Search results for: innovative fashion design process
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25545

Search results for: innovative fashion design process

22095 Business Domain Modelling Using an Integrated Framework

Authors: Mohammed Hasan Salahat, Stave Wade

Abstract:

This paper presents an application of a “Systematic Soft Domain Driven Design Framework” as a soft systems approach to domain-driven design of information systems development. The framework combining techniques from Soft Systems Methodology (SSM), the Unified Modeling Language (UML), and an implementation pattern knows as ‘Naked Objects’. This framework have been used in action research projects that have involved the investigation and modeling of business processes using object-oriented domain models and the implementation of software systems based on those domain models. Within this framework, Soft Systems Methodology (SSM) is used as a guiding methodology to explore the problem situation and to develop the domain model using UML for the given business domain. The framework is proposed and evaluated in our previous works, and a real case study ‘Information Retrieval System for Academic Research’ is used, in this paper, to show further practice and evaluation of the framework in different business domain. We argue that there are advantages from combining and using techniques from different methodologies in this way for business domain modeling. The framework is overviewed and justified as multi-methodology using Mingers Multi-Methodology ideas.

Keywords: SSM, UML, domain-driven design, soft domain-driven design, naked objects, soft language, information retrieval, multimethodology

Procedia PDF Downloads 540
22094 Optimization of Biodiesel Production from Sunflower Oil Using Central Composite Design

Authors: Pascal Mwenge, Jefrey Pilusa, Tumisang Seodigeng

Abstract:

The current study investigated the effect of catalyst ratio and methanol to oil ratio on biodiesel production by using central composite design. Biodiesel was produced by transesterification using sodium hydroxide as a homogeneous catalyst, a laboratory scale reactor consisting of flat bottom flask mounts with a reflux condenser, and a heating plate was used to produce biodiesel. Key parameters, including time, temperature, and mixing rate was kept constant at 60 minutes, 60 oC and 600 RPM, respectively. From the results obtained, it was observed that the biodiesel yield depends on catalyst ratio and methanol to oil ratio. The highest yield of 50.65% was obtained at catalyst ratio of 0.5 wt.% and methanol to oil mole ratio 10.5. The analysis of variances of biodiesel yield showed the R Squared value of 0.8387. A quadratic mathematical model was developed to predict the biodiesel yield in the specified parameters ranges.

Keywords: ANOVA, biodiesel, catalyst, transesterification, central composite design

Procedia PDF Downloads 124
22093 Advancing Net Zero Showcase in Subtropical High-Rise Commercial Building

Authors: Melody Wong

Abstract:

Taikoo Green Ribbon is the winning scheme of International Advancing Net Zero ANZ Ideas Competition 2021 and shortlisted as a finalist of top Architectural Award “AJ100 Sustainability Initiative of the Year, 2022, demonstrating city's aspirations to reach carbon neutrality by 2050. The project showcases total design solutions to blend technology and nature to create a futuristic workplace achieving net zero within a decade. The net zero building design featured with extremely low embodied carbon emission (<250 kgCO2/sqm), significant surplus in renewable energy generation (130% of energy consumption) and various carbon capture technology. The project leverages aesthetics, user-experience, sustainability, and technology to develop over 40 design features. Utilizing AI-controlled Smart Envelope system, the possibility of naturally ventilation was maximized to adjust the microclimate to foster behavourial change. The design principle – healthy and collaborative working environment is realized with a landscaped sky-track with kinetic energy pads, natural ventilated open space with edible plants across floors, and 500-seat open-space rooftop theatre to reshape and redefine the new generation of workplaces.

