Search results for: resolution digital data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 27637

Search results for: resolution digital data

24187 Digitalized Public Sector Practices: Opportunities for Open Innovation in Rwanda

Authors: Reem Abou Refaie, Christoph Meinel

Abstract:

The paper explores the impact of the COVID-19 crisis on the internal as well as external digitalized work practices of public service providers as part of a Public-Private Partnership Model. It focuses on the effect of uncertainty on generating Open Innovation practices. Our inquiry relies on semi-structured interviews (n=14) from a case study of Rwanda’s Public Service Delivery System in the context of research cooperation with IremboGov, the country’s One-Stop-Shop Platform for public services. It presents four propositions on harnessing opportunities for OI in the context of the public sector beyond the pandemic response. Practitioners can find characterizations of OI opportunities and gain insights on fostering OI in Public Sector Organizations.

Keywords: open innovation, digital transformation, public sector, Rwanda

Procedia PDF Downloads 128
24186 Chemical and Physical Properties and Biocompatibility of Ti–6Al–4V Produced by Electron Beam Rapid Manufacturing and Selective Laser Melting for Biomedical Applications

Authors: Bing–Jing Zhao, Chang-Kui Liu, Hong Wang, Min Hu

Abstract:

Electron beam rapid manufacturing (EBRM) or Selective laser melting is an additive manufacturing process that uses 3D CAD data as a digital information source and energy in the form of a high-power laser beam or electron beam to create three-dimensional metal parts by fusing fine metallic powders together.Object:The present study was conducted to evaluate the mechanical properties ,the phase transformation,the corrosivity and the biocompatibility of Ti-6Al-4V by EBRM,SLM and forging technique.Method: Ti-6Al-4V alloy standard test pieces were manufactured by EBRM, SLM and forging technique according to AMS4999,GB/T228 and ISO 10993.The mechanical properties were analyzed by universal test machine. The phase transformation was analyzed by X-ray diffraction and scanning electron microscopy. The corrosivity was analyzed by electrochemical method. The biocompatibility was analyzed by co-culturing with mesenchymal stem cell and analyzed by scanning electron microscopy (SEM) and alkaline phosphatase assay (ALP) to evaluate cell adhesion and differentiation, respectively. Results: The mechanical properties, the phase transformation, the corrosivity and the biocompatibility of Ti-6Al-4V by EBRM、SLM were similar to forging and meet the mechanical property requirements of AMS4999 standard. a­phase microstructure for the EBM production contrast to the a’­phase microstructure of the SLM product. Mesenchymal stem cell adhesion and differentiation were well. Conclusion: The property of the Ti-6Al-4V alloy manufactured by EBRM and SLM technique can meet the medical standard from this study. But some further study should be proceeded in order to applying well in clinical practice.

Keywords: 3D printing, Electron Beam Rapid Manufacturing (EBRM), Selective Laser Melting (SLM), Computer Aided Design (CAD)

Procedia PDF Downloads 454
24185 'Enjoying the Czech Traditions with All Sences!': Tourism Product Promotion

Authors: Tomas Seidl

Abstract:

'Enjoy the Czech traditions with all sences!' is the main communication headline of one of the major current marketing project representing the intangible cultural heritage of the Czech Republic to its visitors. The project CZ.1.06/4.1.00/12.08915 and CZ.1.06/4.1.00/12.08916 which is solved in the period 2013-2015 is co-financed form the EU financial sources from the Integrated Operational Programme. The primary goal of the project was to analyze the dislocation and potential of the intangible cultural heritage in the Czech Republic. Further goal was to prepare a useful regionalization. An as solution based on the outcomes the creative and media strategy was created and prepared. The processor – CzechTourism expect the following web and mobile application development and successful marketing campaign in 2015.

Keywords: traditions, intangible cultural heritage, Czech Republic, CzechTourism, digital performance

Procedia PDF Downloads 368
24184 A Fuzzy TOPSIS Based Model for Safety Risk Assessment of Operational Flight Data

Authors: N. Borjalilu, P. Rabiei, A. Enjoo

Abstract:

Flight Data Monitoring (FDM) program assists an operator in aviation industries to identify, quantify, assess and address operational safety risks, in order to improve safety of flight operations. FDM is a powerful tool for an aircraft operator integrated into the operator’s Safety Management System (SMS), allowing to detect, confirm, and assess safety issues and to check the effectiveness of corrective actions, associated with human errors. This article proposes a model for safety risk assessment level of flight data in a different aspect of event focus based on fuzzy set values. It permits to evaluate the operational safety level from the point of view of flight activities. The main advantages of this method are proposed qualitative safety analysis of flight data. This research applies the opinions of the aviation experts through a number of questionnaires Related to flight data in four categories of occurrence that can take place during an accident or an incident such as: Runway Excursions (RE), Controlled Flight Into Terrain (CFIT), Mid-Air Collision (MAC), Loss of Control in Flight (LOC-I). By weighting each one (by F-TOPSIS) and applying it to the number of risks of the event, the safety risk of each related events can be obtained.

Keywords: F-topsis, fuzzy set, flight data monitoring (FDM), flight safety

Procedia PDF Downloads 168
24183 From Modeling of Data Structures towards Automatic Programs Generating

Authors: Valentin P. Velikov

Abstract:

Automatic program generation saves time, human resources, and allows receiving syntactically clear and logically correct modules. The 4-th generation programming languages are related to drawing the data and the processes of the subject area, as well as, to obtain a frame of the respective information system. The application can be separated in interface and business logic. That means, for an interactive generation of the needed system to be used an already existing toolkit or to be created a new one.

