practiced open waste dumping; 46% of the houses had cracked walls while 52% of the roofs were weak and sagging. The results of the analysis of the potential impact of the risk factors indicate a RII score of 0.528 for building collapse, 0.758 for rainstorms and 0.830 for epidemics, indicating a moderate to very high level of potential impacts. The mean RII score of 0.639 shows a significant potential impact of the risk factors. The study recommends the implementation of sanitation measures, provision of basic urban facilities and neighborhood revitalization through housing infrastructure retrofitting as measures to mitigate the risks of disasters and improve the living conditions of the residents of the study area.

Keywords: assessment, risk, residential, Nigeria

Procedia PDF Downloads 57
1014 Fuzzy Climate Control System for Hydroponic Green Forage Production

Authors: Germán Díaz Flórez, Carlos Alberto Olvera Olvera, Domingo José Gómez Meléndez, Francisco Eneldo López Monteagudo

Abstract:

In recent decades, population growth has exerted great pressure on natural resources. Two of the most scarce and difficult to obtain resources, arable land, and water, are closely interrelated, to the satisfaction of the demand for food production. In Mexico, the agricultural sector uses more than 70% of water consumption. Therefore, maximize the efficiency of current production systems is inescapable. It is essential to utilize techniques and tools that will enable us to the significant savings of water, labor and fertilizer. In this study, we present a production module of hydroponic green forage (HGF), which is a viable alternative in the production of livestock feed in the semi-arid and arid zones. The equipment in addition to having a forage production module, has a climate and irrigation control system that operated with photovoltaics. The climate control, irrigation and power management is based on fuzzy control techniques. The fuzzy control provides an accurate method in the design of controllers for nonlinear dynamic physical phenomena such as temperature and humidity, besides other as lighting level, aeration and irrigation control using heuristic information. In this working, firstly refers to the production of the hydroponic green forage, suitable weather conditions and fertigation subsequently presents the design of the production module and the design of the controller. A simulation of the behavior of the production module and the end results of actual operation of the equipment are presented, demonstrating its easy design, flexibility, robustness and low cost that represents this equipment in the primary sector.

Keywords: fuzzy, climate control system, hydroponic green forage, forage production module

Procedia PDF Downloads 397
1013 The Response of the Accumulated Biomass and the Efficiency of Water Use in Five Varieties of Durum Wheat Lines under Water Stress

Authors: Fellah Sihem

Abstract:

The optimal use of soil moisture by culture, is related to the leaf area index, which stood in the cycle and its modulation according to the prevailing stress intensity. For a given stock of water in the soil, cultivar adapted and saving water is one that is no luxury consumption during the preanthesis. It modulates the leaf area index to regulate sweating in the degree of its water supply. In plants water saving, avoidance of dehydration is related to the reduction of water loss by cuticular and stomatal pathways. Muchow and Sinclair reported that the test of relative water content (TRE) is considered the best indicator of leaf water status. The search for indicators of the ability of the plant to make good use of the water, under water stress is a prerequisite for progress in improving performance under water stress. This experiment aims to characterize a set of durum wheat varieties, tested jars and vegetation under different levels of water stress to the surface of the leaf, relative water content, cell integrity, the accumulated biomass and efficiency of water use. The experiment was conducted during the 2005/2006 academic year, at the Agricultural Research Station of the Field Crop Institute of Setif, under semi-controlled conditions. Five genotypes of durum wheat (Triticum durum Desf) were evaluated for their ability to tolerate moderate and severe water stress. The results showed that geno types respond differently to water stress. Dry matter accumulation and growth rate varied among geno types and were significantly reduced. At severe water stress biomass accumulated by Boussalam was the least affected.

Keywords: water stress, triticum durum, biomass, cell membrane integrity, relative water content

Procedia PDF Downloads 469
1012 Techno-Economic Optimization and Evaluation of an Integrated Industrial Scale NMC811 Cathode Active Material Manufacturing Process

Authors: Usama Mohamed, Sam Booth, Aliysn J. Nedoma

Abstract:

As part of the transition to electric vehicles, there has been a recent increase in demand for battery manufacturing. Cathodes typically account for approximately 50% of the total lithium-ion battery cell cost and are a pivotal factor in determining the viability of new industrial infrastructure. Cathodes which offer lower costs whilst maintaining or increasing performance, such as nickel-rich layered cathodes, have a significant competitive advantage when scaling up the manufacturing process. This project evaluates the techno-economic value proposition of an integrated industrial scale cathode active material (CAM) production process, closing the mass and energy balances, and optimizing the operation conditions using a sensitivity analysis. This is done by developing a process model of a co-precipitation synthesis route using Aspen Plus software and validated based on experimental data. The mechanism chemistry and equilibrium conditions were established based on previous literature and HSC-Chemistry software. This is then followed by integrating the energy streams, adding waste recovery and treatment processes, as well as testing the effect of key parameters (temperature, pH, reaction time, etc.) on CAM production yield and emissions. Finally, an economic analysis estimating the fixed and variable costs (including capital expenditure, labor costs, raw materials, etc.) to calculate the cost of CAM ($/kg and $/kWh), total plant cost ($) and net present value (NPV). This work sets the foundational blueprint for future research into sustainable industrial scale processes for CAM manufacturing.

Keywords: cathodes, industrial production, nickel-rich layered cathodes, process modelling, techno-economic analysis

Procedia PDF Downloads 100
1011 Evaluation of Groundwater and Seawater Intrusion at Tajoura Area, NW, Libya

Authors: Abdalraheem Huwaysh, Khalil Al Samarrai, Yasmin ElAhmar

Abstract:

Water quality is an important factor that determines its usage for domestic, agricultural and industrial uses. This study was carried out through the Tajoura Area, Jifarah Plain, Northwest Libya. Chemical and physical parameters were measured and analyzed for groundwater samples collected in 2021 from twenty-six wells distributed throughout the investigation area. Overexploitation of groundwater caused considerable deterioration in the water quality, especially at Tajoura Town (20 Km east of Tripoli). The aquifer shows an increase in salinization, which has reached an alarming level in many places during the past 25 years as a result of the seawater intrusion. The chemical composition of the water samples was compared with the drinking water standards of WHO and Libyan Standards. Groundwater from this area was not suitable to be a source for direct drinking based on Total Dissolved Solids. The dominant cation is sodium, while the dominant anion is chloride. Based on the Piper trilinear diagram, most of the groundwater samples (90%) were identified as sodium chloride type. The best groundwater quality exists at the southern part of the study area. Serious degradation in the water quality, expressed in salinity increase, occurs as we go towards the coastline. The abundance of NaCl waters is strong evidence to attribute the successive deterioration of the water quality to the seawater intrusion. Considering the values of Cl- concentration and the ratio of Cl-/HCO3-, about 70% of the groundwater samples were strongly affected by the saline water. Car wash stations in the study area as well as the unlined disposal pond used for the collection of untreated wastewater, contribute significantly to the deterioration of water quality. The water quality in this area needs to be monitored regularly and it is crucial to treat the water before consumption.

Keywords: Tajoura, groundwater, seawater intrusion, water quality

Procedia PDF Downloads 104
1010 Major Sucking Pests of Rose and Their Seasonal Abundance in Bangladesh

Authors: Md Ruhul Amin

Abstract:

This study was conducted in the experimental field of the Department of Entomology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh during November 2017 to May 2018 with a view to understanding the seasonal abundance of the major sucking pests namely thrips, aphid and red spider mite on rose. The findings showed that the thrips started to build up their population from the middle of January with abundance 1.0 leaf⁻¹, increased continuously, reached to the peak level (2.6 leaf⁻¹) in the middle of February and then declined. Aphid started to build up their population from the second week of November with abundance 6.0 leaf⁻¹, increased continuously, reached to the peak level (8.4 leaf⁻¹) in the last week of December and then declined. Mite started to build up their population from the first week of December with abundance 0.8 leaf⁻¹, increased continuously, reached to the peak level (8.2 leaf⁻¹) in the second week of March and then declined. Thrips and mite prevailed until the last week of April, and aphid showed their abundance till last week of May. The daily mean temperature, relative humidity, and rainfall had an insignificant negative correlation with thrips and significant negative correlation with aphid abundance. The daily mean temperature had significant positive, relative humidity had an insignificant positive, and rainfall had an insignificant negative correlation with mite abundance. The multiple linear regression analysis showed that the weather parameters together contributed 38.1, 41.0 and 8.9% abundance on thrips, aphid and mite on rose, respectively and the equations were insignificant.

