Search results for: machine intelligence
618 Fabrication of Cheap Novel 3d Porous Scaffolds Activated by Nano-Particles and Active Molecules for Bone Regeneration and Drug Delivery Applications
Authors: Mostafa Mabrouk, Basma E. Abdel-Ghany, Mona Moaness, Bothaina M. Abdel-Hady, Hanan H. Beherei
Abstract:
Tissue engineering became a promising field for bone repair and regenerative medicine in which cultured cells, scaffolds and osteogenic inductive signals are used to regenerate tissues. The annual cost of treating bone defects in Egypt has been estimated to be many billions, while enormous costs are spent on imported bone grafts for bone injuries, tumors, and other pathologies associated with defective fracture healing. The current study is aimed at developing a more strategic approach in order to speed-up recovery after bone damage. This will reduce the risk of fatal surgical complications and improve the quality of life of people affected with such fractures. 3D scaffolds loaded with cheap nano-particles that possess an osteogenic effect were prepared by nano-electrospinning. The Microstructure and morphology characterizations of the 3D scaffolds were monitored using scanning electron microscopy (SEM). The physicochemical characterization was investigated using X-ray diffractometry (XRD) and infrared spectroscopy (IR). The Physicomechanical properties of the 3D scaffold were determined by a universal testing machine. The in vitro bioactivity of the 3D scaffold was assessed in simulated body fluid (SBF). The bone-bonding ability of novel 3D scaffolds was also evaluated. The obtained nanofibrous scaffolds demonstrated promising microstructure, physicochemical and physicomechanical features appropriate for enhanced bone regeneration. Therefore, the utilized nanomaterials loaded with the drug are greatly recommended as cheap alternatives to growth factors.Keywords: bone regeneration, cheap scaffolds, nanomaterials, active molecules
Procedia PDF Downloads 186617 On the Existence of Homotopic Mapping Between Knowledge Graphs and Graph Embeddings
Authors: Jude K. Safo
Abstract:
Knowledge Graphs KG) and their relation to Graph Embeddings (GE) represent a unique data structure in the landscape of machine learning (relative to image, text and acoustic data). Unlike the latter, GEs are the only data structure sufficient for representing hierarchically dense, semantic information needed for use-cases like supply chain data and protein folding where the search space exceeds the limits traditional search methods (e.g. page-rank, Dijkstra, etc.). While GEs are effective for compressing low rank tensor data, at scale, they begin to introduce a new problem of ’data retreival’ which we observe in Large Language Models. Notable attempts by transE, TransR and other prominent industry standards have shown a peak performance just north of 57% on WN18 and FB15K benchmarks, insufficient practical industry applications. They’re also limited, in scope, to next node/link predictions. Traditional linear methods like Tucker, CP, PARAFAC and CANDECOMP quickly hit memory limits on tensors exceeding 6.4 million nodes. This paper outlines a topological framework for linear mapping between concepts in KG space and GE space that preserve cardinality. Most importantly we introduce a traceable framework for composing dense linguistic strcutures. We demonstrate performance on WN18 benchmark this model hits. This model does not rely on Large Langauge Models (LLM) though the applications are certainy relevant here as well.Keywords: representation theory, large language models, graph embeddings, applied algebraic topology, applied knot theory, combinatorics
Procedia PDF Downloads 67616 Multi-Stage Classification for Lung Lesion Detection on CT Scan Images Applying Medical Image Processing Technique
Authors: Behnaz Sohani, Sahand Shahalinezhad, Amir Rahmani, Aliyu Aliyu
Abstract:
Recently, medical imaging and specifically medical image processing is becoming one of the most dynamically developing areas of medical science. It has led to the emergence of new approaches in terms of the prevention, diagnosis, and treatment of various diseases. In the process of diagnosis of lung cancer, medical professionals rely on computed tomography (CT) scans, in which failure to correctly identify masses can lead to incorrect diagnosis or sampling of lung tissue. Identification and demarcation of masses in terms of detecting cancer within lung tissue are critical challenges in diagnosis. In this work, a segmentation system in image processing techniques has been applied for detection purposes. Particularly, the use and validation of a novel lung cancer detection algorithm have been presented through simulation. This has been performed employing CT images based on multilevel thresholding. The proposed technique consists of segmentation, feature extraction, and feature selection and classification. More in detail, the features with useful information are selected after featuring extraction. Eventually, the output image of lung cancer is obtained with 96.3% accuracy and 87.25%. The purpose of feature extraction applying the proposed approach is to transform the raw data into a more usable form for subsequent statistical processing. Future steps will involve employing the current feature extraction method to achieve more accurate resulting images, including further details available to machine vision systems to recognise objects in lung CT scan images.Keywords: lung cancer detection, image segmentation, lung computed tomography (CT) images, medical image processing
Procedia PDF Downloads 99615 Vehicle Speed Estimation Using Image Processing
Authors: Prodipta Bhowmik, Poulami Saha, Preety Mehra, Yogesh Soni, Triloki Nath Jha
Abstract:
In India, the smart city concept is growing day by day. So, for smart city development, a better traffic management and monitoring system is a very important requirement. Nowadays, road accidents increase due to more vehicles on the road. Reckless driving is mainly responsible for a huge number of accidents. So, an efficient traffic management system is required for all kinds of roads to control the traffic speed. The speed limit varies from road to road basis. Previously, there was a radar system but due to high cost and less precision, the radar system is unable to become favorable in a traffic management system. Traffic management system faces different types of problems every day and it has become a researchable topic on how to solve this problem. This paper proposed a computer vision and machine learning-based automated system for multiple vehicle detection, tracking, and speed estimation of vehicles using image processing. Detection of vehicles and estimating their speed from a real-time video is tough work to do. The objective of this paper is to detect vehicles and estimate their speed as accurately as possible. So for this, a real-time video is first captured, then the frames are extracted from that video, then from that frames, the vehicles are detected, and thereafter, the tracking of vehicles starts, and finally, the speed of the moving vehicles is estimated. The goal of this method is to develop a cost-friendly system that can able to detect multiple types of vehicles at the same time.Keywords: OpenCV, Haar Cascade classifier, DLIB, YOLOV3, centroid tracker, vehicle detection, vehicle tracking, vehicle speed estimation, computer vision
Procedia PDF Downloads 82614 Combining Diffusion Maps and Diffusion Models for Enhanced Data Analysis