Keywords: computer science, graphical user interface, user dialog interface, dialog frames, data modeling, subject area modeling

Procedia PDF Downloads 306
24182 Optimized Weight Selection of Control Data Based on Quotient Space of Multi-Geometric Features

Authors: Bo Wang

Abstract:

The geometric processing of multi-source remote sensing data using control data of different scale and different accuracy is an important research direction of multi-platform system for earth observation. In the existing block bundle adjustment methods, as the controlling information in the adjustment system, the approach using single observation scale and precision is unable to screen out the control information and to give reasonable and effective corresponding weights, which reduces the convergence and adjustment reliability of the results. Referring to the relevant theory and technology of quotient space, in this project, several subjects are researched. Multi-layer quotient space of multi-geometric features is constructed to describe and filter control data. Normalized granularity merging mechanism of multi-layer control information is studied and based on the normalized scale factor, the strategy to optimize the weight selection of control data which is less relevant to the adjustment system can be realized. At the same time, geometric positioning experiment is conducted using multi-source remote sensing data, aerial images, and multiclass control data to verify the theoretical research results. This research is expected to break through the cliché of the single scale and single accuracy control data in the adjustment process and expand the theory and technology of photogrammetry. Thus the problem to process multi-source remote sensing data will be solved both theoretically and practically.

Keywords: multi-source image geometric process, high precision geometric positioning, quotient space of multi-geometric features, optimized weight selection

Procedia PDF Downloads 285
24181 Together - A Decentralized Application Connects Ideas and Investors

Authors: Chandragiri Nagadeep, M. V. V. S. Durga, Sadu Mahikshith

Abstract:

Future generation is depended on new ideas and innovations that develops the country economical growth and technology standards so, Startups plays an important role in satisfying above goals. Startups includes support which is given by investing into it by investors but, single digit investors can’t keep supporting one startup and lot of security problems occurs while transferring large funds to startup’s bank account. Targeting security and most supportive funding, TogEther solves these issues by providing a platform where “Crowd Funding” is available in a decentralized way such that funding is done with digital currency called cryptocurrency where transactions are done in a secured way using “Block Chain Technology”. Not only Funding but also Ideas along with their documents can be presented and hosted with help of IPFS (Inter Planetary File System).

Keywords: blockchain, ethereum, web3, reactjs, interplanetary file system, funding

Procedia PDF Downloads 215
24180 Object Detection in Digital Images under Non-Standardized Conditions Using Illumination and Shadow Filtering

Authors: Waqqas-ur-Rehman Butt, Martin Servin, Marion Pause

Abstract:

In recent years, object detection has gained much attention and very encouraging research area in the field of computer vision. The robust object boundaries detection in an image is demanded in numerous applications of human computer interaction and automated surveillance systems. Many methods and approaches have been developed for automatic object detection in various fields, such as automotive, quality control management and environmental services. Inappropriately, to the best of our knowledge, object detection under illumination with shadow consideration has not been well solved yet. Furthermore, this problem is also one of the major hurdles to keeping an object detection method from the practical applications. This paper presents an approach to automatic object detection in images under non-standardized environmental conditions. A key challenge is how to detect the object, particularly under uneven illumination conditions. Image capturing conditions the algorithms need to consider a variety of possible environmental factors as the colour information, lightening and shadows varies from image to image. Existing methods mostly failed to produce the appropriate result due to variation in colour information, lightening effects, threshold specifications, histogram dependencies and colour ranges. To overcome these limitations we propose an object detection algorithm, with pre-processing methods, to reduce the interference caused by shadow and illumination effects without fixed parameters. We use the Y CrCb colour model without any specific colour ranges and predefined threshold values. The segmented object regions are further classified using morphological operations (Erosion and Dilation) and contours. Proposed approach applied on a large image data set acquired under various environmental conditions for wood stack detection. Experiments show the promising result of the proposed approach in comparison with existing methods.

Keywords: image processing, illumination equalization, shadow filtering, object detection

Procedia PDF Downloads 216
24179 Finding the Free Stream Velocity Using Flow Generated Sound

Authors: Saeed Hosseini, Ali Reza Tahavvor

Abstract:

Sound processing is one the subjects that newly attracts a lot of researchers. It is efficient and usually less expensive than other methods. In this paper the flow generated sound is used to estimate the flow speed of free flows. Many sound samples are gathered. After analyzing the data, a parameter named wave power is chosen. For all samples, the wave power is calculated and averaged for each flow speed. A curve is fitted to the averaged data and a correlation between the wave power and flow speed is founded. Test data are used to validate the method and errors for all test data were under 10 percent. The speed of the flow can be estimated by calculating the wave power of the flow generated sound and using the proposed correlation.

Keywords: the flow generated sound, free stream, sound processing, speed, wave power

Procedia PDF Downloads 415
24178 Applying Big Data Analysis to Efficiently Exploit the Vast Unconventional Tight Oil Reserves

Authors: Shengnan Chen, Shuhua Wang

Abstract:

Successful production of hydrocarbon from unconventional tight oil reserves has changed the energy landscape in North America. The oil contained within these reservoirs typically will not flow to the wellbore at economic rates without assistance from advanced horizontal well and multi-stage hydraulic fracturing. Efficient and economic development of these reserves is a priority of society, government, and industry, especially under the current low oil prices. Meanwhile, society needs technological and process innovations to enhance oil recovery while concurrently reducing environmental impacts. Recently, big data analysis and artificial intelligence become very popular, developing data-driven insights for better designs and decisions in various engineering disciplines. However, the application of data mining in petroleum engineering is still in its infancy. The objective of this research aims to apply intelligent data analysis and data-driven models to exploit unconventional oil reserves both efficiently and economically. More specifically, a comprehensive database including the reservoir geological data, reservoir geophysical data, well completion data and production data for thousands of wells is firstly established to discover the valuable insights and knowledge related to tight oil reserves development. Several data analysis methods are introduced to analysis such a huge dataset. For example, K-means clustering is used to partition all observations into clusters; principle component analysis is applied to emphasize the variation and bring out strong patterns in the dataset, making the big data easy to explore and visualize; exploratory factor analysis (EFA) is used to identify the complex interrelationships between well completion data and well production data. Different data mining techniques, such as artificial neural network, fuzzy logic, and machine learning technique are then summarized, and appropriate ones are selected to analyze the database based on the prediction accuracy, model robustness, and reproducibility. Advanced knowledge and patterned are finally recognized and integrated into a modified self-adaptive differential evolution optimization workflow to enhance the oil recovery and maximize the net present value (NPV) of the unconventional oil resources. This research will advance the knowledge in the development of unconventional oil reserves and bridge the gap between the big data and performance optimizations in these formations. The newly developed data-driven optimization workflow is a powerful approach to guide field operation, which leads to better designs, higher oil recovery and economic return of future wells in the unconventional oil reserves.