Keywords: NetZero, zero carbon, green, sustainability

Procedia PDF Downloads 57
22092 A Cognitive Schema of Architectural Designing Activity

Authors: Abdelmalek Arrouf

Abstract:

This article sets up a cognitive schema of the architectural designing activity. It begins by outlining, theoretically, an a priori model of its general cognitive mechanisms. The obtained theoretical framework represents the designing activity as a complex system composed of three interrelated subsystems of cognitive actions: a subsystem of meaning production, one of morphology production and finally a subsystem of navigation between the two formers. A protocol analysis that uses statistical and informational tools is then used to measure the validity of the built schema. The model thus achieved shows that the designer begins by conceiving abstract meanings, which he then translates into shapes. That’s why we call it a semio-morphic model of the designing activity.

Keywords: designing actions, model of the design process, morphosis, protocol analysis, semiosis

Procedia PDF Downloads 153
22091 A Study on Golden Ratio (ф) and Its Implications on Seismic Design Using ETABS

Authors: Vishal A. S. Salelkar, Sumitra S. Kandolkar

Abstract:

Golden ratio (ф) or Golden mean or Golden section, as it is often referred to, is a proportion or a mean, which is often used by architects while conceiving the aesthetics of a structure. Golden Ratio (ф) is an irrational number that can be roughly rounded to 1.618 and is derived out of quadratic equation x2-x-1=0. The use of Golden Ratio (ф) can be observed throughout history, as far as ancient Egyptians, which later peaked during the Greek golden age. The use of this design technique is very much prevalent. At present, architects around the world prefer this as one of the primary techniques to decide aesthetics. In this study, an analysis has been performed to investigate whether the use of the golden ratio while planning a structure has any effects on the seismic behavior of the structure. The structure is modeled and analyzed on ETABS (by Computers and Structures, Inc.) for Seismic requirements equivalent to Zone III (Region: Goa-India) as per Indian Standard Code IS-1893. The results were compared to that of an identical structure modeled along the lines of normal design philosophy, not using the Golden Ratio tools. The results were then compared for Story Shear, Story Drift, and Story Displacement Readings. Improvement in performance, although slight, but was observed. Similar improvements were also observed in subsequent iterations, performed using time-acceleration data of previous major earthquakes matched to Zone III as per IS-1893.

Keywords: ETABS, golden ratio, seismic design, structural behavior

Procedia PDF Downloads 151
22090 The Views of German Preparatory Language Programme Students about German Speaking Activity

Authors: Eda Üstünel, Seval Karacabey

Abstract:

The students, who are enrolled in German Preparatory Language Programme at the School of Foreign Languages, Muğla Sıtkı Koçman University, Turkey, learn German as a foreign language for two semesters in an academic year. Although the language programme is a skills-based one, the students lack German speaking skills due to their fear of making language mistakes while speaking in German. This problem of incompetency in German speaking skills exists also in their four-year departmental study at the Faculty of Education. In order to address this problem we design German speaking activities, which are extra-curricular activities. With the help of these activities, we aim to lead Turkish students of German language to speak in the target language, to improve their speaking skills in the target language and to create a stress-free atmosphere and a meaningful learning environment to communicate in the target language. In order to achieve these aims, an ERASMUS+ exchange staff (a German trainee teacher of German as a foreign language), who is from Schwabisch Gmünd University, Germany, conducted out-of-class German speaking activities once a week for three weeks in total. Each speaking activity is lasted for one and a half hour per week. 7 volunteered students of German preparatory language programme attended the speaking activity for three weeks. The activity took place at a cafe in the university campus, that’s the reason, we call it as an out-of-class activity. The content of speaking activity is not related to the topics studied at the units of coursebook, that’s the reason, we call this activity as extra-curricular one. For data collection, three tools are used. A questionnaire, which is an adapted version of Sabo’s questionnaire, is applied to seven volunteers. An interview session is then held with each student on individual basis. The interview questions are developed so as to ask students to expand their answers that are given at the questionnaires. The German trainee teacher wrote fieldnotes, in which the teacher described the activity in the light of her thoughts about what went well and which areas were needed to be improved. The results of questionnaires show that six out of seven students note that such an acitivity must be conducted by a native speaker of German. Four out of seven students emphasize that they like the way that the activities are designed in a learner-centred fashion. All of the students point out that they feel motivated to talk to the trainee teacher in German. Six out of seven students note that the opportunity to communicate in German with the teacher and the peers enable them to improve their speaking skills, the use of grammatical rules and the use of vocabulary.