Keywords: aphid, mite, thrips, weather factors

Procedia PDF Downloads 162
1009 Crop Production and Food Sufficiency Level of Family Farmers

Authors: Prakash Chandra Subedi

Abstract:

Family farming is the family based farming activities, where the farmers cultivate their farm themselves and all the members of the family are engaged in farming as per their skill, age, and physical strength. This study was conducted to examine the food sufficiency level of family farmers and, was carried in the four VDCs of Kavrepalanchowk district -Jaisithok Mandan, Mahadevsthan Mandan and Gairi Bisouna Deupur. A total of 115 households determined as the sample size from each of the four VDCs were randomly visited for interview in the study. The size of land holding was found to be very small and fragmented. The quality of soil was fertile and could yield high production if irrigation existed. The labour used patterns were significant number of family labour but due to high youth migration there were labour shortage. The rate of adoption of agri-technology was low but the households adopting insectides/pesticides and chemical fertilizers were found to be high without any knowledge regarding its using techniques. In conclusion, the study highpoint that the crop production and food sufficiency level of the family farmers of the Kavrepalanchowk district is decreasing. Many farmers were leaving their farming and started seeking opportunity to go for foreign employment or engaged in non-agricultural activities in urban areas. If no action is taken timely, there may come situation that we will have to depend on imports for all the food requirements. Thus, the study reveals that the family farming could act as an agent for ensuring food sufficiency for all, if proper policies is promoted to family farmers with legal titles to their land or promoted with sustainable agriculture methods or provided with proper agri-technology or given their share of respect and responsibilities that farming as honorable profession.

Keywords: family farming, technology transfer, crop production, food sufficiency

Procedia PDF Downloads 341
1008 The Potential Role of Industrialized Building Systems in Malaysian Sustainable Construction: Awareness and Barriers

Authors: Aawag Mohsen Al-Awag, Wesam Salah Alaloul, M. S. Liew

Abstract:

Industrialized building system (IBS) is a method of construction with concentrated practices consisting of techniques, products, and a set of linked elements which operate collectively to accomplish objectives. The Industrialised Building System (IBS) has been recognised as a viable method for improving overall construction performance in terms of quality, cost, safety and health, waste reduction, and productivity. The Malaysian construction industry is considered one of the contributors to the development of the country. The acceptance level of IBS is still below government expectations. Thus, the Malaysian government has been continuously encouraging the industry to use and implement IBS. Conventional systems have several drawbacks, including project delays, low economic efficiency, excess inventory, and poor product quality. When it comes to implementing IBS, construction companies still face several obstacles and problems, notably in terms of contractual and procurement concerns, which leads to the low adoption of IBS in Malaysia. There are barriers to the acceptance of IBS technology, focused on awareness of historical failure and risks connected to IBS practices to provide enhanced performance. Therefore, the transformation from the existing conventional building systems to the industrialized building systems (IBS) is needed more than ever. The flexibility of IBS in Malaysia’s construction industry is very low due to numerous shortcomings and obstacles. Due to its environmental, economic, and social benefits, IBS could play a significant role in the Malaysian construction industry in the future. This paper concentrates on the potential role of IBS in sustainable construction practices in Malaysia. It also highlights the awareness, barriers, advantages, and disadvantages of IBS in the construction sector. The study concludes with recommendations for Malaysian construction stakeholders to encourage and increase the utilization of industrialised building systems.

Keywords: construction industry, industrialized building system, barriers, advantages and disadvantages, construction, sustainability, Malaysia

Procedia PDF Downloads 103
1007 Incorporating Circular Economy into Passive Design Strategies in Tropical Nigeria

Authors: Noah G. Akhimien, Eshrar Latif

Abstract:

The natural environment is in need for an urgent rescue due to dilapidation and recession of resources. Passive design strategies have proven to be one of the effective ways to reduce CO2 emissions and to improve building performance. On the other hand, there is a huge drop in material availability due to poor recycling culture. Consequently, building waste pose environmental hazard due to unrecycled building materials from construction and deconstruction. Buildings are seen to be material banks for a circular economy, therefore incorporating circular economy into passive housing will not only safe guide the climate but also improve resource efficiency. The study focuses on incorporating a circular economy in passive design strategies for an affordable energy and resource efficient residential building in Nigeria. Carbon dioxide (CO2) concentration is still on the increase as buildings are responsible for a significant amount of this emission globally. Therefore, prompt measures need to be taken to combat the effect of global warming and associated threats. Nigeria is rapidly growing in human population, resources on the other hand have receded greatly, and there is an abrupt need for recycling even in the built environment. It is necessary that Nigeria responds to these challenges effectively and efficiently considering building resource and energy. Passive design strategies were assessed using simulations to obtain qualitative and quantitative data which were inferred to case studies as it relates to the Nigeria climate. Building materials were analysed using the ReSOLVE model in order to explore possible recycling phase. This provided relevant information and strategies to illustrate the possibility of circular economy in passive buildings. The study offers an alternative approach, as it is the general principle for the reworking of an economy on ecological lines in passive housing and by closing material loops in circular economy.