Keywords: big data, artificial intelligence, enhance oil recovery, unconventional oil reserves

Procedia PDF Downloads 283
24177 Efficiency of DMUs in Presence of New Inputs and Outputs in DEA

Authors: Esmat Noroozi, Elahe Sarfi, Farha Hosseinzadeh Lotfi

Abstract:

Examining the impacts of data modification is considered as sensitivity analysis. A lot of studies have considered the data modification of inputs and outputs in DEA. The issues which has not heretofore been considered in DEA sensitivity analysis is modification in the number of inputs and (or) outputs and determining the impacts of this modification in the status of efficiency of DMUs. This paper is going to present systems that show the impacts of adding one or multiple inputs or outputs on the status of efficiency of DMUs and furthermore a model is presented for recognizing the minimum number of inputs and (or) outputs from among specified inputs and outputs which can be added whereas an inefficient DMU will become efficient. Finally the presented systems and model have been utilized for a set of real data and the results have been reported.

Keywords: data envelopment analysis, efficiency, sensitivity analysis, input, out put

Procedia PDF Downloads 450
24176 Credit Card Fraud Detection with Ensemble Model: A Meta-Heuristic Approach

Authors: Gong Zhilin, Jing Yang, Jian Yin

Abstract:

The purpose of this paper is to develop a novel system for credit card fraud detection based on sequential modeling of data using hybrid deep learning models. The projected model encapsulates five major phases are pre-processing, imbalance-data handling, feature extraction, optimal feature selection, and fraud detection with an ensemble classifier. The collected raw data (input) is pre-processed to enhance the quality of the data through alleviation of the missing data, noisy data as well as null values. The pre-processed data are class imbalanced in nature, and therefore they are handled effectively with the K-means clustering-based SMOTE model. From the balanced class data, the most relevant features like improved Principal Component Analysis (PCA), statistical features (mean, median, standard deviation) and higher-order statistical features (skewness and kurtosis). Among the extracted features, the most optimal features are selected with the Self-improved Arithmetic Optimization Algorithm (SI-AOA). This SI-AOA model is the conceptual improvement of the standard Arithmetic Optimization Algorithm. The deep learning models like Long Short-Term Memory (LSTM), Convolutional Neural Network (CNN), and optimized Quantum Deep Neural Network (QDNN). The LSTM and CNN are trained with the extracted optimal features. The outcomes from LSTM and CNN will enter as input to optimized QDNN that provides the final detection outcome. Since the QDNN is the ultimate detector, its weight function is fine-tuned with the Self-improved Arithmetic Optimization Algorithm (SI-AOA).

Keywords: credit card, data mining, fraud detection, money transactions

Procedia PDF Downloads 131
24175 Bending the Consciousnesses: Uncovering Environmental Issues Through Circuit Bending

Authors: Enrico Dorigatti

Abstract:

The growing pile of hazardous e-waste produced especially by those developed and wealthy countries gets relentlessly bigger, composed of the EEDs (Electric and Electronic Device) that are often thrown away although still well functioning, mainly due to (programmed) obsolescence. As a consequence, e-waste has taken, over the last years, the shape of a frightful, uncontrollable, and unstoppable phenomenon, mainly fuelled by market policies aiming to maximize sales—and thus profits—at any cost. Against it, governments and organizations put some efforts in developing ambitious frameworks and policies aiming to regulate, in some cases, the whole lifecycle of EEDs—from the design to the recycling. Incidentally, however, such regulations sometimes make the disposal of the devices economically unprofitable, which often translates into growing illegal e-waste trafficking—an activity usually undertaken by criminal organizations. It seems that nothing, at least in the near future, can stop the phenomenon of e-waste production and accumulation. But while, from a practical standpoint, a solution seems hard to find, much can be done regarding people's education, which translates into informing and promoting good practices such as reusing and repurposing. This research argues that circuit bending—an activity rooted in neo-materialist philosophy and post-digital aesthetic, and based on repurposing EEDs into novel music instruments and sound generators—could have a great potential in this. In particular, it asserts that circuit bending could expose ecological, environmental, and social criticalities related to the current market policies and economic model. Not only thanks to its practical side (e.g., sourcing and repurposing devices) but also to the artistic one (e.g., employing bent instruments for ecological-aware installations, performances). Currently, relevant literature and debate lack interest and information about the ecological aspects and implications of the practical and artistic sides of circuit bending. This research, therefore, although still at an early stage, aims to fill in this gap by investigating, on the one side, the ecologic potential of circuit bending and, on the other side, its capacity of sensitizing people, through artistic practice, about e-waste-related issues. The methodology will articulate in three main steps. Firstly, field research will be undertaken—with the purpose of understanding where and how to source, in an ecologic and sustainable way, (discarded) EEDs for circuit bending. Secondly, artistic installations and performances will be organized—to sensitize the audience about environmental concerns through sound art and music derived from bent instruments. Data, such as audiences' feedback, will be collected at this stage. The last step will consist in realising workshops to spread an ecologically-aware circuit bending practice. Additionally, all the data and findings collected will be made available and disseminated as resources.

