Search results for: operational approach
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14905

Search results for: operational approach

11455 Effect of Sulphur Concentration on Microbial Population and Performance of a Methane Biofilter

Authors: Sonya Barzgar, J. Patrick, A. Hettiaratchi

Abstract:

Methane (CH4) is reputed as the second largest contributor to greenhouse effect with a global warming potential (GWP) of 34 related to carbon dioxide (CO2) over the 100-year horizon, so there is a growing interest in reducing the emissions of this gas. Methane biofiltration (MBF) is a cost effective technology for reducing low volume point source emissions of methane. In this technique, microbial oxidation of methane is carried out by methane-oxidizing bacteria (methanotrophs) which use methane as carbon and energy source. MBF uses a granular medium, such as soil or compost, to support the growth of methanotrophic bacteria responsible for converting methane to carbon dioxide (CO₂) and water (H₂O). Even though the biofiltration technique has been shown to be an efficient, practical and viable technology, the design and operational parameters, as well as the relevant microbial processes have not been investigated in depth. In particular, limited research has been done on the effects of sulphur on methane bio-oxidation. Since bacteria require a variety of nutrients for growth, to improve the performance of methane biofiltration, it is important to establish the input quantities of nutrients to be provided to the biofilter to ensure that nutrients are available to sustain the process. The study described in this paper was conducted with the aim of determining the influence of sulphur on methane elimination in a biofilter. In this study, a set of experimental measurements has been carried out to explore how the conversion of elemental sulphur could affect methane oxidation in terms of methanotrophs growth and system pH. Batch experiments with different concentrations of sulphur were performed while keeping the other parameters i.e. moisture content, methane concentration, oxygen level and also compost at their optimum level. The study revealed the tolerable limit of sulphur without any interference to the methane oxidation as well as the particular sulphur concentration leading to the greatest methane elimination capacity. Due to the sulphur oxidation, pH varies in a transient way which affects the microbial growth behavior. All methanotrophs are incapable of growth at pH values below 5.0 and thus apparently are unable to oxidize methane. Herein, the certain pH for the optimal growth of methanotrophic bacteria is obtained. Finally, monitoring methane concentration over time in the presence of sulphur is also presented for laboratory scale biofilters.

Keywords: global warming, methane biofiltration (MBF), methane oxidation, methanotrophs, pH, sulphur

Procedia PDF Downloads 236
11454 Informing, Enabling and Inspiring Social Innovation by Geographic Systems Mapping: A Case Study in Workforce Development

Authors: Cassandra A. Skinner, Linda R. Chamberlain

Abstract:

The nonprofit and public sectors are increasingly turning to Geographic Information Systems for data visualizations which can better inform programmatic and policy decisions. Additionally, the private and nonprofit sectors are turning to systems mapping to better understand the ecosystems within which they operate. This study explores the potential which combining these data visualization methods—a method which is called geographic systems mapping—to create an exhaustive and comprehensive understanding of a social problem’s ecosystem may have in social innovation efforts. Researchers with Grand Valley State University collaborated with Talent 2025 of West Michigan to conduct a mixed-methods research study to paint a comprehensive picture of the workforce development ecosystem in West Michigan. Using semi-structured interviewing, observation, secondary research, and quantitative analysis, data were compiled on workforce development organizations’ locations, programming, metrics for success, partnerships, funding sources, and service language. To best visualize and disseminate the data, a geographic system map was created which identifies programmatic, operational, and geographic gaps in workforce development services of West Michigan. By combining geographic and systems mapping methods, the geographic system map provides insight into the cross-sector relationships, collaboration, and competition which exists among and between workforce development organizations. These insights identify opportunities for and constraints around cross-sectoral social innovation in the West Michigan workforce development ecosystem. This paper will discuss the process utilized to prepare the geographic systems map, explain the results and outcomes, and demonstrate how geographic systems mapping illuminated the needs of the community and opportunities for social innovation. As complicated social problems like unemployment often require cross-sectoral and multi-stakeholder solutions, there is potential for geographic systems mapping to be a tool which informs, enables, and inspires these solutions.

Keywords: cross-sector collaboration, data visualization, geographic systems mapping, social innovation, workforce development

Procedia PDF Downloads 295
11453 D3Advert: Data-Driven Decision Making for Ad Personalization through Personality Analysis Using BiLSTM Network

Authors: Sandesh Achar

Abstract:

Personalized advertising holds greater potential for higher conversion rates compared to generic advertisements. However, its widespread application in the retail industry faces challenges due to complex implementation processes. These complexities impede the swift adoption of personalized advertisement on a large scale. Personalized advertisement, being a data-driven approach, necessitates consumer-related data, adding to its complexity. This paper introduces an innovative data-driven decision-making framework, D3Advert, which personalizes advertisements by analyzing personalities using a BiLSTM network. The framework utilizes the Myers–Briggs Type Indicator (MBTI) dataset for development. The employed BiLSTM network, specifically designed and optimized for D3Advert, classifies user personalities into one of the sixteen MBTI categories based on their social media posts. The classification accuracy is 86.42%, with precision, recall, and F1-Score values of 85.11%, 84.14%, and 83.89%, respectively. The D3Advert framework personalizes advertisements based on these personality classifications. Experimental implementation and performance analysis of D3Advert demonstrate a 40% improvement in impressions. D3Advert’s innovative and straightforward approach has the potential to transform personalized advertising and foster widespread personalized advertisement adoption in marketing.

Keywords: personalized advertisement, deep Learning, MBTI dataset, BiLSTM network, NLP.