Keywords: Learning a Foreign Language, Speaking Skills, Teaching German as a Foreign Language, Turkish Learners of German Language

Procedia PDF Downloads 300
22089 Investigation of Mass Transfer for RPB Distillation at High Pressure

Authors: Amiza Surmi, Azmi Shariff, Sow Mun Serene Lock

Abstract:

In recent decades, there has been a significant emphasis on the pivotal role of Rotating Packed Beds (RPBs) in absorption processes, encompassing the removal of Volatile Organic Compounds (VOCs) from groundwater, deaeration, CO2 absorption, desulfurization, and similar critical applications. The primary focus is elevating mass transfer rates, enhancing separation efficiency, curbing power consumption, and mitigating pressure drops. Additionally, substantial efforts have been invested in exploring the adaptation of RPB technology for offshore deployment. This comprehensive study delves into the intricacies of nitrogen removal under low temperature and high-pressure conditions, employing the high gravity principle via innovative RPB distillation concept with a specific emphasis on optimizing mass transfer. Based on the author's knowledge and comprehensive research, no cryogenic experimental testing was conducted to remove nitrogen via RPB. The research identifies pivotal process control factors through meticulous experimental testing, with pressure, reflux ratio, and reboil ratio emerging as critical determinants in achieving the desired separation performance. The results are remarkable, with nitrogen removal reaching less than one mole% in the Liquefied Natural Gas (LNG) product and less than three moles% methane in the nitrogen-rich gas stream. The study further unveils the mass transfer coefficient, revealing a noteworthy trend of decreasing Number of Transfer Units (NTU) and Area of Transfer Units (ATU) as the rotational speed escalates. Notably, the condenser and reboiler impose varying demands based on the operating pressure, with lower pressures at 12 bar requiring a more substantial duty than the 15-bar operation of the RPB. In pursuit of optimal energy efficiency, a meticulous sensitivity analysis is conducted, pinpointing the ideal combination of pressure and rotating speed that minimizes overall energy consumption. These findings underscore the efficiency of the RPB distillation approach in effecting efficient separation, even when operating under the challenging conditions of low temperature and high pressure. This achievement is attributed to a rigorous process control framework that diligently manages the operational pressure and temperature profile of the RPB. Nonetheless, the study's conclusions point towards the need for further research to address potential scaling challenges and associated risks, paving the way for the industrial implementation of this transformative technology.

Keywords: mass transfer coefficient, nitrogen removal, liquefaction, rotating packed bed

Procedia PDF Downloads 31
22088 The Background of Ornamental Design Practice: Theory and Practice Based Research on Ornamental Traditions

Authors: Jenna Pyorala

Abstract:

This research looks at the principles and purposes ornamental design has served in the field of textile design. Ornamental designs are characterized by richness of details, abundance of elements, vegetative motifs and organic forms that flow harmoniously in complex compositions. Research on ornamental design is significant, because ornaments have been overlooked and considered as less meaningful and aesthetically pleasing than minimalistic, modern designs. This is despite the fact that in many parts of the world ornaments have been an important part of the cultural identification and expression for centuries. Ornament has been claimed to be superficial and merely used as a decorative way to hide the faults of designs. Such generalization is an incorrect interpretation of the real purposes of ornament. Many ornamental patterns tell stories, present mythological scenes or convey symbolistic meanings. Historically, ornamental decorations have been representing ideas and characteristics such as abundance, wealth, power and personal magnificence. The production of fine ornaments required refined skill, eye for intricate detail and perseverance while compiling complex elements into harmonious compositions. For this reason, ornaments have played an important role in the advancement of craftsmanship. Even though it has been claimed that people in the western design world have lost the relationship to ornament, the relation to it has merely changed from the practice of a craftsman to conceptualisation of a designer. With the help of new technological tools the production of ornaments has become faster and more efficient, demanding less manual labour. Designers who commit to this style of organic forms and vegetative motifs embrace and respect nature by representing its organically growing forms and by following its principles. The complexity of the designs is used as a way to evoke a sense of extraordinary beauty and stimulate intellect by freeing the mind from the predetermined interpretations. Through the study of these purposes it can be demonstrated that complex and richer design styles are as valuable a part of the world of design as more modern design approaches. The study highlights the meaning of ornaments by presenting visual examples and literature research findings. The practice based part of the project is the visual analysis of historical and cultural ornamental traditions such as Indian Chikan embroidery, Persian carpets, Art Nouveau and Rococo according to the rubric created for the purpose. The next step is the creation of ornamental designs based on the key elements in different styles. Theoretical and practical parts are woven together in this study that respects respect the long traditions of ornaments and highlight the importance of these design approaches to the field, in contrast to the more commonly preferred styles.