Authors: Meng Su
Abstract:
High-dimensional data analysis often presents challenges in capturing the complex, nonlinear relationships and manifold structures inherent to the data. This article presents a novel approach that leverages the strengths of two powerful techniques, Diffusion Maps and Diffusion Probabilistic Models (DPMs), to address these challenges. By integrating the dimensionality reduction capability of Diffusion Maps with the data modeling ability of DPMs, the proposed method aims to provide a comprehensive solution for analyzing and generating high-dimensional data. The Diffusion Map technique preserves the nonlinear relationships and manifold structure of the data by mapping it to a lower-dimensional space using the eigenvectors of the graph Laplacian matrix. Meanwhile, DPMs capture the dependencies within the data, enabling effective modeling and generation of new data points in the low-dimensional space. The generated data points can then be mapped back to the original high-dimensional space, ensuring consistency with the underlying manifold structure. Through a detailed example implementation, the article demonstrates the potential of the proposed hybrid approach to achieve more accurate and effective modeling and generation of complex, high-dimensional data. Furthermore, it discusses possible applications in various domains, such as image synthesis, time-series forecasting, and anomaly detection, and outlines future research directions for enhancing the scalability, performance, and integration with other machine learning techniques. By combining the strengths of Diffusion Maps and DPMs, this work paves the way for more advanced and robust data analysis methods.Keywords: diffusion maps, diffusion probabilistic models (DPMs), manifold learning, high-dimensional data analysis
Procedia PDF Downloads 105613 The Development of a Nanofiber Membrane for Outdoor and Activity Related Purposes
Authors: Roman Knizek, Denisa Knizkova
Abstract:
This paper describes the development of a nanofiber membrane for sport and outdoor use at the Technical University of Liberec (TUL) and the following cooperation with a private Czech company which launched this product onto the market. For making this membrane, Polyurethan was electrospun on the Nanospider spinning machine, and a wire string electrode was used. The created nanofiber membrane with a nanofiber diameter of 150 nm was subsequently hydrophobisied using a low vacuum plasma and Fluorocarbon monomer C6 type. After this hydrophobic treatment, the nanofiber membrane contact angle was higher than 125o, and its oleophobicity was 6. The last step was a lamination of this nanofiber membrane with a woven or knitted fabric to create a 3-layer laminate. Gravure printing technology and polyurethane hot-melt adhesive were used. The gravure roller has a mesh of 17. The resulting 3-layer laminate has a water vapor permeability Ret of 1.6 [Pa.m2.W-1] (– measured in compliance with ISO 11092), it is 100% windproof (– measured in compliance with ISO 9237), and the water column is above 10 000 mm (– measured in compliance with ISO 20811). This nanofiber membrane which was developed in the laboratories of the Technical University of Liberec was then produced industrially by a private company. A low vacuum plasma line and a lamination line were needed for industrial production, and the process had to be fine-tuned to achieve the same parameters as those achieved in the TUL laboratories. The result of this work is a newly developed nanofiber membrane which offers much better properties, especially water vapor permeability, than other competitive membranes. It is an example of product development and the consequent fine-tuning for industrial production; it is also an example of the cooperation between a Czech state university and a private company.Keywords: nanofiber membrane, start-up, state university, private company, product
Procedia PDF Downloads 139612 Potential Use of Leaching Gravel as a Raw Material in the Preparation of Geo Polymeric Material as an Alternative to Conventional Cement Materials
Authors: Arturo Reyes Roman, Daniza Castillo Godoy, Francisca Balarezo Olivares, Francisco Arriagada Castro, Miguel Maulen Tapia
Abstract:
Mining waste–based geopolymers are a sustainable alternative to conventional cement materials due to their contribution to the valorization of mining wastes as well as to the new construction materials with reduced fingerprints. The objective of this study was to determine the potential of leaching gravel (LG) from hydrometallurgical copper processing to be used as a raw material in the manufacture of geopolymer. NaOH, Na2SiO3 (modulus 1.5), and LG were mixed and then wetted with an appropriate amount of tap water, then stirred until a homogenous paste was obtained. A liquid/solid ratio of 0.3 was used for preparing mixtures. The paste was then cast in cubic moulds of 50 mm for the determination of compressive strengths. The samples were left to dry for 24h at room temperature, then unmoulded before analysis after 28 days of curing time. The compressive test was conducted in a compression machine (15/300 kN). According to the laser diffraction spectroscopy (LDS) analysis, 90% of LG particles were below 500 μm. The X-ray diffraction (XRD) analysis identified crystalline phases of albite (30 %), Quartz (16%), Anorthite (16 %), and Phillipsite (14%). The X-ray fluorescence (XRF) determinations showed mainly 55% of SiO2, 13 % of Al2O3, and 9% of CaO. ICP (OES) concentrations of Fe, Ca, Cu, Al, As, V, Zn, Mo, and Ni were 49.545; 24.735; 6.172; 14.152, 239,5; 129,6; 41,1;15,1, and 13,1 mg kg-1, respectively. The geopolymer samples showed resistance ranging between 2 and 10 MPa. In comparison with the raw material composition, the amorphous percentage of materials in the geopolymer was 35 %, whereas the crystalline percentage of main mineral phases decreased. Further studies are needed to find the optimal combinations of materials to produce a more resistant and environmentally safe geopolymer. Particularly are necessary compressive resistance higher than 15 MPa are necessary to be used as construction unit such as bricks.Keywords: mining waste, geopolymer, construction material, alkaline activation
Procedia PDF Downloads 93611 Rethinking Classical Concerts in the Digital Era: Transforming Sound, Experience, and Engagement for the New Generation
Authors: Orit Wolf
Abstract:
Classical music confronts a crucial challenge: updating cherished concert traditions for the digital age. This paper is a journey, and a quest to make classical concerts resonate with a new generation. It's not just about asking questions; it's about exploring the future of classical concerts and their potential to captivate and connect with today's audience in an era defined by change. The younger generation, known for their love of diversity, interactive experiences, and multi-sensory immersion, cannot be overlooked. This paper explores innovative strategies that forge deep connections with audiences whose relationship with classical music differs from the past. The urgency of this challenge drives the transformation of classical concerts. Examining classical concerts is necessary to understand how they can harmonize with contemporary sensibilities. New dimensions in audiovisual experiences that enchant the emerging generation are sought. Classical music must embrace the technological era while staying open to fusion and cross-cultural collaboration possibilities. The role of technology and Artificial Intelligence (AI) in reshaping classical concerts is under research. The fusion of classical music with digital experiences and dynamic interdisciplinary collaborations breathes new life into the concert experience. It aligns classical music with the expectations of modern audiences, making it more relevant and engaging. Exploration extends to the structure of classical concerts. Conventions are challenged, and ways to make classical concerts more accessible and captivating are sought. Inspired by innovative artistic collaborations, musical genres and styles are redefined, transforming the relationship between performers and the audience. This paper, therefore, aims to be a catalyst for dialogue and a beacon of innovation. A set of critical inquiries integral to reshaping classical concerts for the digital age is presented. As the world embraces digital transformation, classical music seeks resonance with contemporary audiences, redefining the concert experience while remaining true to its roots and embracing revolutions in the digital age.Keywords: new concert formats, reception of classical music, interdiscplinary concerts, innovation in the new musical era, mash-up, cross culture, innovative concerts, engaging musical performances
Procedia PDF Downloads 62610 Flood Simulation and Forecasting for Sustainable Planning of Response in Municipalities
Authors: Mariana Damova, Stanko Stankov, Emil Stoyanov, Hristo Hristov, Hermand Pessek, Plamen Chernev
Abstract:
We will present one of the first use cases on the DestinE platform, a joint initiative of the European Commission, European Space Agency and EUMETSAT, providing access to global earth observation, meteorological and statistical data, and emphasize the good practice of intergovernmental agencies acting in concert. Further, we will discuss the importance of space-bound disruptive solutions for improving the balance between the ever-increasing water-related disasters coming from climate change and minimizing their economic and societal impact. The use case focuses on forecasting floods and estimating the impact of flood events on the urban environment and the ecosystems in the affected areas with the purpose of helping municipal decision-makers to analyze and plan resource needs and to forge human-environment relationships by providing farmers with insightful information for improving their agricultural productivity. For the forecast, we will adopt an EO4AI method of our platform ISME-HYDRO, in which we employ a pipeline of neural networks applied to in-situ measurements and satellite data of meteorological factors influencing the hydrological and hydrodynamic status of rivers and dams, such as precipitations, soil moisture, vegetation index, snow cover to model flood events and their span. ISME-HYDRO platform is an e-infrastructure for water resources management based on linked data, extended with further intelligence that generates forecasts with the method described above, throws alerts, formulates queries, provides superior interactivity and drives communication with the users. It provides synchronized visualization of table views, graphviews and interactive maps. It will be federated with the DestinE platform.Keywords: flood simulation, AI, Earth observation, e-Infrastructure, flood forecasting, flood areas localization, response planning, resource estimation
Procedia PDF Downloads 20609 Monitor Student Concentration Levels on Online Education Sessions
Authors: M. K. Wijayarathna, S. M. Buddika Harshanath
Abstract:
Monitoring student engagement has become a crucial part of the educational process and a reliable indicator of the capacity to retain information. As online learning classrooms are now more common these days, students' attention levels have become increasingly important, making it more difficult to check each student's concentration level in an online classroom setting. To profile student attention to various gradients of engagement, a study is a plan to conduct using machine learning models. Using a convolutional neural network, the findings and confidence score of the high accuracy model are obtained. In this research, convolutional neural networks are using to help discover essential emotions that are critical in defining various levels of participation. Students' attention levels were shown to be influenced by emotions such as calm, enjoyment, surprise, and fear. An improved virtual learning system was created as a result of these data, which allowed teachers to focus their support and advise on those students who needed it. Student participation has formed as a crucial component of the learning technique and a consistent predictor of a student's capacity to retain material in the classroom. Convolutional neural networks have a plan to implement the platform. As a preliminary step, a video of the pupil would be taken. In the end, researchers used a convolutional neural network utilizing the Keras toolkit to take pictures of the recordings. Two convolutional neural network methods are planned to use to determine the pupils' attention level. Finally, those predicted student attention level results plan to display on the graphical user interface of the System.Keywords: HTML5, JavaScript, Python flask framework, AI, graphical user
Procedia PDF Downloads 97608 Quality Assurance in Translation Crowdsourcing: The TED Open Translation Project
Authors: Ya-Mei Chen
Abstract:
The participatory culture enabled by Web 2.0 technologies has led to the emergence of online translation crowdsourcing, which mainly relies on the collective intelligence of volunteer translators. Due to the fact that many volunteer translators do not have formal translator training, concerns have been raised about the quality of crowdsourced translations. Some empirical research has been done to examine the translation quality of for-profit crowdsourcing initiatives. However, quality assurance of non-profit translation crowdsourcing has rarely been explored in detail. Using the TED Open Translation Project as a case study, this paper investigates how the translation-review-approval method adopted by TED can (1) direct the volunteer translators’ use of translation strategies as well as the reviewers’ adoption of revising strategies and (2) shape the final translation products. To well examine the actual effect of TED’s translation-review-approval method, this paper will focus on its two major quality assurance mechanisms, that is, TED’s style guidelines and quality review. Based on an anonymous questionnaire, this research will first explore whether the volunteer translators and reviewers are aware of the style guidelines and whether their use of translation strategies is similar to that advised in the guidelines. The questionnaire, which will be posted online, will consist of two parts: demographic information and translation strategies. The invitations to complete it will then be distributed through TED Translator Facebook groups. With an aim to investigate if the style guidelines have any substantial impacts on actual subtitling practices, a comparison will be made between the original English subtitles of 20 TED talks (each around 5 to 7 minutes) and their Chinese subtitle translations to identify regularly adopted strategies. Concerning the function of the reviewing stage, a comparative study will be conducted between the drafts of Chinese subtitles for 10 short English talks and the revised versions of these drafts so as to examine the actual revising strategies and their effect on translation quality. According to the results obtained from the questionnaire and textual comparisons, this paper will provide in-depth analysis of quality assurance of the TED Open Translation Project. It is hoped that this research, through a detailed investigation of non-profit translation crowdsourcing, can enable translation researchers and practitioners to have a better understanding of quality control in translation crowdsourcing in the digital age.Keywords: quality assurance, TED, translation crowdsourcing, volunteer translators