Keywords: circuit bending, ecology, sound art, sustainability

Procedia PDF Downloads 171
24174 WebAppShield: An Approach Exploiting Machine Learning to Detect SQLi Attacks in an Application Layer in Run-time

Authors: Ahmed Abdulla Ashlam, Atta Badii, Frederic Stahl

Abstract:

In recent years, SQL injection attacks have been identified as being prevalent against web applications. They affect network security and user data, which leads to a considerable loss of money and data every year. This paper presents the use of classification algorithms in machine learning using a method to classify the login data filtering inputs into "SQLi" or "Non-SQLi,” thus increasing the reliability and accuracy of results in terms of deciding whether an operation is an attack or a valid operation. A method Web-App auto-generated twin data structure replication. Shielding against SQLi attacks (WebAppShield) that verifies all users and prevents attackers (SQLi attacks) from entering and or accessing the database, which the machine learning module predicts as "Non-SQLi" has been developed. A special login form has been developed with a special instance of data validation; this verification process secures the web application from its early stages. The system has been tested and validated, up to 99% of SQLi attacks have been prevented.

Keywords: SQL injection, attacks, web application, accuracy, database

Procedia PDF Downloads 151
24173 Exploring Problem-Based Learning and University-Industry Collaborations for Fostering Students’ Entrepreneurial Skills: A Qualitative Study in a German Urban Setting

Authors: Eylem Tas

Abstract:

This empirical study aims to explore the development of students' entrepreneurial skills through problem-based learning within the context of university-industry collaborations (UICs) in curriculum co-design and co-delivery (CDD). The research question guiding this study is: "How do problem-based learning and university-industry collaborations influence the development of students' entrepreneurial skills in the context of curriculum co-design and co-delivery?” To address this question, the study was conducted in a big city in Germany and involved interviews with stakeholders from various industries, including the private sector, government agencies (govt), and non-governmental organizations (NGOs). These stakeholders had established collaborative partnerships with the targeted university for projects encompassing entrepreneurial development aspects in CDD. The study sought to gain insights into the intricacies and subtleties of UIC dynamics and their impact on fostering entrepreneurial skills. Qualitative content analysis, based on Mayring's guidelines, was employed to analyze the interview transcriptions. Through an iterative process of manual coding, 442 codes were generated, resulting in two main sections: "the role of problem-based learning and UIC in fostering entrepreneurship" and "challenges and requirements of problem-based learning within UIC for systematical entrepreneurship development.” The chosen experimental approach of semi-structured interviews was justified by its capacity to provide in-depth perspectives and rich data from stakeholders with firsthand experience in UICs in CDD. By enlisting participants with diverse backgrounds, industries, and company sizes, the study ensured a comprehensive and heterogeneous sample, enhancing the credibility of the findings. The first section of the analysis delved into problem-based learning and entrepreneurial self-confidence to gain a deeper understanding of UIC dynamics from an industry standpoint. It explored factors influencing problem-based learning, alignment of students' learning styles and preferences with the experiential learning approach, specific activities and strategies, and the role of mentorship from industry professionals in fostering entrepreneurial self-confidence. The second section focused on various interactions within UICs, including communication, knowledge exchange, and collaboration. It identified key elements, patterns, and dynamics of interaction, highlighting challenges and limitations. Additionally, the section emphasized success stories and notable outcomes related to UICs' positive impact on students' entrepreneurial journeys. Overall, this research contributes valuable insights into the dynamics of UICs and their role in fostering students' entrepreneurial skills. UICs face challenges in communication and establishing a common language. Transparency, adaptability, and regular communication are vital for successful collaboration. Realistic expectation management and clearly defined frameworks are crucial. Responsible data handling requires data assurance and confidentiality agreements, emphasizing the importance of trust-based relationships when dealing with data sharing and handling issues. The identified key factors and challenges provide a foundation for universities and industrial partners to develop more effective UIC strategies for enhancing students' entrepreneurial capabilities and preparing them for success in today's digital age labor market. The study underscores the significance of collaborative learning and transparent communication in UICs for entrepreneurial development in CDD.

Keywords: collaborative learning, curriculum co-design and co-delivery, entrepreneurial skills, problem-based learning, university-industry collaborations

Procedia PDF Downloads 60
24172 From Theory to Practice: Harnessing Mathematical and Statistical Sciences in Data Analytics

Authors: Zahid Ullah, Atlas Khan

Abstract:

The rapid growth of data in diverse domains has created an urgent need for effective utilization of mathematical and statistical sciences in data analytics. This abstract explores the journey from theory to practice, emphasizing the importance of harnessing mathematical and statistical innovations to unlock the full potential of data analytics. Drawing on a comprehensive review of existing literature and research, this study investigates the fundamental theories and principles underpinning mathematical and statistical sciences in the context of data analytics. It delves into key mathematical concepts such as optimization, probability theory, statistical modeling, and machine learning algorithms, highlighting their significance in analyzing and extracting insights from complex datasets. Moreover, this abstract sheds light on the practical applications of mathematical and statistical sciences in real-world data analytics scenarios. Through case studies and examples, it showcases how mathematical and statistical innovations are being applied to tackle challenges in various fields such as finance, healthcare, marketing, and social sciences. These applications demonstrate the transformative power of mathematical and statistical sciences in data-driven decision-making. The abstract also emphasizes the importance of interdisciplinary collaboration, as it recognizes the synergy between mathematical and statistical sciences and other domains such as computer science, information technology, and domain-specific knowledge. Collaborative efforts enable the development of innovative methodologies and tools that bridge the gap between theory and practice, ultimately enhancing the effectiveness of data analytics. Furthermore, ethical considerations surrounding data analytics, including privacy, bias, and fairness, are addressed within the abstract. It underscores the need for responsible and transparent practices in data analytics, and highlights the role of mathematical and statistical sciences in ensuring ethical data handling and analysis. In conclusion, this abstract highlights the journey from theory to practice in harnessing mathematical and statistical sciences in data analytics. It showcases the practical applications of these sciences, the importance of interdisciplinary collaboration, and the need for ethical considerations. By bridging the gap between theory and practice, mathematical and statistical sciences contribute to unlocking the full potential of data analytics, empowering organizations and decision-makers with valuable insights for informed decision-making.