Procedia PDF Downloads 44
11452 Analysis of Minimizing Investment Risks in Power and Energy Business Development by Combining Total Quality Management and International Financing Institutions Project Management Tools

Authors: M. Radunovic

Abstract:

Region of Southeastern Europe has a substantial energy resource potential and is witnessing an increasing rate of power and energy project investments. This comes as a result of countries harmonizing their legal framework and market regulations to conform the ones of European Union, enabling direct private investments. Funding in the power and energy market in this region originates from various resources and investment entities, including commercial and institutional ones. Risk anticipation and assessment is crucial to project success, especially given the long exploitation period of project in power and energy domain, as well as the wide range of stakeholders involved. This paper analyzes the possibility of combined application of tools used in total quality management and international financing institutions for project planning, execution and evaluation, with the goal of anticipating, assessing and minimizing the risks that might occur in the development and execution phase of a power and energy project in the market of southeastern Europe. History of successful project management and investments both in the industry and institutional sector provides sufficient experience, guidance and internationally adopted tools to provide proper project assessment for investments in power and energy. Business environment of southeastern Europe provides immense potential for developing power and engineering projects of various magnitudes, depending on stakeholders’ interest. Diversification on investment sources provides assurance that there is interest and commitment to invest in this market. Global economic and political developments will be intensifying the pace of investments in the upcoming period. The proposed approach accounts for key parameters that contribute to the sustainability and profitability of a project which include technological, educational, social and economic gaps between the southeastern European region and western Europe, market trends in equipment design and production on a global level, environment friendly approach to renewable energy sources as well as conventional power generation systems, and finally the effect of the One Belt One Road Initiative led by People’s Republic of China to the power and energy market of this region in the upcoming period on a long term scale. Analysis will outline the key benefits of the approach as well as the accompanying constraints. Parallel to this it will provide an overview of dominant threats and opportunities in present and future business environment and their influence to the proposed application. Through concrete examples, full potential of this approach will be presented along with necessary improvements that need to be implemented. Number of power and engineering projects being developed in southeastern Europe will be increasing in the upcoming period. Proper risk analysis will lead to minimizing project failures. The proposed successful combination of reliable project planning tools from different investment areas can prove to be beneficial in the future power and engineering investments, and guarantee their sustainability and profitability.

Keywords: capital investments, lean six sigma, logical framework approach, logical framework matrix, one belt one road initiative, project management tools, quality function deployment, Southeastern Europe, total quality management

Procedia PDF Downloads 109
11451 Mitigating Nitrous Oxide Production from Nitritation/Denitritation: Treatment of Centrate from Pig Manure Co-Digestion as a Model

Authors: Lai Peng, Cristina Pintucci, Dries Seuntjens, José Carvajal-Arroyo, Siegfried Vlaeminck

Abstract:

Economic incentives drive the implementation of short-cut nitrogen removal processes such as nitritation/denitritation (Nit/DNit) to manage nitrogen in waste streams devoid of biodegradable organic carbon. However, as any biological nitrogen removal process, the potent greenhouse gas nitrous oxide (N2O) could be emitted from Nit/DNit. Challenges remain in understanding the fundamental mechanisms and development of engineered mitigation strategies for N2O production. To provide answers, this work focuses on manure as a model, the biggest wasted nitrogen mass flow through our economies. A sequencing batch reactor (SBR; 4.5 L) was used treating the centrate (centrifuge supernatant; 2.0 ± 0.11 g N/L of ammonium) from an anaerobic digester processing mainly pig manure, supplemented with a co-substrate. Glycerin was used as external carbon source, a by-product of vegetable oil. Out-selection of nitrite oxidizing bacteria (NOB) was targeted using a combination of low dissolved oxygen (DO) levels (down to 0.5 mg O2/L), high temperature (35ºC) and relatively high free ammonia (FA) (initially 10 mg NH3-N/L). After reaching steady state, the process was able to remove 100% of ammonium with minimum nitrite and nitrate in the effluent, at a reasonably high nitrogen loading rate (0.4 g N/L/d). Substantial N2O emissions (over 15% of the nitrogen loading) were observed at the baseline operational condition, which were even increased under nitrite accumulation and a low organic carbon to nitrogen ratio. Yet, higher DO (~2.2 mg O2/L) lowered aerobic N2O emissions and weakened the dependency of N2O on nitrite concentration, suggesting a shift of N2O production pathway at elevated DO levels. Limiting the greenhouse gas emissions (environmental protection) from such a system could be substantially minimized by increasing the external carbon dosage (a cost factor), but also through the implementation of an intermittent aeration and feeding strategy. Promising steps forward have been presented in this abstract, yet at the conference the insights of ongoing experiments will also be shared.

Keywords: mitigation, nitrous oxide, nitritation/denitritation, pig manure

Procedia PDF Downloads 249
11450 Movie Genre Preference Prediction Using Machine Learning for Customer-Based Information

Authors: Haifeng Wang, Haili Zhang

Abstract:

Most movie recommendation systems have been developed for customers to find items of interest. This work introduces a predictive model usable by small and medium-sized enterprises (SMEs) who are in need of a data-based and analytical approach to stock proper movies for local audiences and retain more customers. We used classification models to extract features from thousands of customers’ demographic, behavioral and social information to predict their movie genre preference. In the implementation, a Gaussian kernel support vector machine (SVM) classification model and a logistic regression model were established to extract features from sample data and their test error-in-sample were compared. Comparison of error-out-sample was also made under different Vapnik–Chervonenkis (VC) dimensions in the machine learning algorithm to find and prevent overfitting. Gaussian kernel SVM prediction model can correctly predict movie genre preferences in 85% of positive cases. The accuracy of the algorithm increased to 93% with a smaller VC dimension and less overfitting. These findings advance our understanding of how to use machine learning approach to predict customers’ preferences with a small data set and design prediction tools for these enterprises.

Keywords: computational social science, movie preference, machine learning, SVM

Procedia PDF Downloads 260
11449 Reconfigurable Intelligent Surfaces (RIS)-Assisted Integrated Leo Satellite and UAV for Non-terrestrial Networks Using a Deep Reinforcement Learning Approach

Authors: Tesfaw Belayneh Abebe

Abstract:

Integrating low-altitude earth orbit (LEO) satellites and unmanned aerial vehicles (UAVs) within a non-terrestrial network (NTN) with the assistance of reconfigurable intelligent surfaces (RIS), we investigate the problem of how to enhance throughput through integrated LEO satellites and UAVs with the assistance of RIS. We propose a method to jointly optimize the associations with the LEO satellite, the 3D trajectory of the UAV, and the phase shifts of the RIS to maximize communication throughput for RIS-assisted integrated LEO satellite and UAV-enabled wireless communications, which is challenging due to the time-varying changes in the position of the LEO satellite, the high mobility of UAVs, an enormous number of possible control actions, and also the large number of RIS elements. Utilizing a multi-agent double deep Q-network (MADDQN), our approach dynamically adjusts LEO satellite association, UAV positioning, and RIS phase shifts. Simulation results demonstrate that our method significantly outperforms baseline strategies in maximizing throughput. Lastly, thanks to the integrated network and the RIS, the proposed scheme achieves up to 65.66x higher peak throughput and 25.09x higher worst-case throughput.