Procedia PDF Downloads 229607 Hybrid Method for Smart Suggestions in Conversations for Online Marketplaces
Authors: Yasamin Rahimi, Ali Kamandi, Abbas Hoseini, Hesam Haddad
Abstract:
Online/offline chat is a convenient approach in the electronic markets of second-hand products in which potential customers would like to have more information about the products to fill the information gap between buyers and sellers. Online peer in peer market is trying to create artificial intelligence-based systems that help customers ask more informative questions in an easier way. In this article, we introduce a method for the question/answer system that we have developed for the top-ranked electronic market in Iran called Divar. When it comes to secondhand products, incomplete product information in a purchase will result in loss to the buyer. One way to balance buyer and seller information of a product is to help the buyer ask more informative questions when purchasing. Also, the short time to start and achieve the desired result of the conversation was one of our main goals, which was achieved according to A/B tests results. In this paper, we propose and evaluate a method for suggesting questions and answers in the messaging platform of the e-commerce website Divar. Creating such systems is to help users gather knowledge about the product easier and faster, All from the Divar database. We collected a dataset of around 2 million messages in Persian colloquial language, and for each category of product, we gathered 500K messages, of which only 2K were Tagged, and semi-supervised methods were used. In order to publish the proposed model to production, it is required to be fast enough to process 10 million messages daily on CPU processors. In order to reach that speed, in many subtasks, faster and simplistic models are preferred over deep neural models. The proposed method, which requires only a small amount of labeled data, is currently used in Divar production on CPU processors, and 15% of buyers and seller’s messages in conversations is directly chosen from our model output, and more than 27% of buyers have used this model suggestions in at least one daily conversation.Keywords: smart reply, spell checker, information retrieval, intent detection, question answering
Procedia PDF Downloads 186606 Classification of Forest Types Using Remote Sensing and Self-Organizing Maps
Authors: Wanderson Goncalves e Goncalves, José Alberto Silva de Sá
Abstract:
Human actions are a threat to the balance and conservation of the Amazon forest. Therefore the environmental monitoring services play an important role as the preservation and maintenance of this environment. This study classified forest types using data from a forest inventory provided by the 'Florestal e da Biodiversidade do Estado do Pará' (IDEFLOR-BIO), located between the municipalities of Santarém, Juruti and Aveiro, in the state of Pará, Brazil, covering an area approximately of 600,000 hectares, Bands 3, 4 and 5 of the TM-Landsat satellite image, and Self - Organizing Maps. The information from the satellite images was extracted using QGIS software 2.8.1 Wien and was used as a database for training the neural network. The midpoints of each sample of forest inventory have been linked to images. Later the Digital Numbers of the pixels have been extracted, composing the database that fed the training process and testing of the classifier. The neural network was trained to classify two forest types: Rain Forest of Lowland Emerging Canopy (Dbe) and Rain Forest of Lowland Emerging Canopy plus Open with palm trees (Dbe + Abp) in the Mamuru Arapiuns glebes of Pará State, and the number of examples in the training data set was 400, 200 examples for each class (Dbe and Dbe + Abp), and the size of the test data set was 100, with 50 examples for each class (Dbe and Dbe + Abp). Therefore, total mass of data consisted of 500 examples. The classifier was compiled in Orange Data Mining 2.7 Software and was evaluated in terms of the confusion matrix indicators. The results of the classifier were considered satisfactory, and being obtained values of the global accuracy equal to 89% and Kappa coefficient equal to 78% and F1 score equal to 0,88. It evaluated also the efficiency of the classifier by the ROC plot (receiver operating characteristics), obtaining results close to ideal ratings, showing it to be a very good classifier, and demonstrating the potential of this methodology to provide ecosystem services, particularly in anthropogenic areas in the Amazon.Keywords: artificial neural network, computational intelligence, pattern recognition, unsupervised learning
Procedia PDF Downloads 359605 Physics Informed Deep Residual Networks Based Type-A Aortic Dissection Prediction
Abstract:
Purpose: Acute Type A aortic dissection is a well-known cause of extremely high mortality rate. A highly accurate and cost-effective non-invasive predictor is critically needed so that the patient can be treated at earlier stage. Although various CFD approaches have been tried to establish some prediction frameworks, they are sensitive to uncertainty in both image segmentation and boundary conditions. Tedious pre-processing and demanding calibration procedures requirement further compound the issue, thus hampering their clinical applicability. Using the latest physics informed deep learning methods to establish an accurate and cost-effective predictor framework are amongst the main goals for a better Type A aortic dissection treatment. Methods: Via training a novel physics-informed deep residual network, with non-invasive 4D MRI displacement vectors as inputs, the trained model can cost-effectively calculate all these biomarkers: aortic blood pressure, WSS, and OSI, which are used to predict potential type A aortic dissection to avoid the high mortality events down the road. Results: The proposed deep learning method has been successfully trained and tested with both synthetic 3D aneurysm dataset and a clinical dataset in the aortic dissection context using Google colab environment. In both cases, the model has generated aortic blood pressure, WSS, and OSI results matching the expected patient’s health status. Conclusion: The proposed novel physics-informed deep residual network shows great potential to create a cost-effective, non-invasive predictor framework. Additional physics-based de-noising algorithm will be added to make the model more robust to clinical data noises. Further studies will be conducted in collaboration with big institutions such as Cleveland Clinic with more clinical samples to further improve the model’s clinical applicability.Keywords: type-a aortic dissection, deep residual networks, blood flow modeling, data-driven modeling, non-invasive diagnostics, deep learning, artificial intelligence.