Keywords: building, circular, efficiency, environment, sustainability

Procedia PDF Downloads 253
1006 Keratin Fiber Fabrication from Biowaste for Biomedical Application

Authors: Ashmita Mukherjee, Yogesh Harishchandra Kabutare, Suritra Bandyopadhyay, Paulomi Ghosh

Abstract:

Uncontrolled bleeding in the battlefield and the operation rooms can lead to serious injuries, trauma and even be lethal. Keratin was reported to be a haemostatic material which rapidly activates thrombin followed by activation of fibrinogen leading to the formation of insoluble fibrin. Also platelets, the main initiator of haemostasis are reported to adhere to keratin. However, the major limitation of pure keratin as a biomaterial is its poor physical property and corresponding low mechanical strength. To overcome this problem, keratin was cross-linked with alginate to increase its mechanical stability. In our study, Keratin extracted from feather waste showed yield of 80.5% and protein content of 8.05 ± 0.43 mg/mL (n=3). FTIR and CD spectroscopy confirmed the presence of the essential functional groups and preservation of the secondary structures of keratin. The keratin was then cross-linked with alginate to make a dope. The dope was used to draw fibers of desired diameters in a suitable coagulation bath using a customized wet spinning setup. The resultant morphology of keratin fibers was observed under a brightfield microscope. The FT-IR analysis implied that there was a presence of both keratin and alginate peaks in the fibers. The cross-linking was confirmed in the keratin alginate fibers by a shift of the amide A and amide B peaks towards the right and disappearance of the peak for N-H stretching (1534.68 cm-1). Blood was drawn in citrate vacutainers for whole blood clotting test and blood clotting kinetics, which showed that the keratin fibers could accelerate blood coagulation compared to that of alginate fibers and tissue culture plate. Additionally, cross-linked keratin-alginate fiber was found to have lower haemolytic potential compared to alginate fiber. Thus, keratin cross-linked fibers can have potential applications to combat unrestrained bleeding.

Keywords: biomaterial, biowaste, fiber, keratin

Procedia PDF Downloads 194
1005 Crop Leaf Area Index (LAI) Inversion and Scale Effect Analysis from Unmanned Aerial Vehicle (UAV)-Based Hyperspectral Data

Authors: Xiaohua Zhu, Lingling Ma, Yongguang Zhao

Abstract:

Leaf Area Index (LAI) is a key structural characteristic of crops and plays a significant role in precision agricultural management and farmland ecosystem modeling. However, LAI retrieved from different resolution data contain a scaling bias due to the spatial heterogeneity and model non-linearity, that is, there is scale effect during multi-scale LAI estimate. In this article, a typical farmland in semi-arid regions of Chinese Inner Mongolia is taken as the study area, based on the combination of PROSPECT model and SAIL model, a multiple dimensional Look-Up-Table (LUT) is generated for multiple crops LAI estimation from unmanned aerial vehicle (UAV) hyperspectral data. Based on Taylor expansion method and computational geometry model, a scale transfer model considering both difference between inter- and intra-class is constructed for scale effect analysis of LAI inversion over inhomogeneous surface. The results indicate that, (1) the LUT method based on classification and parameter sensitive analysis is useful for LAI retrieval of corn, potato, sunflower and melon on the typical farmland, with correlation coefficient R2 of 0.82 and root mean square error RMSE of 0.43m2/m-2. (2) The scale effect of LAI is becoming obvious with the decrease of image resolution, and maximum scale bias is more than 45%. (3) The scale effect of inter-classes is higher than that of intra-class, which can be corrected efficiently by the scale transfer model established based Taylor expansion and Computational geometry. After corrected, the maximum scale bias can be reduced to 1.2%.