Keywords: integrating low-altitude earth orbit (LEO) satellites, unmanned aerial vehicles (UAVs) within a non-terrestrial network (NTN), reconfigurable intelligent surfaces (RIS), multi-agent double deep Q-network (MADDQN)

Procedia PDF Downloads 48
11448 Design of a Cooperative Neural Network, Particle Swarm Optimization (PSO) and Fuzzy Based Tracking Control for a Tilt Rotor Unmanned Aerial Vehicle

Authors: Mostafa Mjahed

Abstract:

Tilt Rotor UAVs (Unmanned Aerial Vehicles) are naturally unstable and difficult to maneuver. The purpose of this paper is to design controllers for the stabilization and trajectory tracking of this type of UAV. To this end, artificial intelligence methods have been exploited. First, the dynamics of this UAV was modeled using the Lagrange-Euler method. The conventional method based on Proportional, Integral and Derivative (PID) control was applied by decoupling the different flight modes. To improve stability and trajectory tracking of the Tilt Rotor, the fuzzy approach and the technique of multilayer neural networks (NN) has been used. Thus, Fuzzy Proportional Integral and Derivative (FPID) and Neural Network-based Proportional Integral and Derivative controllers (NNPID) have been developed. The meta-heuristic approach based on Particle Swarm Optimization (PSO) method allowed adjusting the setting parameters of NNPID controller, giving us an improved NNPID-PSO controller. Simulation results under the Matlab environment show the efficiency of the approaches adopted. Besides, the Tilt Rotor UAV has become stable and follows different types of trajectories with acceptable precision. The Fuzzy, NN and NN-PSO-based approaches demonstrated their robustness because the presence of the disturbances did not alter the stability or the trajectory tracking of the Tilt Rotor UAV.

Keywords: neural network, fuzzy logic, PSO, PID, trajectory tracking, tilt-rotor UAV

Procedia PDF Downloads 120
11447 Ionic Liquids as Substrates for Metal-Organic Framework Synthesis

Authors: Julian Mehler, Marcus Fischer, Martin Hartmann, Peter S. Schulz

Abstract:

During the last two decades, the synthesis of metal-organic frameworks (MOFs) has gained ever increasing attention. Based on their pore size and shape as well as host-guest interactions, they are of interest for numerous fields related to porous materials, like catalysis and gas separation. Usually, MOF-synthesis takes place in an organic solvent between room temperature and approximately 220 °C, with mixtures of polyfunctional organic linker molecules and metal precursors as substrates. Reaction temperatures above the boiling point of the solvent, i.e. solvothermal reactions, are run in autoclaves or sealed glass vessels under autogenous pressures. A relatively new approach for the synthesis of MOFs is the so-called ionothermal synthesis route. It applies an ionic liquid as a solvent, which can serve as a structure-directing template and/or a charge-compensating agent in the final coordination polymer structure. Furthermore, this method often allows for less harsh reaction conditions than the solvothermal route. Here a variation of the ionothermal approach is reported, where the ionic liquid also serves as an organic linker source. By using 1-ethyl-3-methylimidazolium terephthalates ([EMIM][Hbdc] and [EMIM]₂[bdc]), the one-step synthesis of MIL-53(Al)/Boehemite composites with interesting features is possible. The resulting material is already formed at moderate temperatures (90-130 °C) and is stabilized in the usually unfavored ht-phase. Additionally, in contrast to already published procedures for MIL-53(Al) synthesis, no further activation at high temperatures is mandatory. A full characterization of this novel composite material is provided, including XRD, SS-NMR, El-Al., SEM as well as sorption measurements and its interesting features are compared to MIL-53(Al) samples produced by the classical solvothermal route. Furthermore, the syntheses of the applied ionic liquids and salts is discussed. The influence of the degree of ionicity of the linker source [EMIM]x[H(2-x)bdc] on the crystal structure and the achievable synthesis temperature are investigated and give insight into the role of the IL during synthesis. Aside from the synthesis of MIL-53 from EMIM terephthalates, the use of the phosphonium cation in this approach is discussed as well. Additionally, the employment of ILs in the preparation of other MOFs is presented briefly. This includes the ZIF-4 framework from the respective imidazolate ILs and chiral camphorate based frameworks from their imidazolium precursors.

Keywords: ionic liquids, ionothermal synthesis, material synthesis, MIL-53, MOFs

Procedia PDF Downloads 208
11446 Review of Assessment of Integrated Information System (IIS) in Organisation

Authors: Mariya Salihu Ingawa, Sani Suleiman Isah

Abstract:

The assessment of Integrated Information System (IIS) in organisation is an important initiative to enable the Information System (IS) managers, as well as top management to understand the success status of their investment in IS integration efforts. However, without a proper assessment, an organisation will not know its IIS status, which may affect their judgment on what action should be taken onwards. Current research on IIS assessment is lacking and those related literature on IIS assessment focus more on assessing the technical aspect of IIS. It is argued that assessing technical aspect alone is inadequate since organisational and strategic aspects in IIS should also be considered. Current methods, techniques and tools used by vendors for IIS assessment also are lack of comprehensive measures to fully assess the Integrated Information System in term of technical, organisational and strategic domains. The purpose of this study is to establish critical success factors for measuring success of an Integrated Information System. These factors are used as the basis for constructing an approach to comprehensively assess IIS in an organisation. A comprehensive list of success factors for IIS assessment, established from literature, was initially presented. An expert surveys using both manual and online methods were conducted to verify the factors. Based on the factors, an instrument for IIS assessment was constructed. The results from a case study indicate that through comprehensive assessment approach, not only the level of success been known, but also reveals the contributing factors. This research contributes to the field of Information Systems specifically in the area of Integrated Information System assessment.

Keywords: integrated information system, expert surveys, organisation, assessment

Procedia PDF Downloads 388
11445 An Ensemble Learning Method for Applying Particle Swarm Optimization Algorithms to Systems Engineering Problems

Authors: Ken Hampshire, Thomas Mazzuchi, Shahram Sarkani

Abstract:

As a subset of metaheuristics, nature-inspired optimization algorithms such as particle swarm optimization (PSO) have shown promise both in solving intractable problems and in their extensibility to novel problem formulations due to their general approach requiring few assumptions. Unfortunately, single instantiations of algorithms require detailed tuning of parameters and cannot be proven to be best suited to a particular illustrative problem on account of the “no free lunch” (NFL) theorem. Using these algorithms in real-world problems requires exquisite knowledge of the many techniques and is not conducive to reconciling the various approaches to given classes of problems. This research aims to present a unified view of PSO-based approaches from the perspective of relevant systems engineering problems, with the express purpose of then eliciting the best solution for any problem formulation in an ensemble learning bucket of models approach. The central hypothesis of the research is that extending the PSO algorithms found in the literature to real-world optimization problems requires a general ensemble-based method for all problem formulations but a specific implementation and solution for any instance. The main results are a problem-based literature survey and a general method to find more globally optimal solutions for any systems engineering optimization problem.