Keywords: cultural design traditions, ornamental design, organic forms from nature, textile design

Procedia PDF Downloads 211
22087 Design of Structure for a Heavy-Duty Mineral Tow Machine by Evaluating the Dynamic and Static Loads

Authors: M. Akhondizadeh, Mohsen Khajoei, Mojtaba Khajoei

Abstract:

The purpose of the present work was the design of a towing machine which was decided to be manufactured by Arman Gohar-e-Sirjan company in the Gol-e-Gohar iron ore complex in Iran. The load analysis has been conducted to determine the static and dynamic loads at the critical conditions. The inertial forces due to the velocity increment and road bump have been considered in load evaluation. The form of loading of the present machine is hauling and/or conveying the mineral machines on the mini ramp. Several stages of these forms of loading, from the initial touch of the tow and carried machine to the final position, have been assessed to determine the critical state. The stress analysis has been performed by the ANSYS software. Several geometries for the main load-carrying elements have been analyzed to have the optimum design by the minimum weight of the structure. Finally, a structure with a total weight of 38 tons has been designed with a static load-carrying capacity of 80 tons by considering the 40 tons additional capacity for dynamic effects. The stress analysis for 120 tons load gives the minimum safety factor of 1.18.

Keywords: mechanical design, stress analysis, tow structure, dynamic load, static load

Procedia PDF Downloads 87
22086 A Comparative Analysis of the Factors Determining Improvement and Effectiveness of Mediation in Family Matters Regarding Child Protection in Australia and Poland

Authors: Beata Anna Bronowicka

Abstract:

Purpose The purpose of this paper is to improve effectiveness of mediation in family matters regarding child protection in Australia and Poland. Design/methodology/approach the methodological approach is phenomenology. Two phenomenological methods of data collection were used in this research 1/ a doctrinal research 2/an interview. The doctrinal research forms the basis for obtaining information on mediation, the date of introduction of this alternative dispute resolution method to the Australian and Polish legal systems. No less important were the analysis of the legislation and legal doctrine in the field of mediation in family matters, especially child protection. In the second method, the data was collected by semi-structured interview. The collected data was translated from Polish to English and analysed using software program. Findings- The rights of children in the context of mediation in Australia and Poland differ from the recommendations of the UN Committee on the Rights of the Child, which require that children be included in all matters that concern them. It is the room for improvement in the mediation process by increasing child rights in mediation between parents in matters related to children. Children should have the right to express their opinion similarly to the case in the court process. The challenge with mediation is also better understanding the role of professionals in mediation as lawyers, mediators. Originality/value-The research is anticipated to be of particular benefit to parents, society as whole, and professionals working in mediation. These results may also be helpful during further legislative initiatives in this area.