Keywords: leaf area index (LAI), scale effect, UAV-based hyperspectral data, look-up-table (LUT), remote sensing

Procedia PDF Downloads 440
1004 Electrical Conductivity as Pedotransfer Function in the Determination of Sodium Adsorption Ratio in Soil System in Managing Micro Level Farming Practices in India: An Effective Low Cost Technology

Authors: Usha Loganathan, Haresh Pandya

Abstract:

Analysis and correlation of soil properties represent an important outset for precision agriculture and is currently promoted and implemented in the developed world. Establishing relationships among indices of soil salinity has always been a challenging task in salt affected soils necessitating unique approaches for their reclamation and management to sustain long term productivity of Soil. Soil salinity indices like Electrical Conductivity (EC) and Sodium Adsorption Ratio (SAR) are normally used to characterize soils as either sodic or saline sodic. Currently, Determination of Soil sodium adsorption ratio is a more accepted and reliable measure of soil salinity. However, it involves arduous and protracted laboratory investigations which demand evolving new and economical methods to determine SAR based on simple soil salinity index. A linear regression model to predict soil SAR from soil electrical conductivity has been developed and presented in this paper as per which, soil SAR could very well be worked out as a pedotransfer function of soil EC. The present study was carried out in Orathupalayam (11.09-11.11 N latitude and 74.54-77.59 E longitude) in the vicinity of Orathupalayam Reservoir of Noyyal River Basin, India, over a period of 3 consecutive years from September 2013 through February 2016 in different locations chosen randomly through different seasons. The research findings are discussed in the light of micro level farming practices in India and recommend determination of SAR as a low cost technology aiding in the effective management of salt affected agricultural land.

Keywords: electrical conductivity, orathupalayam, pedotranfer function, sodium adsorption ratio

Procedia PDF Downloads 254
1003 Inter-Departmental Survey to Check the Impact of Bio-Safety Training Sessions among Lab Employees

Authors: Noorulaine Maqsood, Saeed Khan

Abstract:

Background: Concern regarding incident reporting and bio-safety training in clinical laboratories in Pakistan has increased remarkably in the last few years due to rapid increase in diagnosis and research on infectious organisms. In order to ensure the safety of employees, this issue needs to be addressed immediately. Bio-safety training sessions and lectures are necessary for the protection of laboratory workers in order to ensure safe practices and minimize the count of incident reporting in the lab. Objective: To carry out an inter-departmental survey in lab regarding the awareness of bio-safety practices among lab employees before and after conducting bio-safety training sessions. Methodology: We conducted a 30 questions survey of laboratory workers in June 2013 (before training session) to gather information related to bio-safety awareness. Afterwards, we conducted another survey after training sessions and workshops related to bio-safety. Result: The survey regarding bio-safety level showed that before the training session 32% of the participants were aware of bio-safety level being used in their lab whereas after the session this percentage increased to 72%. 48% of the participants had information about the proper usage of PPE which increased to 76%. Awareness regarding proper management of hazardous waste increased from 32% to 64%. The incident reporting practice, sample handling and hand hygiene awareness was previously reported to be 40%, 65%, and 52% that increased to 80%, 85% and 88% respectively after the training session was completed. Conclusion: The first survey results showed lack of awareness that suggest nearly all senior scientists, faculty, medical technologist, lab attendant and housekeeping staff working in laboratories are required to have bio-safety training, and required inspection at least twice a year by a bio-safety officer and also required to renew their bio-safety training. After the training session, significant changes in awareness level and attitude of the participants regarding biosafety practices were observed. Therefore, such bio-safety sessions should be carried out regularly in clinical laboratories.

Keywords: biosafety practices, clinical laboratory, Pakistan, survey

Procedia PDF Downloads 428
1002 Comparison of Various Landfill Ground Improvement Techniques for Redevelopment of Closed Landfills to Cater Transport Infrastructure

Authors: Michael D. Vinod, Hadi Khabbaz

Abstract:

Construction of infrastructure above or adjacent to landfills is becoming more common to capitalize on the limited space available within urban areas. However, development above landfills is a challenging task due to large voids, the presence of organic matter, heterogeneous nature of waste and ambiguity surrounding landfill settlement prediction. Prior to construction of infrastructure above landfills, ground improvement techniques are being employed to improve the geotechnical properties of landfill material. Although the ground improvement techniques have little impact on long term biodegradation and creep related landfill settlement, they have shown some notable short term success with a variety of techniques, including methods for verifying the level of effectiveness of ground improvement techniques. This paper provides geotechnical and landfill engineers a guideline for selection of landfill ground improvement techniques and their suitability to project-specific sites. Ground improvement methods assessed and compared in this paper include concrete injected columns (CIC), dynamic compaction, rapid impact compaction (RIC), preloading, high energy impact compaction (HEIC), vibro compaction, vibro replacement, chemical stabilization and the inclusion of geosynthetics such as geocells. For each ground improvement technique a summary of the existing theory, benefits, limitations, suitable modern ground improvement monitoring methods, the applicability of ground improvement techniques for landfills and supporting case studies are provided. The authors highlight the importance of implementing cost-effective monitoring techniques to allow observation and necessary remediation of the subsidence effects associated with long term landfill settlement. These ground improvement techniques are primarily for the purpose of construction above closed landfills to cater for transport infrastructure loading.