Keywords: particle swarm optimization, nature-inspired optimization, metaheuristics, systems engineering, ensemble learning

Procedia PDF Downloads 98
11444 Lectures in Higher Education Using Teaching Strategies and Digital Tools to Overcome Challenges Faced in South Africa by Implementing Blended Learning

Authors: Thaiurie Govender, Shannon Verne

Abstract:

The Fourth Industrial Revolution has ushered in an era where technology significantly impacts various aspects of life, including higher education. Blended learning, which combines synchronous and asynchronous learning, has gained popularity as a pedagogical approach. However, its effective implementation is a challenge, particularly in the context of the COVID-19 pandemic and technological obstacles faced in South Africa. This study focused on lecturers' teaching and learning practices to implement blended learning, aiming to understand the teaching and learning strategies used with the integration of digital tools to facilitate the blended learning approach within a private higher educational institution in South Africa. Using heutagogy and constructivism theoretical frameworks, the study aimed to uncover insights into the lecturer’s teaching and learning practices to overcome challenges in designing and facilitating blended learning modules. Through a qualitative analysis, the themes of student engagement, teaching and learning strategies, digital tools, and feedback emerged, highlighting the complexities and opportunities in a blended learning classroom. The findings emphasize the importance of tailoring methods to students' needs and subject matter, aligning with constructivist principles. Recommendations include promoting professional development opportunities, addressing infrastructure issues, and fostering a supportive learning environment.

Keywords: blended learning, digital tools, higher education, teaching strategies

Procedia PDF Downloads 53
11443 Qualitative and Quantitative Research Methodology Theoretical Framework and Descriptive Theory: PhD Construction Management

Authors: Samuel Quashie

Abstract:

PhDs in Construction Management often designs their methods based on those established in social sciences using theoretical models, to collect, gather and analysis data to answer research questions. Work aim is to apply qualitative and quantitative as a data analysis method, and as part of the theoretical framework - descriptive theory. To improve the ability to replicate the contribution to knowledge the research. Using practical triangulation approach, which covers, interviews and observations, literature review and (archival) document studies, project-based case studies, questionnaires surveys and review of integrated systems used in, construction and construction related industries. The clarification of organisational context and management delivery that influences organizational performance and quality of product and measures are achieved. Results illustrate improved reliability in this research approach when interpreting real world phenomena; cumulative results of research can be applied with confidence under similar environments. Assisted validity of the PhD research outcomes and strengthens the confidence to apply cumulative results of research under similar conditions in the Built Environment research systems, which have been criticised for the lack of reliability in approaches when interpreting real world phenomena.

Keywords: case studies, descriptive theory, theoretical framework, qualitative and quantitative research

Procedia PDF Downloads 386
11442 Transit Facility Planning in Fringe Areas of Kolkata Metropolitan Region

Authors: Soumen Mitra, Aparna Saha

Abstract:

The perceived link between the city and the countryside is evolving rapidly and is getting shifted away from the assumptions of mainstream paradigms to new conceptual networks where rural-urban links are being redefined. In this conceptual field, the fringe interface is still considered as a transitional zone between city and countryside, and is defined as a diffused area rather than a discrete territory. In developing countries fringe areas are said to have both rural and urban characteristics but are devoid of basic municipal facilities. Again, when the urban core areas envelopes the fringe areas along with it the character of fringe changes but services are not well facilitated which in turn results to uneven growth, rapid and haphazard development. One of the major services present in fringe areas is inter-linkages in terms of transit corridors. Planning for the appropriate and sustainable future of fringe areas requires a sheer focus on these corridors pertaining to transit facility, for better accessibility and mobility. Inducing a transit facility plan enhances the various facilities and also increases their proximity for user groups. The study focuses on the western fringe region of Kolkata metropolis which is a major source of industrial hub and housing sector, thus converting the agricultural lands into non-agricultural use. The study emphasizes on providing transit facilities both physical (stops, sheds, terminals, etc.) and operational (ticketing system, route prioritization, integration of transit modes, etc.), to facilitate the region as well as accelerate the growth pattern systematically. Hence, the scope of this work is on the basis of prevailing conditions in fringe areas and attempts for an effective transit facility plan. The strategies and recommendations are in terms of road widening, service coverage, feeder route prioritization, bus stops facilitation, pedestrian facilities, etc, which in turn enhances the region’s growth pattern. Thus, this context of transit facility planning acts as a catalytic agent to avoid the future unplanned growth and accelerates it towards an integrated development.

Keywords: feeder route, fringe, municipal planning, transit facility

Procedia PDF Downloads 177
11441 Off-Policy Q-learning Technique for Intrusion Response in Network Security

Authors: Zheni S. Stefanova, Kandethody M. Ramachandran

Abstract:

With the increasing dependency on our computer devices, we face the necessity of adequate, efficient and effective mechanisms, for protecting our network. There are two main problems that Intrusion Detection Systems (IDS) attempt to solve. 1) To detect the attack, by analyzing the incoming traffic and inspect the network (intrusion detection). 2) To produce a prompt response when the attack occurs (intrusion prevention). It is critical creating an Intrusion detection model that will detect a breach in the system on time and also challenging making it provide an automatic and with an acceptable delay response at every single stage of the monitoring process. We cannot afford to adopt security measures with a high exploiting computational power, and we are not able to accept a mechanism that will react with a delay. In this paper, we will propose an intrusion response mechanism that is based on artificial intelligence, and more precisely, reinforcement learning techniques (RLT). The RLT will help us to create a decision agent, who will control the process of interacting with the undetermined environment. The goal is to find an optimal policy, which will represent the intrusion response, therefore, to solve the Reinforcement learning problem, using a Q-learning approach. Our agent will produce an optimal immediate response, in the process of evaluating the network traffic.This Q-learning approach will establish the balance between exploration and exploitation and provide a unique, self-learning and strategic artificial intelligence response mechanism for IDS.