Keywords: mediation, family law, children's rights, australian and polish family law

Procedia PDF Downloads 60
22085 Optimal Seismic Design of Reinforced Concrete Shear Wall-Frame Structure

Authors: H. Nikzad, S. Yoshitomi

Abstract:

In this paper, the optimal seismic design of reinforced concrete shear wall-frame building structures was done using structural optimization. The optimal section sizes were generated through structural optimization based on linear static analysis conforming to American Concrete Institute building design code (ACI 318-14). An analytical procedure was followed to validate the accuracy of the proposed method by comparing stresses on structural members through output files of MATLAB and ETABS. In order to consider the difference of stresses in structural elements by ETABS and MATLAB, and to avoid over-stress members by ETABS, a stress constraint ratio of MATLAB to ETABS was modified and introduced for the most critical load combinations and structural members. Moreover, seismic design of the structure was done following the International Building Code (IBC 2012), American Concrete Institute Building Code (ACI 318-14) and American Society of Civil Engineering (ASCE 7-10) standards. Typical reinforcement requirements for the structural wall, beam and column were discussed and presented using ETABS structural analysis software. The placement and detailing of reinforcement of structural members were also explained and discussed. The outcomes of this study show that the modification of section sizes play a vital role in finding an optimal combination of practical section sizes. In contrast, the optimization problem with size constraints has a higher cost than that of without size constraints. Moreover, the comparison of optimization problem with that of ETABS program shown to be satisfactory and governed ACI 318-14 building design code criteria.

Keywords: structural optimization, seismic design, linear static analysis, etabs, matlab, rc shear wall-frame structures

Procedia PDF Downloads 148
22084 Evolution of Memorial Architecture: Comparative Study of Aesthetics and Elements of Memorials in Europe and Indian Subcontinent

Authors: Madhusudan Hamirwasia, Sarang Barbarwar, Arshleen Kaur

Abstract:

The construction of memorials began thousands of years ago and the practice is still continuing. These memorials became a symbol to honor great people and events in the history. The aim of the study was to understand the evolution of memorials from an architectural design perspective. It is also concentrated on the similarities and differences between the memorials in Europe and those in the Indian subcontinent. The study shows how the design of a memorial has seen a considerable shift from the tribal Urasgattas to the contemporary commemorative structures. While they were somber symbolic gestures in the past, they have now transformed into a socio-cultural space in urban areas. Not only the memorials were inspired by the culture but the culture too got influenced by the memorials as with progressing time, they hold the vital link to our past. The study intends to encapsulate the essence of design elements in these memorials that convey the visitors the intangible messages held by the edifice in its tangible presence.

Keywords: evolution, emotion, memorials, symbolism

Procedia PDF Downloads 126
22083 Effect of Process Variables of Wire Electrical Discharge Machining on Surface Roughness for AA-6063 by Response Surface Methodology

Authors: Deepak

Abstract:

WEDM is an amazingly potential electro-wire process for machining of hard metal compounds and metal grid composites without making contact. Wire electrical machining is a developing noncustomary machining process for machining hard to machine materials that are electrically conductive. It is an exceptionally exact, precise, and one of the most famous machining forms in nontraditional machining. WEDM has turned into the fundamental piece of many assembling process ventures, which require precision, variety, and accuracy. In the present examination, AA-6063 is utilized as a workpiece, and execution investigation is done to discover the critical control factors. Impact of different parameters like a pulse on time, pulse off time, servo voltage, peak current, water pressure, wire tension, wire feed upon surface hardness has been researched while machining on AA-6063. RSM has been utilized to advance the yield variable. A variety of execution measures with input factors was demonstrated by utilizing the response surface methodology.