Keywords: data analytics, mathematical sciences, optimization, machine learning, interdisciplinary collaboration, practical applications

Procedia PDF Downloads 93
24171 Regression for Doubly Inflated Multivariate Poisson Distributions

Authors: Ishapathik Das, Sumen Sen, N. Rao Chaganty, Pooja Sengupta

Abstract:

Dependent multivariate count data occur in several research studies. These data can be modeled by a multivariate Poisson or Negative binomial distribution constructed using copulas. However, when some of the counts are inflated, that is, the number of observations in some cells are much larger than other cells, then the copula based multivariate Poisson (or Negative binomial) distribution may not fit well and it is not an appropriate statistical model for the data. There is a need to modify or adjust the multivariate distribution to account for the inflated frequencies. In this article, we consider the situation where the frequencies of two cells are higher compared to the other cells, and develop a doubly inflated multivariate Poisson distribution function using multivariate Gaussian copula. We also discuss procedures for regression on covariates for the doubly inflated multivariate count data. For illustrating the proposed methodologies, we present a real data containing bivariate count observations with inflations in two cells. Several models and linear predictors with log link functions are considered, and we discuss maximum likelihood estimation to estimate unknown parameters of the models.

Keywords: copula, Gaussian copula, multivariate distributions, inflated distributios

Procedia PDF Downloads 156
24170 An Exploratory Research of Human Character Analysis Based on Smart Watch Data: Distinguish the Drinking State from Normal State

Authors: Lu Zhao, Yanrong Kang, Lili Guo, Yuan Long, Guidong Xing

Abstract:

Smart watches, as a handy device with rich functionality, has become one of the most popular wearable devices all over the world. Among the various function, the most basic is health monitoring. The monitoring data can be provided as an effective evidence or a clue for the detection of crime cases. For instance, the step counting data can help to determine whether the watch wearer was quiet or moving during the given time period. There is, however, still quite few research on the analysis of human character based on these data. The purpose of this research is to analyze the health monitoring data to distinguish the drinking state from normal state. The analysis result may play a role in cases involving drinking, such as drunk driving. The experiment mainly focused on finding the figures of smart watch health monitoring data that change with drinking and figuring up the change scope. The chosen subjects are mostly in their 20s, each of whom had been wearing the same smart watch for a week. Each subject drank for several times during the week, and noted down the begin and end time point of the drinking. The researcher, then, extracted and analyzed the health monitoring data from the watch. According to the descriptive statistics analysis, it can be found that the heart rate change when drinking. The average heart rate is about 10% higher than normal, the coefficient of variation is less than about 30% of the normal state. Though more research is needed to be carried out, this experiment and analysis provide a thought of the application of the data from smart watches.

Keywords: character analysis, descriptive statistics analysis, drink state, heart rate, smart watch

Procedia PDF Downloads 167
24169 Validating the Contract between Microservices

Authors: Parveen Banu Ansari, Venkatraman Chinnappan, Paramasivam Shankar

Abstract:

Contract testing plays a pivotal role in the current landscape of microservices architecture. Testing microservices at the initial stages of development helps to identify and rectify issues before they escalate to higher levels, such as UI testing. By validating microservices through contract testing, you ensure the integration quality of APIs, enhancing the overall reliability and performance of the application. Contract testing, being a collaborative effort between testers and developers, ensures that the microservices adhere to the specified contracts or agreements. This proactive approach significantly reduces defects, streamlines the development process, and contributes to the overall efficiency and robustness of the application. In the dynamic and fast-paced world of digital applications, where microservices are the building blocks, embracing contract testing is indeed a strategic move for ensuring the quality and reliability of the entire system.

Keywords: validation, testing, contract, agreement, microservices

Procedia PDF Downloads 57
24168 White Light Emission through Downconversion of Terbium and Europium Doped CEF3 Nanophosphors

Authors: Mohit Kalra, Varun S., Mayuri Gandhi

Abstract:

CeF3 nanophosphors has been extensively investigated in the recent years for lighting and numerous bio-applications. Down conversion emissions in CeF3:Eu3+/Tb3+ phosphors were studied with the aim of obtaining a white light emitting composition, by a simple co-precipitation method. The material was characterized by X-ray Diffraction (XRD), High Resolution Transmission Electron Microscopy (HR-TEM), Fourier Transform Infrared Spectroscopy (FT-IR) and Photoluminescence (PL). Uniformly distributed nanoparticles were obtained with an average particle size 8-10 nm. Different doping concentrations were performed and fluorescence study was carried out to optimize the dopants concentration for maximum luminescence intensity. The steady state and time resolved luminescence studies confirmed efficient energy transfer from the host to activator ions. Different concentrations of Tb 3+, Eu 3+ were doped to achieve a white light emitting phosphor for UV-based Light Emitting Diodes (LEDs). The nanoparticles showed characteristic emission of respective dopants (Eu 3+, Tb3+) when excited at the 4f→5d transition of Ce3+. The chromaticity coordinates for these samples were calculated and the CeF3 doped with Eu 3+ and Tb3+ gave an emission very close to white light. These materials may find its applications in optoelectronics and various bio applications.