Keywords: cyber security, intrusion prevention, optimal policy, Q-learning

Procedia PDF Downloads 236
11440 Creating Energy Sustainability in an Enterprise

Authors: John Lamb, Robert Epstein, Vasundhara L. Bhupathi, Sanjeev Kumar Marimekala

Abstract:

As we enter the new era of Artificial Intelligence (AI) and Cloud Computing, we mostly rely on the Machine and Natural Language Processing capabilities of AI, and Energy Efficient Hardware and Software Devices in almost every industry sector. In these industry sectors, much emphasis is on developing new and innovative methods for producing and conserving energy and sustaining the depletion of natural resources. The core pillars of sustainability are economic, environmental, and social, which is also informally referred to as the 3 P's (People, Planet and Profits). The 3 P's play a vital role in creating a core Sustainability Model in the Enterprise. Natural resources are continually being depleted, so there is more focus and growing demand for renewable energy. With this growing demand, there is also a growing concern in many industries on how to reduce carbon emissions and conserve natural resources while adopting sustainability in corporate business models and policies. In our paper, we would like to discuss the driving forces such as Climate changes, Natural Disasters, Pandemic, Disruptive Technologies, Corporate Policies, Scaled Business Models and Emerging social media and AI platforms that influence the 3 main pillars of Sustainability (3P’s). Through this paper, we would like to bring an overall perspective on enterprise strategies and the primary focus on bringing cultural shifts in adapting energy-efficient operational models. Overall, many industries across the globe are incorporating core sustainability principles such as reducing energy costs, reducing greenhouse gas (GHG) emissions, reducing waste and increasing recycling, adopting advanced monitoring and metering infrastructure, reducing server footprint and compute resources (Shared IT services, Cloud computing, and Application Modernization) with the vision for a sustainable environment.

Keywords: climate change, pandemic, disruptive technology, government policies, business model, machine learning and natural language processing, AI, social media platform, cloud computing, advanced monitoring, metering infrastructure

Procedia PDF Downloads 111
11439 Agriculture, Food Security and Poverty Reduction in Nigeria: Cointegration and Granger Causality Approach

Authors: Ogunwole Cecilia Oluwakemi, Timothy Ayomitunde Aderemi

Abstract:

Provision of sufficient food and elimination of abject poverty have usually been the conventional benefits of agriculture in any society. Meanwhile, despite the fact that Nigeria is an agrarian society, food insecurity and poverty have become the issues of concern among both scholars and policymakers in the recent times. Against this backdrop, this study examined the nexus among agriculture, food security, and poverty reduction in Nigeria from 1990 to 2019 within the framework of the Cointegration and Granger Causality approach. Data was collected from the Central Bank of Nigeria Statistical Bulletin and the World Development Indicators, respectively. The following are the major results that emanated from the study. A long run equilibrium relationship exists among agricultural value added, food production index, and GDP per capita in Nigeria. Similarly, there is a unidirectional causality which flows from food production index to poverty reduction in Nigeria. In the same vein, one way causality flows from poverty reduction to agricultural value added in Nigeria. Consequently, this study makes the following recommendation for the policymakers in Nigeria, and other African countries by extension, that agricultural value added and food production are the important variables that cannot be undermined when poverty reduction occupies the central focus of the policymakers. Therefore, any time these policymakers want to reduce poverty, policies that drive agricultural value added and food production should be embarked upon. Therefore, this study will contribute to the literature by establishing the type of linkage that exists between agriculture, food security, and poverty reduction in Nigeria.

Keywords: agriculture, value added, food production, GDP per capita, Nigeria

Procedia PDF Downloads 195
11438 Delineation of Oil– Polluted Sites in Ibeno LGA, Nigeria

Authors: Ime R. Udotong, Ofonime U. M. John, Justina I. R. Udotong

Abstract:

Ibeno, Nigeria hosts the operational base of Mobil Producing Nigeria Unlimited (MPNU), a subsidiary of ExxonMobil and the current highest oil and condensate producer in Nigeria. Besides MPNU, other multinational oil companies like Shell Petroleum Development Company Ltd, Elf Petroleum Nigeria Ltd and Nigerian Agip Energy, a subsidiary of ENI E&P operate onshore, on the continental shelf and deep offshore of the Atlantic Ocean in Ibeno, Nigeria, respectively. This study was designed to carry out the survey of the oil impacted sites in Ibeno, Nigeria. A combinations of electrical resistivity (ER), ground penetrating radar (GPR) and physico-chemical as well as microbiological characterization of soils and water samples from the area were carried out. Results obtained revealed that there have been hydrocarbon contaminations of this environment by past crude oil spills as observed from significant concentrations of THC, BTEX and heavy metal contents in the environment. Also, high resistivity values and GPR profiles clearly showing the distribution, thickness and lateral extent of hydrocarbon contamination as represented on the radargram reflector tones corroborates previous significant oil input. Contaminations were of varying degrees, ranging from slight to high, indicating levels of substantial attenuation of crude oil contamination over time. Hydrocarbon pollution of the study area was confirmed by the results of soil and water physico-chemical and microbiological analysis. The levels of THC contamination observed in this study are indicative of high levels of crude oil contamination. Moreover, the display of relatively lower resistivities of locations outside the impacted areas compared to resistivity values within the impacted areas, the 3-D Cartesian images of oil contaminant plume depicted by red, light brown and magenta for high, low and very low oil impacted areas, respectively as well as the high counts of hydrocarbonoclastic microorganisms in excess of 1% confirmed significant recent pollution of the study area.