Keywords: closed landfills, ground improvement, monitoring, settlement, transport infrastructure

Procedia PDF Downloads 224
1001 Phenolic Compounds and Antioxidant Capacity of Nine Genotypes of Thai Rice (Oryza sativa L.)

Authors: Pitchaon Maisuthisakul, Ladawan Changchub

Abstract:

Rice (Oryza sativa L.) is a staple diet in Thailand. Rice cultivation is traditional occupation of Thailand which passed down through generations. The 1 Rai 1 san project is new agricultural theory according to sufficient economy using green technology without using chemical substances. This study was conducted to evaluate total phenolics using HPLC and colorimetric methods including total anthocyanin content of Thai rice extracting by simulated gastric and intestinal condition and to estimate antioxidant capacity using DPPH and thiocyanate methods. Color and visible spectrum of rice grains were also investigated. Rice grains were classified into three groups according to their color appearance. The light brown grain genotypes are Sin Lek, Jasmine 105, Lao Tek and Hawm Ubon. The red group is Sang Yod and Red Jasmine. Genotypes Kum, Hawm Kanya and Hawm Nil are black rice grains. Cyanidin-3-O-glucoside was found in only black rice genotypes, whereas chlorogenic acid was found in all rice grains. The black rice had higher phenolic content than red and light brown samples. Phenolic acids constitute a small portion of phenolic compounds after digestion in human and contribute to the antioxidant activity of Thai rice grains. Anthocyanin contents of all rice extracts ranged from 45.9 to 442.1 mg CGE/kg. All rice extracts showed the antioxidant efficiency lower than ferulic acid. Genotype Kum and Hawm nil exhibited the ability of antioxidant efficiency higher than α-tocopherol. Interestingly, the visible spectrum of only black rice genotypes showed the maximum peak at 530-540 nm. The results suggest that consumption of black rice gives more health benefits of grain to consumer.

Keywords: rice, phenolic, antioxidant, anthocyanin

Procedia PDF Downloads 359
1000 Utilizing Mahogany (Swietenia Macrophylla) Fruits, Leaves, and Branches as Biochar for Soil Amendment in Okra (Abelmoschus Esculentus) Plant

Authors: Ayaka A. Matsuo, Gweyneth Victoria I. Maranan, Shawn Mikel Hobayan

Abstract:

In this study, we delve into the application of mahogany fruits as biochar for soil amendment, aiming to evaluate their effectiveness in improving soil quality and influencing the growth parameters of okra plants through a comprehensive analysis employing various multivariate tests. In a more straightforward approach, our results show that biochar derived from isn't just a minor player but emerges as a key contributor to our study. This finding holds profound implications, as it highlights the material significance of biochar derived from Mahogany (Swietenia macrophylla) fruits, leaves, and branches in shaping the outcomes. The importance of this discovery lies in its contribution to an enhanced comprehension of the overall effects of biochar on the variables explored in our investigation. Notably, the positive changes observed in height, number of leaves, and width of leaves in okra plants further support the premise that the incorporation of biochar improves soil quality. These findings provide valuable insights for agricultural practices, suggesting that biochar derived from Mahogany (Swietenia macrophylla) fruits, leaves, and branches holds promise as a sustainable soil amendment with positive implications for plant growth. The statistical results from multivariate tests serve to solidify the conclusion that biochar plays a pivotal role in driving the observed outcomes in our study. In essence, this research not only sheds light on the potential of mahogany fruit-derived biochar but also emphasizes its significance in fostering healthier soil conditions and, consequently, enhanced plant growth.