Procedia PDF Downloads 88604 Drilling Quantification and Bioactivity of Machinable Hydroxyapatite : Yttrium phosphate Bioceramic Composite
Authors: Rupita Ghosh, Ritwik Sarkar, Sumit K. Pal, Soumitra Paul
Abstract:
The use of Hydroxyapatite bioceramics as restorative implants is widely known. These materials can be manufactured by pressing and sintering route to a particular shape. However machining processes are still a basic requirement to give a near net shape to those implants for ensuring dimensional and geometrical accuracy. In this context, optimising the machining parameters is an important factor to understand the machinability of the materials and to reduce the production cost. In the present study a method has been optimized to produce true particulate drilled composite of Hydroxyapatite Yttrium Phosphate. The phosphates are used in varying ratio for a comparative study on the effect of flexural strength, hardness, machining (drilling) parameters and bioactivity.. The maximum flexural strength and hardness of the composite that could be attained are 46.07 MPa and 1.02 GPa respectively. Drilling is done with a conventional radial drilling machine aided with dynamometer with high speed steel (HSS) and solid carbide (SC) drills. The effect of variation in drilling parameters (cutting speed and feed), cutting tool, batch composition on torque, thrust force and tool wear are studied. It is observed that the thrust force and torque varies greatly with the increase in the speed, feed and yttrium phosphate content in the composite. Significant differences in the thrust and torque are noticed due to the change of the drills as well. Bioactivity study is done in simulated body fluid (SBF) upto 28 days. The growth of the bone like apatite has become denser with the increase in the number of days for all the composition of the composites and it is comparable to that of the pure hydroxyapatite.Keywords: Bioactivity, Drilling, Hydroxyapatite, Yttrium Phosphate
Procedia PDF Downloads 297603 COVID_ICU_BERT: A Fine-Tuned Language Model for COVID-19 Intensive Care Unit Clinical Notes
Authors: Shahad Nagoor, Lucy Hederman, Kevin Koidl, Annalina Caputo
Abstract:
Doctors’ notes reflect their impressions, attitudes, clinical sense, and opinions about patients’ conditions and progress, and other information that is essential for doctors’ daily clinical decisions. Despite their value, clinical notes are insufficiently researched within the language processing community. Automatically extracting information from unstructured text data is known to be a difficult task as opposed to dealing with structured information such as vital physiological signs, images, and laboratory results. The aim of this research is to investigate how Natural Language Processing (NLP) techniques and machine learning techniques applied to clinician notes can assist in doctors’ decision-making in Intensive Care Unit (ICU) for coronavirus disease 2019 (COVID-19) patients. The hypothesis is that clinical outcomes like survival or mortality can be useful in influencing the judgement of clinical sentiment in ICU clinical notes. This paper introduces two contributions: first, we introduce COVID_ICU_BERT, a fine-tuned version of clinical transformer models that can reliably predict clinical sentiment for notes of COVID patients in the ICU. We train the model on clinical notes for COVID-19 patients, a type of notes that were not previously seen by clinicalBERT, and Bio_Discharge_Summary_BERT. The model, which was based on clinicalBERT achieves higher predictive accuracy (Acc 93.33%, AUC 0.98, and precision 0.96 ). Second, we perform data augmentation using clinical contextual word embedding that is based on a pre-trained clinical model to balance the samples in each class in the data (survived vs. deceased patients). Data augmentation improves the accuracy of prediction slightly (Acc 96.67%, AUC 0.98, and precision 0.92 ).Keywords: BERT fine-tuning, clinical sentiment, COVID-19, data augmentation
Procedia PDF Downloads 204602 Accuracy/Precision Evaluation of Excalibur I: A Neurosurgery-Specific Haptic Hand Controller
Authors: Hamidreza Hoshyarmanesh, Benjamin Durante, Alex Irwin, Sanju Lama, Kourosh Zareinia, Garnette R. Sutherland
Abstract:
This study reports on a proposed method to evaluate the accuracy and precision of Excalibur I, a neurosurgery-specific haptic hand controller, designed and developed at Project neuroArm. Having an efficient and successful robot-assisted telesurgery is considerably contingent on how accurate and precise a haptic hand controller (master/local robot) would be able to interpret the kinematic indices of motion, i.e., position and orientation, from the surgeon’s upper limp to the slave/remote robot. A proposed test rig is designed and manufactured according to standard ASTM F2554-10 to determine the accuracy and precision range of Excalibur I at four different locations within its workspace: central workspace, extreme forward, far left and far right. The test rig is metrologically characterized by a coordinate measuring machine (accuracy and repeatability < ± 5 µm). Only the serial linkage of the haptic device is examined due to the use of the Structural Length Index (SLI). The results indicate that accuracy decreases by moving from the workspace central area towards the borders of the workspace. In a comparative study, Excalibur I performs on par with the PHANToM PremiumTM 3.0 and more accurate/precise than the PHANToM PremiumTM 1.5. The error in Cartesian coordinate system shows a dominant component in one direction (δx, δy or δz) for the movements on horizontal, vertical and inclined surfaces. The average error magnitude of three attempts is recorded, considering all three error components. This research is the first promising step to quantify the kinematic performance of Excalibur I.Keywords: accuracy, advanced metrology, hand controller, precision, robot-assisted surgery, tele-operation, workspace
Procedia PDF Downloads 336601 Using Serious Games to Integrate the Potential of Mass Customization into the Fuzzy Front-End of New Product Development
Authors: Michael N. O'Sullivan, Con Sheahan
Abstract:
Mass customization is the idea of offering custom products or services to satisfy the needs of each individual customer while maintaining the efficiency of mass production. Technologies like 3D printing and artificial intelligence have many start-ups hoping to capitalize on this dream of creating personalized products at an affordable price, and well established companies scrambling to innovate and maintain their market share. However, the majority of them are failing as they struggle to understand one key question – where does customization make sense? Customization and personalization only make sense where the value of the perceived benefit outweighs the cost to implement it. In other words, will people pay for it? Looking at the Kano Model makes it clear that it depends on the product. In products where customization is an inherent need, like prosthetics, mass customization technologies can be highly beneficial. However, for products that already sell as a standard, like headphones, offering customization is likely only an added bonus, and so the product development team must figure out if the customers’ perception of the added value of this feature will outweigh its premium price tag. This can be done through the use of a ‘serious game,’ whereby potential customers are given a limited budget to collaboratively buy and bid on potential features of the product before it is developed. If the group choose to buy customization over other features, then the product development team should implement it into their design. If not, the team should prioritize the features on which the customers have spent their budget. The level of customization purchased can also be translated to an appropriate production method, for example, the most expensive type of customization would likely be free-form design and could be achieved through digital fabrication, while a lower level could be achieved through short batch production. Twenty-five teams of final year students from design, engineering, construction and technology tested this methodology when bringing a product from concept through to production specification, and found that it allowed them to confidently decide what level of customization, if any, would be worth offering for their product, and what would be the best method of producing it. They also found that the discussion and negotiations between players during the game led to invaluable insights, and often decided to play a second game where they offered customers the option to buy the various customization ideas that had been discussed during the first game.Keywords: Kano model, mass customization, new product development, serious game