Keywords: oil-polluted sites, physico-chemical analyses, microbiological characterization, geotechnical investigations, total hydrocarbon content

Procedia PDF Downloads 389
11437 Migrants and Non Migrants: Class Level Distinctions from a Village Level Analysis of Mahabubnagar District

Authors: T. P. Muhammed Jamsheer

Abstract:

This paper tries to explains some of differences between migrants and non-migrants households by taking ten indicators like land ownership, land distribution, lease in land, lease out land, demand of labour, supply of labour, land operational potential, holding of agriculture implements and livestock’s, irrigation potential of households and credit holding by the households of highly dry, drought affected, poverty stricken, multi caste and pluralistic sub castes village in very backward Mahabubnagar district of Andhra Pradesh. The paper is purely field work based research and conducted census survey of field work among the 298 households in highly dry village called Keppatta from Bhoothpur mandel. One of the main objectives of the paper is that, to find out the factors which differentiate migrants and non-migrants households and what are distress elements which forced the poor peasants migrants to outside the village. It concludes that among the migrants and non-migrants households and among the differences between the categories wise of both types of households, there are differences, except two indicators like lease in and lease out, all other indicators like land holding pattern, demand and supply of labour, land operation, irrigation potential, implements and livestock and credit facilities of migrants and non-migrants households shows that non-migrants have high share than the migrants households. This paper also showing the landed households are more migrants, means among the BC and FC households landed households are migrants while SC landless are more migrants which is contradictory to general/existing literatures conclusion that, landless are more migrant than landed households, here also showing that when the number of land in acres increases the share of SC is declining while the share of FC is increasing among the both migrants and non-migrants households. In the class wise SC households are more in distress situation than any other class and that might be leading to the highest share of migrants from the respective village. In the logistic econometric model to find out the relation between migration and other ten variables, the result shows that supply of labour, lease in of the land and size of the family are statically significantly related with migration and all other variables not significant relation with migration although the theoretical explanation shows the different results.

Keywords: class, migrants, non migrants, economic indicators, distress factors

Procedia PDF Downloads 333
11436 In the Valley of the Shadow of Death: Gossip, God, and Scapegoating in Susannah, an American Opera by Carlisle Floyd

Authors: Shirl H. Terrell

Abstract:

In the telling of mythologies, stories of cultural and religious histories, the creative arts provide an archetypal lens through which the personal and collective unconscious are viewed, thus revealing mysteries of the unknown psyche. To that end, the author of this paper, using the hermeneutic approach, proves that Carlisle Floyd’s (1955) English language opera Susannah illuminates humanity’s instinctual nature and behaviors through music, libretto, and drama. While impressive musical works such as Wagner’s Ring Cycle and Webber’s Phantom of the Opera have received extensive Jungian analyses, critics and scholars often ignore lesser esteemed works, such as Susannah, notwithstanding the fact that they have been consistently performed on the theater circuit. Such pieces, when given notice, allow viewers to grasp the soul-making depth and timeless quality of productions which may otherwise go unrecognized as culturally or psychologically significant. Although Susannah has sometimes been described as unsophisticated and simple in scope, the author demonstrates why Floyd’s 'little' opera, set in New Hope Valley, Appalachia, a cultural region in the Eastern United States known for its prevailing myths and distortions of isolation, temperament, and the judgmentally conservative behavior of its inhabitants, belongs to opera’s hallmark works. Its approach to powerful underlying archetypal themes, which give rise to the poignant and haunting depictions of the darker and destructive side of the human soul, the Shadow, provides crucial significance to the work. The Shadow’s manifestation in the form of the scapegoating complex is central to the plot of Susannah; the church’s meting out of rules, judgment, and reparation for sins point to the foreboding aspects of human behavior that evoke their intrinsic nature. The scapegoating complex is highlighted in an eight-step process gleaned from the works of Kenneth Burke and Rene Girard. In summary, through depth psychological terms and mythological motifs, the author provides an insightful approach to perceiving instinctual behaviors as they play out in an American opera that has been staged over eight-hundred times, yet, unfortunately, remains in the shadows. Susannah’s timelessness is now.

Keywords: archetypes, mythology, opera, scapegoating, Shadow, Susannah

Procedia PDF Downloads 150
11435 Development of a Data-Driven Method for Diagnosing the State of Health of Battery Cells, Based on the Use of an Electrochemical Aging Model, with a View to Their Use in Second Life

Authors: Desplanches Maxime

Abstract:

Accurate estimation of the remaining useful life of lithium-ion batteries for electronic devices is crucial. Data-driven methodologies encounter challenges related to data volume and acquisition protocols, particularly in capturing a comprehensive range of aging indicators. To address these limitations, we propose a hybrid approach that integrates an electrochemical model with state-of-the-art data analysis techniques, yielding a comprehensive database. Our methodology involves infusing an aging phenomenon into a Newman model, leading to the creation of an extensive database capturing various aging states based on non-destructive parameters. This database serves as a robust foundation for subsequent analysis. Leveraging advanced data analysis techniques, notably principal component analysis and t-Distributed Stochastic Neighbor Embedding, we extract pivotal information from the data. This information is harnessed to construct a regression function using either random forest or support vector machine algorithms. The resulting predictor demonstrates a 5% error margin in estimating remaining battery life, providing actionable insights for optimizing usage. Furthermore, the database was built from the Newman model calibrated for aging and performance using data from a European project called Teesmat. The model was then initialized numerous times with different aging values, for instance, with varying thicknesses of SEI (Solid Electrolyte Interphase). This comprehensive approach ensures a thorough exploration of battery aging dynamics, enhancing the accuracy and reliability of our predictive model. Of particular importance is our reliance on the database generated through the integration of the electrochemical model. This database serves as a crucial asset in advancing our understanding of aging states. Beyond its capability for precise remaining life predictions, this database-driven approach offers valuable insights for optimizing battery usage and adapting the predictor to various scenarios. This underscores the practical significance of our method in facilitating better decision-making regarding lithium-ion battery management.

Keywords: Li-ion battery, aging, diagnostics, data analysis, prediction, machine learning, electrochemical model, regression

Procedia PDF Downloads 70
11434 Identifying Autism Spectrum Disorder Using Optimization-Based Clustering

Authors: Sharifah Mousli, Sona Taheri, Jiayuan He

Abstract:

Autism spectrum disorder (ASD) is a complex developmental condition involving persistent difficulties with social communication, restricted interests, and repetitive behavior. The challenges associated with ASD can interfere with an affected individual’s ability to function in social, academic, and employment settings. Although there is no effective medication known to treat ASD, to our best knowledge, early intervention can significantly improve an affected individual’s overall development. Hence, an accurate diagnosis of ASD at an early phase is essential. The use of machine learning approaches improves and speeds up the diagnosis of ASD. In this paper, we focus on the application of unsupervised clustering methods in ASD as a large volume of ASD data generated through hospitals, therapy centers, and mobile applications has no pre-existing labels. We conduct a comparative analysis using seven clustering approaches such as K-means, agglomerative hierarchical, model-based, fuzzy-C-means, affinity propagation, self organizing maps, linear vector quantisation – as well as the recently developed optimization-based clustering (COMSEP-Clust) approach. We evaluate the performances of the clustering methods extensively on real-world ASD datasets encompassing different age groups: toddlers, children, adolescents, and adults. Our experimental results suggest that the COMSEP-Clust approach outperforms the other seven methods in recognizing ASD with well-separated clusters.