Keywords: soil amendment, biochar, mahogany, soil health

Procedia PDF Downloads 75
999 The Potential of Sown Pastures as Feedstock for Biofuels in Brazil

Authors: Danilo G. De Quadros

Abstract:

Biofuels are a priority in the renewable energy agenda. The utilization of tropical grasses to ethanol production is a real opportunity to Brazil reaches the world’s leadership in biofuels production because there are 100 million hectares of sown pastures, which represent 20% of all land and 80% of agricultural areas. Basically, nowadays tropical grasses are used to raise livestock. The results obtained in this research could bring tremendous advance not only to national technology and economy but also to improve social and environmental aspects. Thus, the objective of this work was to estimate, through well-established international models, the potential of biofuels production using sown tropical pastures as feedstocks and to compare the results with sugarcane ethanol, considering state-of-art of conversion technology, advantages and limitations factors. There were used data from national and international literature about forage yield and biochemical conversion yield. Some scenarios were studied to evaluate potential advantages and limitations for cellulosic ethanol production, since non-food feedstock appeal to conversion strategies, passing through harvest, densification, logistics, environmental impacts (carbon and water cycles, nutrient recycling and biodiversity), and social aspects. If Brazil used only 1% of sown pastures to ethanol production by biochemical pathway, with average dry matter yield of 15 metric tons per hectare per year (there are results of 40 tons), resulted annually in 721 billion liters, that represents 10 times more than sugarcane ethanol projected by the Government in 2030. However, more research is necessary to take the results to commercial scale with competitive costs, considering many strategies and methods applied in ethanol production using cellulosic feedstock.

Keywords: biofuels, biochemical pathway, cellulosic ethanol, sustainability

Procedia PDF Downloads 263
998 Integrated Water Resources Management to Ensure Water Security of Arial Khan River Catchment

Authors: Abul Kalam Azad

Abstract:

Water security has become an increasingly important issue both at the national and international levels. Bangladesh having an abundance of water during monsoon while the shortage of water during the dry season is far from being water secured. Though water security has been discussed discretely at a different level but a holistic effort to ensure water security is yet to be made. The elements of water security such as sectoral demands of water, conflicting requirements amongst the sectors, balancing between demand and supply including the quality of water can best be understood and managed in a catchment as it is the standard functioning unit. The Arial Khan River catchment consists of parts of Faridpur, Madaripur, Shariatpur and Barishal districts have all the components of water demands such as agriculture, domestic, commercial, industrial, forestry, fisheries, navigation or recreation and e-flow requirements. Based on secondary and primary data, water demands of various sectors have been determined. CROPWAT 8.0 has been used to determine the Agricultural Water Demand. Mean Annual Flow (MAF) and Flow Duration Curve (FDC) have been used to determine the e-flow requirements. Water Evaluation and Planning System (WEAP) based decision support tool as part of Integrated Water Resources Management (IWRM) has been utilized for ensuring the water security of the Arial Khan River catchment. Studies and practice around the globe connected with water security were consulted to mitigate the pressure on demand and supply including the options available to ensure the water security. Combining all the information, a framework for ensuring water security has been suggested for Arial Khan River catchment which can further be projected to river basin as well as for the country. This will assist planners and researchers to introduce the model for integrated water resources management of any catchment/river basins.

Keywords: water security, water demand, water supply, WEAP, CROPWAT

Procedia PDF Downloads 20
997 Remote Sensing through Deep Neural Networks for Satellite Image Classification

Authors: Teja Sai Puligadda

Abstract:

Satellite images in detail can serve an important role in the geographic study. Quantitative and qualitative information provided by the satellite and remote sensing images minimizes the complexity of work and time. Data/images are captured at regular intervals by satellite remote sensing systems, and the amount of data collected is often enormous, and it expands rapidly as technology develops. Interpreting remote sensing images, geographic data mining, and researching distinct vegetation types such as agricultural and forests are all part of satellite image categorization. One of the biggest challenge data scientists faces while classifying satellite images is finding the best suitable classification algorithms based on the available that could able to classify images with utmost accuracy. In order to categorize satellite images, which is difficult due to the sheer volume of data, many academics are turning to deep learning machine algorithms. As, the CNN algorithm gives high accuracy in image recognition problems and automatically detects the important features without any human supervision and the ANN algorithm stores information on the entire network (Abhishek Gupta., 2020), these two deep learning algorithms have been used for satellite image classification. This project focuses on remote sensing through Deep Neural Networks i.e., ANN and CNN with Deep Sat (SAT-4) Airborne dataset for classifying images. Thus, in this project of classifying satellite images, the algorithms ANN and CNN are implemented, evaluated & compared and the performance is analyzed through evaluation metrics such as Accuracy and Loss. Additionally, the Neural Network algorithm which gives the lowest bias and lowest variance in solving multi-class satellite image classification is analyzed.