Procedia PDF Downloads 134600 Enhancing Vehicle Efficiency Through Vapor Absorption Refrigeration Systems
Authors: Yoftahe Nigussie Worku
Abstract:
This paper explores the utilization of vapor absorption refrigeration systems (VARS) as an alternative to the conventional vapor compression refrigerant systems (VCRS) in vehicle air conditioning (AC) systems. Currently, most vehicles employ VCRS, which relies on engine power to drive the compressor, leading to additional fuel consumption. In contrast, VARS harnesses low-grade heat, specifically from the exhaust of high-power internal combustion engines, reducing the burden on the vehicle's engine. The historical development of vapor absorption technology is outlined, dating back to Michael Faraday's discovery in 1824 and the subsequent creation of the first vapor absorption refrigeration machine by Ferdinand Carre in 1860. The paper delves into the fundamental principles of VARS, emphasizing the replacement of mechanical processes with physicochemical interactions, utilizing heat rather than mechanical work. The study compares the basic concepts of the current vapor compression systems with the proposed vapor absorption systems, highlighting the efficiency gains achieved by eliminating the need for engine-driven compressors. The vapor absorption refrigeration cycle (VARC) is detailed, focusing on the generator's role in separating and vaporizing ammonia, chosen for its low-temperature evaporation characteristics. The project's statement underscores the need for increased efficiency in vehicle AC systems beyond the limitations of VCRS. By introducing VARS, driven by low-grade heat, the paper advocates for a reduction in engine power consumption and, consequently, a decrease in fuel usage. This research contributes to the ongoing efforts to enhance sustainability and efficiency in automotive climate control systems.Keywords: VCRS, VARS, efficiency, sustainability
Procedia PDF Downloads 72599 The Effect of Artificial Intelligence on Petroleum Industry and Production
Authors: Mina Shokry Hanna Saleh Tadros
Abstract:
The centrality of the Petroleum Industry in the world energy is undoubted. The world economy almost runs and depends on petroleum. Petroleum industry is a multi-trillion industry; it turns otherwise poor and underdeveloped countries into wealthy nations and thrusts them at the center of international diplomacy. Although these developing nations lack the necessary technology to explore and exploit petroleum resources they are not without help as developed nations, represented by their multinational corporations are ready and willing to provide both the technical and managerial expertise necessary for the development of this natural resource. However, the exploration of these petroleum resources comes with, sometimes, grave, concomitant consequences. These consequences are especially pronounced with respect to the environment. From the British Petroleum Oil rig explosion and the resultant oil spillage and pollution in New Mexico, United States to the Mobil Oil spillage along Egyptian coast, the story and consequence is virtually the same. Egypt’s delta Region produces Nigeria’s petroleum which accounts for more than ninety-five percent of Nigeria’s foreign exchange earnings. Between 1999 and 2007, Egypt earned more than $400 billion from petroleum exports. Nevertheless, petroleum exploration and exploitation has devastated the Delta environment. From oil spillage which pollutes the rivers, farms and wetlands to gas flaring by the multi-national corporations; the consequences is similar-a region that has been devastated by petroleum exploitation. This paper thus seeks to examine the consequences and impact of petroleum pollution in the Egypt Delta with particular reference on the right of the people of Niger Delta to a healthy environment. The paper further seeks to examine the relevant international, regional instrument and Nigeria’s municipal laws that are meant to protect the result of the people of the Egypt Delta and their enforcement by the Nigerian State. It is quite worrisome that the Egypt Delta Region and its people have suffered and are still suffering grave violations of their right to a healthy environment as a result of petroleum exploitation in their region. The Egypt effort at best is half-hearted in its protection of the people’s right.Keywords: crude oil, fire, floating roof tank, lightning protection systemenvironment, exploration, petroleum, pollutionDuvernay petroleum system, oil generation, oil-source correlation, Re-Os
Procedia PDF Downloads 76598 Modelling of Pipe Jacked Twin Tunnels in a Very Soft Clay
Authors: Hojjat Mohammadi, Randall Divito, Gary J. E. Kramer
Abstract:
Tunnelling and pipe jacking in very soft soils (fat clays), even with an Earth Pressure Balance tunnel boring machine (EPBM), can cause large ground displacements. In this study, the short-term and long-term ground and tunnel response is predicted for twin, pipe-jacked EPBM 3 meter diameter tunnels with a narrow pillar width. Initial modelling indicated complete closure of the annulus gap at the tail shield onto the centrifugally cast, glass-fiber-reinforced, polymer mortar jacking pipe (FRP). Numerical modelling was employed to simulate the excavation and support installation sequence, examine the ground response during excavation, confirm the adequacy of the pillar width and check the structural adequacy of the installed pipe. In the numerical models, Mohr-Coulomb constitutive model with the effect of unloading was adopted for the fat clays, while for the bedrock layer, the generalized Hoek-Brown was employed. The numerical models considered explicit excavation sequences and different levels of ground convergence prior to support installation. The well-studied excavation sequences made the analysis possible for this study on a very soft clay, otherwise, obtaining the convergency in the numerical analysis would be impossible. The predicted results indicate that the ground displacements around the tunnel and its effect on the pipe would be acceptable despite predictions of large zones of plastic behaviour around the tunnels and within the entire pillar between them due to excavation-induced ground movements.Keywords: finite element modeling (FEM), pipe-jacked tunneling, very soft clay, EPBM
Procedia PDF Downloads 80597 Relevance of Brain Stem Evoked Potential in Diagnosis of Central Demyelination in Guillain Barre’ Syndrome
Authors: Geetanjali Sharma
Abstract:
Guillain Barre’ syndrome (GBS) is an auto-immune mediated demyelination poly-radiculo-neuropathy. Clinical features include progressive symmetrical ascending muscle weakness of more than two limbs, areflexia with or without sensory, autonomic and brainstem abnormalities, the purpose of this study was to determine subclinical neurological changes of CNS with GBS and to establish the presence of central demyelination in GBS. The study was prospective and conducted in the Department of Physiology, Pt. B. D. Sharma Post-graduate Institute of Medical Sciences, University of Health Sciences, Rohtak, Haryana, India to find out early central demyelination in clinically diagnosed patients of GBS. These patients were referred from the department of Medicine of our Institute to our department for electro-diagnostic evaluation. The study group comprised of 40 subjects (20 clinically diagnosed GBS patients and 20 healthy individuals as controls) aged between 6-65 years. Brain Stem evoked Potential (BAEP) were done in both groups using RMS EMG EP mark II machine. BAEP parameters included the latencies of waves I to IV, inter peak latencies I-III, III-IV & I-V. Statistically significant increase in absolute peak and inter peak latencies in the GBS group as compared with control group was noted. Results of evoked potential reflect impairment of auditory pathways probably due to focal demyelination in Schwann cell derived myelin sheaths that cover the extramedullary portion of auditory nerves. Early detection of the sub-clinical abnormalities is important as timely intervention reduces morbidity.Keywords: brainstem, demyelination, evoked potential, Guillain Barre’
Procedia PDF Downloads 298596 Surface-Enhanced Raman Spectroscopy on Gold Nanoparticles in the Kidney Disease