Keywords: white light down-conversion, nanophosphors, LEDs, rare earth, cerium fluoride, lanthanides

Procedia PDF Downloads 404
24167 An Approach to Practical Determination of Fair Premium Rates in Crop Hail Insurance Using Short-Term Insurance Data

Authors: Necati Içer

Abstract:

Crop-hail insurance plays a vital role in managing risks and reducing the financial consequences of hail damage on crop production. Predicting insurance premium rates with short-term data is a major difficulty in numerous nations because of the unique characteristics of hailstorms. This study aims to suggest a feasible approach for establishing equitable premium rates in crop-hail insurance for nations with short-term insurance data. The primary goal of the rate-making process is to determine premium rates for high and zero loss costs of villages and enhance their credibility. To do this, a technique was created using the author's practical knowledge of crop-hail insurance. With this approach, the rate-making method was developed using a range of temporal and spatial factor combinations with both hypothetical and real data, including extreme cases. This article aims to show how to incorporate the temporal and spatial elements into determining fair premium rates using short-term insurance data. The article ends with a suggestion on the ultimate premium rates for insurance contracts.

Keywords: crop-hail insurance, premium rate, short-term insurance data, spatial and temporal parameters

Procedia PDF Downloads 55
24166 Dielectric Spectroscopy Investigation of Hydrophobic Silica Aerogel

Authors: Deniz Bozoglu, Deniz Deger, Kemal Ulutas, Sahin Yakut

Abstract:

In recent years, silica aerogels have attracted great attention due to their outstanding properties, and their wide variety of potential applications such as microelectronics, nuclear and high-energy physics, optics and acoustics, superconductivity, space-physics. Hydrophobic silica aerogels were successfully synthesized in one-step by surface modification at ambient pressure. FT-IR result confirmed that Si-OH groups were successfully converted into hydrophobic and non-polar Si-CH3 groups by surface modification using trimethylchloro silane (TMCS) as co-precursor. Using Alpha-A High-Resolution Dielectric, Conductivity and Impedance Analyzer, AC conductivity of samples were examined at temperature range 293-423 K and measured over frequency range between 1-106 Hz. The characteristic relaxation time decreases with increasing temperature. The AC conductivity follows σ_AC (ω)=σ_t-σ_DC=Aω^s relation at frequencies higher than 10 Hz, and the dominant conduction mechanism is found to obey the Correlated Barrier Hopping (CBH) mechanism. At frequencies lower than 10 Hz, the electrical conduction is found to be in accordance with DC conduction mechanism. The activation energies obtained from AC conductivity results and it was observed two relaxation regions.

Keywords: aerogel, synthesis, dielectric constant, dielectric loss, relaxation time

Procedia PDF Downloads 190
24165 Learn through AR (Augmented Reality)

Authors: Prajakta Musale, Bhargav Parlikar, Sakshi Parkhi, Anshu Parihar, Aryan Parikh, Diksha Parasharam, Parth Jadhav

Abstract:

AR technology is basically a development of VR technology that harnesses the power of computers to be able to read the surroundings and create projections of digital models in the real world for the purpose of visualization, demonstration, and education. It has been applied to education, fields of prototyping in product design, development of medical models, battle strategy in the military and many other fields. Our Engineering Design and Innovation (EDAI) project focuses on the usage of augmented reality, visual mapping, and 3d-visualization along with animation and text boxes to help students in fields of education get a rough idea of the concepts such as flow and mechanical movements that may be hard to visualize at first glance.

Keywords: spatial mapping, ARKit, depth sensing, real-time rendering

Procedia PDF Downloads 63
24164 Advancing Women's Participation in SIDS' Renewable Energy Sector: A Multicriteria Evaluation Framework

Authors: Carolina Mayen Huerta, Clara Ivanescu, Paloma Marcos

Abstract:

Due to their unique geographic challenges and the imperative to combat climate change, Small Island Developing States (SIDS) are experiencing rapid growth in the renewable energy (RE) sector. However, women's representation in formal employment within this burgeoning field remains significantly lower than their male counterparts. Conventional methodologies often overlook critical geographic data that influence women's job prospects. To address this gap, this paper introduces a Multicriteria Evaluation (MCE) framework designed to identify spatially enabling environments and restrictions affecting women's access to formal employment and business opportunities in the SIDS' RE sector. The proposed MCE framework comprises 24 key factors categorized into four dimensions: Individual, Contextual, Accessibility, and Place Characterization. "Individual factors" encompass personal attributes influencing women's career development, including caregiving responsibilities, exposure to domestic violence, and disparities in education. "Contextual factors" pertain to the legal and policy environment, influencing workplace gender discrimination, financial autonomy, and overall gender empowerment. "Accessibility factors" evaluate women's day-to-day mobility, considering travel patterns, access to public transport, educational facilities, RE job opportunities, healthcare facilities, and financial services. Finally, "Place Characterization factors" enclose attributes of geographical locations or environments. This dimension includes walkability, public transport availability, safety, electricity access, digital inclusion, fragility, conflict, violence, water and sanitation, and climatic factors in specific regions. The analytical framework proposed in this paper incorporates a spatial methodology to visualize regions within countries where conducive environments for women to access RE jobs exist. In areas where these environments are absent, the methodology serves as a decision-making tool to reinforce critical factors, such as transportation, education, and internet access, which currently hinder access to employment opportunities. This approach is designed to equip policymakers and institutions with data-driven insights, enabling them to make evidence-based decisions that consider the geographic dimensions of disparity. These insights, in turn, can help ensure the efficient allocation of resources to achieve gender equity objectives.