Keywords: autism spectrum disorder, clustering, optimization, unsupervised machine learning

Procedia PDF Downloads 116
11433 Object-Based Flow Physics for Aerodynamic Modelling in Real-Time Environments

Authors: William J. Crowther, Conor Marsh

Abstract:

Object-based flow simulation allows fast computation of arbitrarily complex aerodynamic models made up of simple objects with limited flow interactions. The proposed approach is universally applicable to objects made from arbitrarily scaled ellipsoid primitives at arbitrary aerodynamic attitude and angular rate. The use of a component-based aerodynamic modelling approach increases efficiency by allowing selective inclusion of different physics models at run-time and allows extensibility through the development of new models. Insight into the numerical stability of the model under first order fixed-time step integration schemes is provided by stability analysis of the drag component. The compute cost of model components and functions is evaluated and compared against numerical benchmarks. Model static outputs are verified against theoretical expectations and dynamic behaviour using falling plate data from the literature. The model is applied to a range of case studies to demonstrate the efficacy of its application in extensibility, ease of use, and low computational cost. Dynamically complex multi-body systems can be implemented in a transparent and efficient manner, and we successfully demonstrate large scenes with hundreds of objects interacting with diverse flow fields.

Keywords: aerodynamics, real-time simulation, low-order model, flight dynamics

Procedia PDF Downloads 102
11432 Partnership Brokering as a Driver of Social Business

Authors: Lani Fraizer, Faiz Shah

Abstract:

Extreme poverty continues to plague the world. Forty-seven million people live well-below the poverty line in Bangladesh, enduring poor quality of life, often with no access to basic human needs like shelter and healthcare. It is not surprising that poverty eradication is central to the mission of social change makers, such as Muhammad Yunus, who have demonstrated how enterprise-led development initiatives empower individuals at the grassroots, and can galvanize entire communities to emerge out of poverty. Such strategies call for system-wide change, and like a number of systems leaders, social business champions have typically challenged the status quo, and broken out of silos to catalyze vibrant multi-stakeholder partnerships across sectors. Apart from individual charisma, social change makers succeed because they garner collaborative impact through socially beneficial partnerships. So while enterprise-led social development evolves in scope and complexity, in step with the need to create and sustain partnerships, Partnership Brokering is emerging as an approach to facilitate collaborative processes. As such, it may now be possible for anyone motivated by the idea of social business to acquire the skills and sophistication necessary for building enriching partnerships that harness the power of the market to address poverty. This paper examines dimensions of partnership brokering in the context of social business, and explores the implications of this emerging approach on fostering poverty eradication.

Keywords: poverty, social business, partnership brokering, social entrepreneurship, systems change, enterprise-led development, change making

Procedia PDF Downloads 255
11431 New Variational Approach for Contrast Enhancement of Color Image

Authors: Wanhyun Cho, Seongchae Seo, Soonja Kang

Abstract:

In this work, we propose a variational technique for image contrast enhancement which utilizes global and local information around each pixel. The energy functional is defined by a weighted linear combination of three terms which are called on a local, a global contrast term and dispersion term. The first one is a local contrast term that can lead to improve the contrast of an input image by increasing the grey-level differences between each pixel and its neighboring to utilize contextual information around each pixel. The second one is global contrast term, which can lead to enhance a contrast of image by minimizing the difference between its empirical distribution function and a cumulative distribution function to make the probability distribution of pixel values becoming a symmetric distribution about median. The third one is a dispersion term that controls the departure between new pixel value and pixel value of original image while preserving original image characteristics as well as possible. Second, we derive the Euler-Lagrange equation for true image that can achieve the minimum of a proposed functional by using the fundamental lemma for the calculus of variations. And, we considered the procedure that this equation can be solved by using a gradient decent method, which is one of the dynamic approximation techniques. Finally, by conducting various experiments, we can demonstrate that the proposed method can enhance the contrast of colour images better than existing techniques.

Keywords: color image, contrast enhancement technique, variational approach, Euler-Lagrang equation, dynamic approximation method, EME measure

Procedia PDF Downloads 449
11430 Simple Infrastructure in Measuring Countries e-Government

Authors: Sukhbaatar Dorj, Erdenebaatar Altangerel

Abstract:

As alternative to existing e-government measuring models, here proposed a new customer centric, service oriented, simple approach for measuring countries e-Governments. If successfully implemented, built infrastructure will provide a single e-government index number for countries. Main schema is as follows. Country CIO or equal position government official, at the beginning of each year will provide to United Nations dedicated web site 4 numbers on behalf of own country: 1) Ratio of available online public services, to total number of public services, 2) Ratio of interagency inter ministry online public services to total number of available online public services, 3) Ratio of total number of citizen and business entities served online annually to total number of citizen and business entities served annually online and physically on those services, 4) Simple index for geographical spread of online served citizen and business entities. 4 numbers then combined into one index number by mathematical Average function. In addition to 4 numbers 5th number can be introduced as service quality indicator of online public services. If in ordering of countries index number is equal, 5th criteria will be used. Notice: This approach is for country’s current e-government achievement assessment, not for e-government readiness assessment.

Keywords: countries e-government index, e-government, infrastructure for measuring e-government, measuring e-government

Procedia PDF Downloads 328
11429 Implementing Smart Climate Change Measures for Effective Management of Primary Schools in Benue State, Nigeria

Authors: Justina Jor, Mahmud Pinga

Abstract:

Climate change has become a significant worldwide environmental challenge with extensive implications, compelling both governments and non-governmental organizations to remain vigilant, as it seemingly impacts various sectors of the global economy, including education. The study investigates the implementation of smart climate change measures for effective primary school management in Benue State, Nigeria. Theorized by the diffusion of innovations, the study was guided by two research questions, and two null hypotheses were formulated and tested. The study used a descriptive survey design. The population comprised 12,364 teachers from 2,721 primary schools, with a sample of 618 teachers from 136 schools selected through a multistage sampling procedure. Smart climate change measures questionnaire (SCCMQ) and key informant interview (KII) were used for data collection. The data collected were analyzed using mean and standard deviation to answer the research questions, while the Chi-square (χ2) test of goodness-of-fit was used to test the hypotheses at a 0.05 level of significance, with qualitative data analyzed using simple percentages, tables, and bar charts. The findings highlight the significant positive impact of green building practices on the efficient administration of primary schools in Benue State, Nigeria. The crucial integration of environmentally sustainable construction methods is emphasized for enhancing overall management in these educational institutions. In addition, the research demonstrates a favorable impact on the adoption of renewable energy solutions and effective school management. The utilization of renewable energy not only aligns with eco-friendly practices but also contributes to the overall operational efficiency and sustainability of primary schools in the region. The study recommends that educational authorities and policymakers prioritize integrating green building practices and renewable energy solutions, pointing towards the prospect of improved governance and functionality for primary education facilities not only in Benue but throughout Nigeria.