Keywords: artificial neural network, convolutional neural network, remote sensing, accuracy, loss

Procedia PDF Downloads 159
996 Theoretical Evaluation of Minimum Superheat, Energy and Exergy in a High-Temperature Heat Pump System Operating with Low GWP Refrigerants

Authors: Adam Y. Sulaiman, Donal F. Cotter, Ming J. Huang, Neil J. Hewitt

Abstract:

Suitable low global warming potential (GWP) refrigerants that conform to F-gas regulations are required to extend the operational envelope of high-temperature heat pumps (HTHPs) used for industrial waste heat recovery processes. The thermophysical properties and characteristics of these working fluids need to be assessed to provide a comprehensive understanding of operational effectiveness in HTHP applications. This paper presents the results of a theoretical simulation to investigate a range of low-GWP refrigerants and their suitability to supersede refrigerants HFC-245fa and HFC-365mfc. A steady-state thermodynamic model of a single-stage HTHP with an internal heat exchanger (IHX) was developed to assess system cycle characteristics at temperature ranges between 50 to 80 °C heat source and 90 to 150 °C heat sink. A practical approach to maximize the operational efficiency was examined to determine the effects of regulating minimum superheat within the process and subsequent influence on energetic and exergetic efficiencies. A comprehensive map of minimum superheat across the HTHP operating variables were used to assess specific tipping points in performance at 30 and 70 K temperature lifts. Based on initial results, the refrigerants HCFO-1233zd(E) and HFO-1336mzz(Z) were found to be closely aligned matches for refrigerants HFC-245fa and HFC-365mfc. The overall results show effective performance for HCFO-1233zd(E) occurs between 5-7 K minimum superheat, and HFO-1336mzz(Z) between 18-21 K dependant on temperature lift. This work provides a method to optimize refrigerant selection based on operational indicators to maximize overall HTHPs system performance.

Keywords: high-temperature heat pump, minimum superheat, energy & exergy efficiency, low GWP refrigerants

Procedia PDF Downloads 185
995 Bio Energy from Metabolic Activity of Bacteria in Plant and Soil Using Novel Microbial Fuel Cells

Authors: B. Samuel Raj, Solomon R. D. Jebakumar

Abstract:

Microbial fuel cells (MFCs) are an emerging and promising method for achieving sustainable energy since they can remove contaminated organic matter and simultaneously generate electricity. Our approach was driven in three different ways like Bacterial fuel cell, Soil Microbial fuel cell (Soil MFC) and Plant Microbial fuel cell (Plant MFC). Bacterial MFC: Sulphate reducing bacteria (SRB) were isolated and identified as the efficient electricigens which is able to produce ±2.5V (689mW/m2) and it has sustainable activity for 120 days. Experimental data with different MFC revealed that high electricity production harvested continuously for 90 days 1.45V (381mW/m2), 1.98V (456mW/m2) respectively. Biofilm formation was confirmed on the surface of the anode by high content screening (HCS) and scanning electron Microscopic analysis (SEM). Soil MFC: Soil MFC was constructed with low cost and standard Mudwatt soil MFC was purchased from keegotech (USA). Vermicompost soil (V1) produce high energy (± 3.5V for ± 400 days) compared to Agricultural soil (A1) (± 2V for ± 150 days). Biofilm formation was confirmed by HCS and SEM analysis. This finding provides a method for extracting energy from organic matter, but also suggests a strategy for promoting the bioremediation of organic contaminants in subsurface environments. Our Soil MFC were able to run successfully a 3.5V fan and three LED continuously for 150 days. Plant MFC: Amaranthus candatus (P1) and Triticum aestivium (P2) were used in Plant MFC to confirm the electricity production from plant associated microbes, four uniform size of Plant MFC were constructed and checked for energy production. P2 produce high energy (± 3.2V for 40 days) with harvesting interval of two times and P1 produces moderate energy without harvesting interval (±1.5V for 24 days). P2 is able run 3.5V fan continuously for 10days whereas P1 needs optimization of growth conditions to produce high energy.

Keywords: microbial fuel cell, biofilm, soil microbial fuel cell, plant microbial fuel cell

Procedia PDF Downloads 350