Keywords: gender, women, spatial analysis, renewable energy, access

Procedia PDF Downloads 69
24163 A Multicriteria Evaluation Framework for Enhancing Women's Participation in SIDS Renewable Energy Sector

Authors: Carolina Mayen Huerta, Clara Ivanescu, Paloma Marcos

Abstract:

Due to their unique geographic challenges and the imperative to combat climate change, Small Island Developing States (SIDS) are experiencing rapid growth in the renewable energy (RE) sector. However, women's representation in formal employment within this burgeoning field remains significantly lower than their male counterparts. Conventional methodologies often overlook critical geographic data that influence women's job prospects. To address this gap, this paper introduces a Multicriteria Evaluation (MCE) framework designed to identify spatially enabling environments and restrictions affecting women's access to formal employment and business opportunities in the SIDS' RE sector. The proposed MCE framework comprises 24 key factors categorized into four dimensions: Individual, Contextual, Accessibility, and Place Characterization. "Individual factors" encompass personal attributes influencing women's career development, including caregiving responsibilities, exposure to domestic violence, and disparities in education. "Contextual factors" pertain to the legal and policy environment, influencing workplace gender discrimination, financial autonomy, and overall gender empowerment. "Accessibility factors" evaluate women's day-to-day mobility, considering travel patterns, access to public transport, educational facilities, RE job opportunities, healthcare facilities, and financial services. Finally, "Place Characterization factors" enclose attributes of geographical locations or environments. This dimension includes walkability, public transport availability, safety, electricity access, digital inclusion, fragility, conflict, violence, water and sanitation, and climatic factors in specific regions. The analytical framework proposed in this paper incorporates a spatial methodology to visualize regions within countries where conducive environments for women to access RE jobs exist. In areas where these environments are absent, the methodology serves as a decision-making tool to reinforce critical factors, such as transportation, education, and internet access, which currently hinder access to employment opportunities. This approach is designed to equip policymakers and institutions with data-driven insights, enabling them to make evidence-based decisions that consider the geographic dimensions of disparity. These insights, in turn, can help ensure the efficient allocation of resources to achieve gender equity objectives.

Keywords: gender, women, spatial analysis, renewable energy, access

Procedia PDF Downloads 83
24162 Advertising Disability Index: A Content Analysis of Disability in Television Commercial Advertising from 2018

Authors: Joshua Loebner

Abstract:

Tectonic shifts within the advertising industry regularly and repeatedly present a deluge of data to be intuited across a spectrum of key performance indicators with innumerable interpretations where live campaigns are vivisected to pivot towards coalescence amongst a digital diaspora. But within this amalgam of analytics, validation, and creative campaign manipulation, where do diversity and disability inclusion fit in? In 2018 several major brands were able to answer this question definitely and directly by incorporating people with disabilities into advertisements. Disability inclusion, representation, and portrayals are documented annually across a number of different media, from film to primetime television, but ongoing studies centering on advertising have not been conducted. Symbols and semiotics in advertising often focus on a brand’s features and benefits, but this analysis on advertising and disability shows, how in 2018, creative campaigns and the disability community came together with the goal to continue the momentum and spark conversations. More brands are welcoming inclusion and sharing positive portrayals of intersectional diversity and disability. Within the analysis and surrounding scholarship, a multipoint analysis of each advertisement and meta-interpretation of the research has been conducted to provide data, clarity, and contextualization of insights. This research presents an advertising disability index that can be monitored for trends and shifts in future studies and to provide further comparisons and contrasts of advertisements. An overview of the increasing buying power within the disability community and population changes among this group anchors the significance and size of the minority in the US. When possible, viewpoints from creative teams and advertisers that developed the ads are brought into the research to further establish understanding, meaning, and individuals’ purposeful approaches towards disability inclusion. Finally, the conclusion and discussion present key takeaways to learn from the research, build advocacy and action both within advertising scholarship and the profession. This study, developed into an advertising disability index, will answer questions of how people with disabilities are represented in each ad. In advertising that includes disability, there is a creative pendulum. At one extreme, among many other negative interpretations, people with disables are portrayed in a way that conveys pity, fosters ableism and discrimination, and shows that people with disabilities are less than normal from a societal and cultural perspective. At the other extreme, people with disabilities are portrayed with a type of undue inspiration, considered inspiration porn, or superhuman, otherwise known as supercrip, and in ways that most people with disabilities could never achieve, or don’t want to be seen for. While some ads reflect both extremes, others stood out for non-polarizing inclusion of people with disabilities. This content analysis explores television commercial advertisements to determine the presence of people with disabilities and any other associated disability themes and/or concepts. Content analysis will allow for measuring the presence and interpretation of disability portrayals in each ad.

Keywords: advertising, brand, disability, marketing

Procedia PDF Downloads 117
24161 Social Network Roles in Organizations: Influencers, Bridges, and Soloists

Authors: Sofia Dokuka, Liz Lockhart, Alex Furman

Abstract:

Organizational hierarchy, traditionally composed of individual contributors, middle management, and executives, is enhanced by the understanding of informal social roles. These roles, identified with organizational network analysis (ONA), might have an important effect on organizational functioning. In this paper, we identify three social roles – influencers, bridges, and soloists, and provide empirical analysis based on real-world organizational networks. Influencers are employees with broad networks and whose contacts also have rich networks. Influence is calculated using PageRank, initially proposed for measuring website importance, but now applied in various network settings, including social networks. Influencers, having high PageRank, become key players in shaping opinions and behaviors within an organization. Bridges serve as links between loosely connected groups within the organization. Bridges are identified using betweenness and Burt’s constraint. Betweenness quantifies a node's control over information flows by evaluating its role in the control over the shortest paths within the network. Burt's constraint measures the extent of interconnection among an individual's contacts. A high constraint value suggests fewer structural holes and lesser control over information flows, whereas a low value suggests the contrary. Soloists are individuals with fewer than 5 stable social contacts, potentially facing challenges due to reduced social interaction and hypothetical lack of feedback and communication. We considered social roles in the analysis of real-world organizations (N=1,060). Based on data from digital traces (Slack, corporate email and calendar) we reconstructed an organizational communication network and identified influencers, bridges and soloists. We also collected employee engagement data through an online survey. Among the top-5% of influencers, 10% are members of the Executive Team. 56% of the Executive Team members are part of the top influencers group. The same proportion of top influencers (10%) is individual contributors, accounting for just 0.6% of all individual contributors in the company. The majority of influencers (80%) are at the middle management level. Out of all middle managers, 19% hold the role of influencers. However, individual contributors represent a small proportion of influencers, and having information about these individuals who hold influential roles can be crucial for management in identifying high-potential talents. Among the bridges, 4% are members of the Executive Team, 16% are individual contributors, and 80% are middle management. Predominantly middle management acts as a bridge. Bridge positions of some members of the executive team might indicate potential micromanagement on the leader's part. Recognizing the individuals serving as bridges in an organization uncovers potential communication problems. The majority of soloists are individual contributors (96%), and 4% of soloists are from middle management. These managers might face communication difficulties. We found an association between being an influencer and attitude toward a company's direction. There is a statistically significant 20% higher perception that the company is headed in the right direction among influencers compared to non-influencers (p < 0.05, Mann-Whitney test). Taken together, we demonstrate that considering social roles in the company might indicate both positive and negative aspects of organizational functioning that should be considered in data-driven decision-making.