Keywords: smart, climate change, effective management, green building, renewable energy

Procedia PDF Downloads 66
11428 An Evaluation of Drivers in Implementing Sustainable Manufacturing in India: Using DEMATEL Approach

Authors: D. Garg, S. Luthra, A. Haleem

Abstract:

Due to growing concern about environmental and social consequences throughout the world, a need has been felt to incorporate sustainability concepts in conventional manufacturing. This paper is an attempt to identify and evaluate drivers in implementing sustainable manufacturing in Indian context. Nine possible drivers for successful implementation of sustainable manufacturing have been identified from extensive review. Further, Decision Making Trial and Evaluation Laboratory (DEMATEL) approach has been utilized to evaluate and categorize these identified drivers for implementing sustainable manufacturing in to the cause and effect groups. Five drivers (Societal Pressure and Public Concerns; Regulations and Government Policies; Top Management Involvement, Commitment and Support; Effective Strategies and Activities towards Socially Responsible Manufacturing and Market Trends) have been categorized into the cause group and four drivers (Holistic View in Manufacturing Systems; Supplier Participation; Building Sustainable culture in Organization; and Corporate Image and Benefits) have been categorized into the effect group. “Societal Pressure and Public Concerns” has been found the most critical driver and “Corporate Image and Benefits” as least critical or the most easily influenced driver to implementing sustainable manufacturing in Indian context. This paper may surely help practitioners in better understanding of these drivers and their priorities towards effective implementation of sustainable manufacturing.

Keywords: drivers, decision making trial and evaluation laboratory (DEMATEL), India, sustainable manufacturing

Procedia PDF Downloads 388
11427 Teachers' and Learners' Experiences of Learners' Writing in English First Additional Language

Authors: Jane-Francis A. Abongdia, Thandiswa Mpiti

Abstract:

There is an international concern to develop children’s literacy skills. In many parts of the world, the need to become fluent in a second language is essential for gaining meaningful access to education, the labour market and broader social functioning. In spite of these efforts, the problem still continues. The level of English language proficiency is far from satisfactory and these goals are unattainable by others. The issue is more complex in South Africa as learners are immersed in a second language (L2) curriculum. South Africa is a prime example of a country facing the dilemma of how to effectively equip a majority of its population with English as a second language or first additional language (FAL). Given the multilingual nature of South Africa with eleven official languages, and the position and power of English, the study investigates teachers’ and learners’ experiences on isiXhosa and Afrikaans background learners’ writing in English First Additional Language (EFAL). Moreover, possible causes of writing difficulties and teacher’s practices for writing are explored. The theoretical and conceptual framework for the study is provided by studies on constructivist theories and sociocultural theories. In exploring these issues, a qualitative approach through semi-structured interviews, classroom observations, and document analysis were adopted. This data is analysed by critical discourse analysis (CDA). The study identified a weak correlation between teachers’ beliefs and their actual teaching practices. Although the teachers believe that writing is as important as listening, speaking, reading, grammar and vocabulary, and that it needs regular practice, the data reveal that they fail to put their beliefs into practice. Moreover, the data revealed that learners were disturbed by their home language because when they do not know a word they would write either the isiXhosa or the Afrikaans equivalent. Code-switching seems to have instilled a sense of “dependence on translations” where some learners would not even try to answer English questions but would wait for the teacher to translate the questions into isiXhosa or Afrikaans before they could attempt to give answers. The findings of the study show a marked improvement in the writing performance of learners who used the process approach in writing. These findings demonstrate the need for assisting teachers to shift away from focusing only on learners’ performance (testing and grading) towards a stronger emphasis on the process of writing. The study concludes that the process approach to writing could enable teachers to focus on the various parts of the writing process which can give more freedom to learners to experiment their language proficiency. It would require that teachers develop a deeper understanding of the process/genre approaches to teaching writing advocated by CAPS. All in all, the study shows that both learners and teachers face numerous challenges relating to writing. This means that more work still needs to be done in this area. The present study argues that teachers teaching EFAL learners should approach writing as a critical and core aspect of learners’ education. Learners should be exposed to intensive writing activities throughout their school years.

Keywords: constructivism, English second language, language of learning and teaching, writing

Procedia PDF Downloads 218
11426 Optimal Energy Management and Environmental Index Optimization of a Microgrid Operating by Renewable and Sustainable Generation Systems

Authors: Nabil Mezhoud

Abstract:

The economic operation of electric energy generating systems is one of the predominant problems in energy systems. Due to the need for better reliability, high energy quality, lower losses, lower cost and a clean environment, the application of renewable and sustainable energy sources, such as wind energy, solar energy, etc., in recent years has become more widespread. In this work, one of a bio-inspired meta-heuristic algorithm inspired by the flashing behavior of fireflies at night called the Firefly Algorithm (FFA) is applied to solve the Optimal Energy Management (OEM) and the environmental index (EI) problems of a micro-grid (MG) operating by Renewable and Sustainable Generation Systems (RSGS). Our main goal is to minimize the nonlinear objective function of an electrical microgrid, taking into account equality and inequality constraints. The FFA approach was examined and tested on a standard MG system composed of different types of RSGS, such as wind turbines (WT), photovoltaic systems (PV), and non-renewable energy, such as fuel cells (FC), micro turbine (MT), diesel generator (DEG) and loads with energy storage systems (ESS). The results are promising and show the effectiveness and robustness of the proposed approach to solve the OEM and the EI problems. The results of the proposed method have been compared and validated with those known references published recently.

Keywords: renewable energy sources, energy management, distributed generator, micro-grids, firefly algorithm

Procedia PDF Downloads 76