Authors: Leonardo C. Pacheco-Londoño, Nataly J Galan-Freyle, Lisandro Pacheco-Lugo, Antonio Acosta-Hoyos, Elkin Navarro, Gustavo Aroca-Martinez, Karin Rondón-Payares, Alberto C. Espinosa-Garavito, Samuel P. Hernández-Rivera
Abstract:
At the Life Science Research Center at Simon Bolivar University, a primary focus is the diagnosis of various diseases, and the use of gold nanoparticles (Au-NPs) in diverse biomedical applications is continually expanding. In the present study, Au-NPs were employed as substrates for Surface-Enhanced Raman Spectroscopy (SERS) aimed at diagnosing kidney diseases arising from Lupus Nephritis (LN), preeclampsia (PC), and Hypertension (H). Discrimination models were developed for distinguishing patients with and without kidney diseases based on the SERS signals from urine samples by partial least squares-discriminant analysis (PLS-DA). A comparative study of the Raman signals across the three conditions was conducted, leading to the identification of potential metabolite signals. Model performance was assessed through cross-validation and external validation, determining parameters like sensitivity and specificity. Additionally, a secondary analysis was performed using machine learning (ML) models, wherein different ML algorithms were evaluated for their efficiency. Models’ validation was carried out using cross-validation and external validation, and other parameters were determined, such as sensitivity and specificity; the models showed average values of 0.9 for both parameters. Additionally, it is not possible to highlight this collaborative effort involved two university research centers and two healthcare institutions, ensuring ethical treatment and informed consent of patient samples.Keywords: SERS, Raman, PLS-DA, kidney diseases
Procedia PDF Downloads 42595 Price Prediction Line, Investment Signals and Limit Conditions Applied for the German Financial Market
Authors: Cristian Păuna
Abstract:
In the first decades of the 21st century, in the electronic trading environment, algorithmic capital investments became the primary tool to make a profit by speculations in financial markets. A significant number of traders, private or institutional investors are participating in the capital markets every day using automated algorithms. The autonomous trading software is today a considerable part in the business intelligence system of any modern financial activity. The trading decisions and orders are made automatically by computers using different mathematical models. This paper will present one of these models called Price Prediction Line. A mathematical algorithm will be revealed to build a reliable trend line, which is the base for limit conditions and automated investment signals, the core for a computerized investment system. The paper will guide how to apply these tools to generate entry and exit investment signals, limit conditions to build a mathematical filter for the investment opportunities, and the methodology to integrate all of these in automated investment software. The paper will also present trading results obtained for the leading German financial market index with the presented methods to analyze and to compare different automated investment algorithms. It was found that a specific mathematical algorithm can be optimized and integrated into an automated trading system with good and sustained results for the leading German Market. Investment results will be compared in order to qualify the presented model. In conclusion, a 1:6.12 risk was obtained to reward ratio applying the trigonometric method to the DAX Deutscher Aktienindex on 24 months investment. These results are superior to those obtained with other similar models as this paper reveal. The general idea sustained by this paper is that the Price Prediction Line model presented is a reliable capital investment methodology that can be successfully applied to build an automated investment system with excellent results.Keywords: algorithmic trading, automated trading systems, high-frequency trading, DAX Deutscher Aktienindex
Procedia PDF Downloads 129594 Improving Efficiency and Effectiveness of FMEA Studies
Authors: Joshua Loiselle
Abstract:
This paper discusses the challenges engineering teams face in conducting Failure Modes and Effects Analysis (FMEA) studies. This paper focuses on the specific topic of improving the efficiency and effectiveness of FMEA studies. Modern economic needs and increased business competition require engineers to constantly develop newer and better solutions within shorter timeframes and tighter margins. In addition, documentation requirements for meeting standards/regulatory compliance and customer needs are becoming increasingly complex and verbose. Managing open actions and continuous improvement activities across all projects, product variations, and processes in addition to daily engineering tasks is cumbersome, time consuming, and is susceptible to errors, omissions, and non-conformances. FMEA studies are proven methods for improving products and processes while subsequently reducing engineering workload and improving machine and resource availability through a pre-emptive, systematic approach of identifying, analyzing, and improving high-risk components. If implemented correctly, FMEA studies significantly reduce costs and improve productivity. However, the value of an effective FMEA is often shrouded by a lack of clarity and structure, misconceptions, and previous experiences and, as such, FMEA studies are frequently grouped with the other required information and documented retrospectively in preparation of customer requirements or audits. Performing studies in this way only adds cost to a project and perpetuates the misnomer that FMEA studies are not value-added activities. This paper discusses the benefits of effective FMEA studies, the challenges related to conducting FMEA studies, best practices for efficiently overcoming challenges via structure and automation, and the benefits of implementing those practices.Keywords: FMEA, quality, APQP, PPAP
Procedia PDF Downloads 303593 The Impact of Artificial Intelligence on Legislations and Laws
Authors: Keroles Akram Saed Ghatas
Abstract:
The near future will bring significant changes in modern organizations and management due to the growing role of intangible assets and knowledge workers. The area of copyright, intellectual property, digital (intangible) assets and media redistribution appears to be one of the greatest challenges facing business and society in general and management sciences and organizations in particular. The proposed article examines the views and perceptions of fairness in digital media sharing among Harvard Law School's LL.M.s. Students, based on 50 qualitative interviews and 100 surveys. The researcher took an ethnographic approach to her research and entered the Harvard LL.M. in 2016. at, a Face book group that allows people to connect naturally and attend in-person and private events more easily. After listening to numerous students, the researcher conducted a quantitative survey among 100 respondents to assess respondents' perceptions of fairness in digital file sharing in various contexts (based on media price, its availability, regional licenses, copyright holder status, etc.). to understand better . .). Based on the survey results, the researcher conducted long-term, open-ended and loosely structured ethnographic interviews (50 interviews) to further deepen the understanding of the results. The most important finding of the study is that Harvard lawyers generally support digital piracy in certain contexts, despite having the best possible legal and professional knowledge. Interestingly, they are also more accepting of working for the government than the private sector. The results of this study provide a better understanding of how “fairness” is perceived by the younger generation of lawyers and pave the way for a more rational application of licensing laws.Keywords: cognitive impairments, communication disorders, death penalty, executive function communication disorders, cognitive disorders, capital murder, executive function death penalty, egyptian law absence, justice, political cases piracy, digital sharing, perception of fairness, legal profession
Procedia PDF Downloads 63592 Talking Back to Hollywood: Museum Representation in Popular Culture as a Gateway to Understanding Public Perception
Authors: Jessica BrodeFrank, Beka Bryer, Lacey Wilson, Sierra Van Ryck deGroot
Abstract:
Museums are enjoying quite the moment in pop culture. From discussions of labor in Bob’s Burger to introducing cultural repatriation in The Black Panther, discussions of various museum issues are making their way to popular media. “Talking Back to Hollywood” analyzes the impact museums have on movies and television. The paper will highlight a series of cultural cameos and discuss what each reveals about critical themes in museums: repatriation, labor, obfuscated histories, institutional legacies, artificial intelligence, and holograms. Using a mixed methods approach to include surveys, descriptive research, thematic analysis, and context analysis, the authors of this paper will explore how we, as the museum staff, might begin to cite museums and movies together as texts. Drawing from their experience working in museums and public history, this contingent of mid-career professionals will highlight the impact museums have had on movies and television and the didactic lessons these portrayals can provide back to cultural heritage professionals. From tackling critical themes in museums such as repatriation, labor conditions/inequities, obfuscated histories, curatorial choice and control, institutional legacies, and more, this paper is grounded in the cultural zeitgeist of the 2000s and the message these media portrayals send to the public and the cultural heritage sector. In particular, the paper will examine how portrayals of AI, holograms, and more technology can be used as entry points for necessary discussions with the public on mistrust, misinformation, and emerging technologies. This paper will not only expose the legacy and cultural understanding of the museum field within popular culture but also will discuss actionable ways that public historians can use these portrayals as an entry point for discussions with the public, citing literature reviews and quantitative and qualitative analysis of survey results. As Hollywood is talking about museums, museums can use that to better connect to the audiences who feel comfortable at the cinema but are excluded from the museum.Keywords: museums, public memory, representation, popular culture
Procedia PDF Downloads 83591 Determination of Selected Engineering Properties of Giant Palm Seeds (Borassus Aethiopum) in Relation to Its Oil Potential
Authors: Rasheed Amao Busari, Ahmed Ibrahim
Abstract:
The engineering properties of giant palms are crucial for the reasonable design of the processing and handling systems. The research was conducted to investigate some engineering properties of giant palm seeds in relation to their oil potential. The ripe giant palm fruit was sourced from some parts of Zaria in Kaduna State and Ado Ekiti in Ekiti State, Nigeria. The mesocarps of the fruits collected were removed to obtain the nuts, while the collected nuts were dried under ambient conditions for several days. The actual moisture content of the nuts at the time of the experiment was determined using KT100S Moisture Meter, with moisture content ranged 17.9% to 19.15%. The physical properties determined are axial dimension, geometric mean diameter, arithmetic mean diameter, sphericity, true and bulk densities, porosity, angles of repose, and coefficients of friction. The nuts were measured using a vernier caliper for physical assessment of their sizes. The axial dimensions of 100 nuts were taken and the result shows that the size ranges from 7.30 to 9.32cm for major diameter, 7.2 to 8.9 cm for intermediate diameter, and 4.2 to 6.33 for minor diameter. The mechanical properties determined were compressive force, compressive stress, and deformation both at peak and break using Instron hydraulic universal tensile testing machine. The work also revealed that giant palm seed can be classified as an oil-bearing seed. The seed gave 18% using the solvent extraction method. The results obtained from the study will help in solving the problem of equipment design, handling, and further processing of the seeds.Keywords: giant palm seeds, engineering properties, oil potential, moisture content, and giant palm fruit
Procedia PDF Downloads 74590 Teachers’ Protective Factors of Resilience Scale: Factorial Structure, Validity and Reliability Issues
Authors: Athena Daniilidou, Maria Platsidou
Abstract:
Recently developed scales addressed -specifically- teachers’ resilience. Although they profited from the field, they do not include some of the critical protective factors of teachers’ resilience identified in the literature. To address this limitation, we aimed at designing a more comprehensive scale for measuring teachers' resilience which encompasses various personal and environmental protective factors. To this end, two studies were carried out. In Study 1, 407 primary school teachers were tested with the new scale, the Teachers’ Protective Factors of Resilience Scale (TPFRS). Similar scales, such as the Multidimensional Teachers’ Resilience Scale and the Teachers’ Resilience Scale), were used to test the convergent validity, while the Maslach Burnout Inventory and the Teachers’ Sense of Efficacy Scale was used to assess the discriminant validity of the new scale. The factorial structure of the TPFRS was checked with confirmatory factor analysis and a good fit of the model to the data was found. Next, item response theory analysis using a two-parameter model (2PL) was applied to check the items within each factor. It revealed that 9 items did not fit the corresponding factors well and they were removed. The final version of the TPFRS includes 29 items, which assess six protective factors of teachers’ resilience: values and beliefs (5 items, α=.88), emotional and behavioral adequacy (6 items, α=.74), physical well-being (3 items, α=.68), relationships within the school environment, (6 items, α=.73) relationships outside the school environment (5 items, α=.84), and the legislative framework of education (4 items, α=.83). Results show that it presents a satisfactory convergent and discriminant validity. Study 2, in which 964 primary and secondary school teachers were tested, confirmed the factorial structure of the TPFRS as well as its discriminant validity, which was tested with the Schutte Emotional Intelligence Scale-Short Form. In conclusion, our results confirmed that the TPFRS is a valid instrument for assessing teachers' protective factors of resilience and it can be safely used in future research and interventions in the teaching profession. In conclusion, our results showed that the TPFRS is a new multi-dimensional instrument valid for assessing teachers' protective factors of resilience and it can be safely used in future research and interventions in the teaching profession.Keywords: resilience, protective factors, teachers, item response theory
Procedia PDF Downloads 98589 Effect of Shot Peening on the Mechanical Properties for Welded Joints of Aluminium Alloy 6061-T6
Authors: Muna Khethier Abbass, Khairia Salman Hussan, Huda Mohummed AbdudAlaziz
Abstract:
This work aims to study the effect of shot peening on the mechanical properties of welded joints which performed by two different welding processes: Tungsten inert gas (TIG) welding and friction stir welding (FSW) processes of aluminum alloy 6061 T6. Arc welding process (TIG) was carried out on the sheet with dimensions of (100x50x6 mm) to obtain many welded joints with using electrode type ER4043 (AlSi5) as a filler metal and argon as shielding gas. While the friction stir welding process was carried out using CNC milling machine with a tool of rotational speed (1000 rpm) and welding speed of (20 mm/min) to obtain the same butt welded joints. The welded pieces were tested by X-ray radiography to detect the internal defects and faulty welded pieces were excluded. Tensile test specimens were prepared from welded joints and base alloy in the dimensions according to ASTM17500 and then subjected to shot peening process using steel ball of diameter 0.9 mm and for 15 min. All specimens were subjected to Vickers hardness test and micro structure examination to study the effect of welding process (TIG and FSW) on the micro structure of the weld zones. Results showed that a general decay of mechanical properties of TIG and FSW welded joints comparing with base alloy while the FSW welded joint gives better mechanical properties than that of TIG welded joint. This is due to the micro structure changes during the welding process. It has been found that the surface hardening by shot peening improved the mechanical properties of both welded joints, this is due to the compressive residual stress generation in the weld zones which was measured using X-Ray diffraction (XRD) inspection.Keywords: friction stir welding, TIG welding, mechanical properties, shot peening
Procedia PDF Downloads 337