Keywords: organizational network analysis, social roles, influencer, bridge, soloist

Procedia PDF Downloads 105
24160 Algorithm Optimization to Sort in Parallel by Decreasing the Number of the Processors in SIMD (Single Instruction Multiple Data) Systems

Authors: Ali Hosseini

Abstract:

Paralleling is a mechanism to decrease the time necessary to execute the programs. Sorting is one of the important operations to be used in different systems in a way that the proper function of many algorithms and operations depend on sorted data. CRCW_SORT algorithm executes ‘N’ elements sorting in O(1) time on SIMD (Single Instruction Multiple Data) computers with n^2/2-n/2 number of processors. In this article having presented a mechanism by dividing the input string by the hinge element into two less strings the number of the processors to be used in sorting ‘N’ elements in O(1) time has decreased to n^2/8-n/4 in the best state; by this mechanism the best state is when the hinge element is the middle one and the worst state is when it is minimum. The findings from assessing the proposed algorithm by other methods on data collection and number of the processors indicate that the proposed algorithm uses less processors to sort during execution than other methods.

Keywords: CRCW, SIMD (Single Instruction Multiple Data) computers, parallel computers, number of the processors

Procedia PDF Downloads 310
24159 Enhancing Seismic Resilience in Urban Environments

Authors: Beatriz González-rodrigo, Diego Hidalgo-leiva, Omar Flores, Claudia Germoso, Maribel Jiménez-martínez, Laura Navas-sánchez, Belén Orta, Nicola Tarque, Orlando Hernández- Rubio, Miguel Marchamalo, Juan Gregorio Rejas, Belén Benito-oterino

Abstract:

Cities facing seismic hazard necessitate detailed risk assessments for effective urban planning and vulnerability identification, ensuring the safety and sustainability of urban infrastructure. Comprehensive studies involving seismic hazard, vulnerability, and exposure evaluations are pivotal for estimating potential losses and guiding proactive measures against seismic events. However, broad-scale traditional risk studies limit consideration of specific local threats and identify vulnerable housing within a structural typology. Achieving precise results at neighbourhood levels demands higher resolution seismic hazard exposure, and vulnerability studies. This research aims to bolster sustainability and safety against seismic disasters in three Central American and Caribbean capitals. It integrates geospatial techniques and artificial intelligence into seismic risk studies, proposing cost-effective methods for exposure data collection and damage prediction. The methodology relies on prior seismic threat studies in pilot zones, utilizing existing exposure and vulnerability data in the region. Emphasizing detailed building attributes enables the consideration of behaviour modifiers affecting seismic response. The approach aims to generate detailed risk scenarios, facilitating prioritization of preventive actions pre-, during, and post-seismic events, enhancing decision-making certainty. Detailed risk scenarios necessitate substantial investment in fieldwork, training, research, and methodology development. Regional cooperation becomes crucial given similar seismic threats, urban planning, and construction systems among involved countries. The outcomes hold significance for emergency planning and national and regional construction regulations. The success of this methodology depends on cooperation, investment, and innovative approaches, offering insights and lessons applicable to regions facing moderate seismic threats with vulnerable constructions. Thus, this framework aims to fortify resilience in seismic-prone areas and serves as a reference for global urban planning and disaster management strategies. In conclusion, this research proposes a comprehensive framework for seismic risk assessment in high-risk urban areas, emphasizing detailed studies at finer resolutions for precise vulnerability evaluations. The approach integrates regional cooperation, geospatial technologies, and adaptive fragility curve adjustments to enhance risk assessment accuracy, guiding effective mitigation strategies and emergency management plans.

Keywords: assessment, behaviour modifiers, emergency management, mitigation strategies, resilience, vulnerability

Procedia PDF Downloads 69
24158 Increasing the System Availability of Data Centers by Using Virtualization Technologies

Authors: Chris Ewe, Naoum Jamous, Holger Schrödl

Abstract:

Like most entrepreneurs, data center operators pursue goals such as profit-maximization, improvement of the company’s reputation or basically to exist on the market. Part of those aims is to guarantee a given quality of service. Quality characteristics are specified in a contract called the service level agreement. Central part of this agreement is non-functional properties of an IT service. The system availability is one of the most important properties as it will be shown in this paper. To comply with availability requirements, data center operators can use virtualization technologies. A clear model to assess the effect of virtualization functions on the parts of a data center in relation to the system availability is still missing. This paper aims to introduce a basic model that shows these connections, and consider if the identified effects are positive or negative. Thus, this work also points out possible disadvantages of the technology. In consequence, the paper shows opportunities as well as risks of data center virtualization in relation to system availability.

Keywords: availability, cloud computing IT service, quality of service, service level agreement, virtualization

Procedia PDF Downloads 537