Keywords: AA-6063, response surface methodology, WEDM, surface roughness

Procedia PDF Downloads 103
22082 Developing a Model for the Relation between Heritage and Place Identity

Authors: A. Arjomand Kermani, N. Charbgoo, M. Alalhesabi

Abstract:

In the situation of great acceleration of changes and the need for new developments in the cities on one hand and conservation and regeneration approaches on the other hand, place identity and its relation with heritage context have taken on new importance. This relation is generally mutual and complex one. The significant point in this relation is that the process of identifying something as heritage rather than just historical  phenomena, brings that which may be inherited into the realm of identity. In planning and urban design as well as environmental psychology and phenomenology domain, place identity and its attributes and components were studied and discussed. However, the relation between physical environment (especially heritage) and identity has been neglected in the planning literature. This article aims to review the knowledge on this field and develop a model on the influence and relation of these two major concepts (heritage and identity). To build this conceptual model, we draw on available literature in environmental psychology as well as planning on place identity and heritage environment using a descriptive-analytical methodology to understand how they can inform the planning strategies and governance policies. A cross-disciplinary analysis is essential to understand the nature of place identity and heritage context and develop a more holistic model of their relationship in order to be employed in planning process and decision making. Moreover, this broader and more holistic perspective would enable both social scientists and planners to learn from one another’s expertise for a fuller understanding of community dynamics. The result indicates that a combination of these perspectives can provide a richer understanding—not only of how planning impacts our experience of place, but also how place identity can impact community planning and development.

Keywords: heritage, inter-disciplinary study, place identity, planning

Procedia PDF Downloads 408
22081 Building Information Modelling (BIM) and Unmanned Aerial Vehicles (UAV) Technologies in Road Construction Project Monitoring and Management: Case Study of a Project in Cyprus

Authors: Yiannis Vacanas, Kyriacos Themistocleous, Athos Agapiou, Diofantos Hadjimitsis

Abstract:

Building Information Modelling (BIM) technology is considered by construction professionals as a very valuable process in modern design, procurement and project management. Construction professionals of all disciplines can use a single 3D model which BIM technology provides, to design a project accurately and furthermore monitor the progress of construction works effectively and efficiently. Unmanned Aerial Vehicles (UAVs), a technology initially developed for military applications, is now without any difficulty accessible and has already been used by commercial industries, including the construction industry. UAV technology has mainly been used for collection of images that allow visual monitoring of building and civil engineering projects conditions in various circumstances. UAVs, nevertheless, have undergone significant advances in equipment capabilities and now have the capacity to acquire high-resolution imagery from many angles in a cost effective manner, and by using photogrammetry methods, someone can determine characteristics such as distances, angles, areas, volumes and elevations of an area within overlapping images. In order to examine the potential of using a combination of BIM and UAV technologies in construction project management, this paper presents the results of a case study of a typical road construction project where the combined use of the two technologies was used in order to achieve efficient and accurate as-built data collection of the works progress, with outcomes such as volumes, and production of sections and 3D models, information necessary in project progress monitoring and efficient project management.

Keywords: BIM, project management, project monitoring, UAV

Procedia PDF Downloads 287
22080 Dynamic Stability Assessment of Different Wheel Sized Bicycles Based on Current Frame Design Practice with ISO Requirement for Bicycle Safety

Authors: Milan Paudel, Fook Fah Yap, Anil K. Bastola

Abstract:

The difficulties in riding small wheel bicycles and their lesser stability have been perceived for a long time. Although small wheel bicycles are designed using the similar approach and guidelines that have worked well for big wheel bicycles, the performance of the big wheelers and the smaller wheelers are markedly different. Since both the big wheelers and small wheelers have same fundamental geometry, most blame the small wheel for this discrepancy in the performance. This paper reviews existing guidelines for bicycle design, especially the front steering geometry for the bicycle, and provides a systematic and quantitative analysis of different wheel sized bicycles. A validated mathematical model has been used as a tool to assess the dynamic performance of the bicycles in term of their self-stability. The results obtained were found to corroborate the subjective perception of cyclists for small wheel bicycles. The current approach for small wheel bicycle design requires higher speed to be self-stable. However, it was found that increasing the headtube angle and selecting a proper trail could improve the dynamic performance of small wheel bicycles. A range of parameters for front steering geometry has been identified for small wheel bicycles that have comparable stability as big wheel bicycles. Interestingly, most of the identified geometries are found to be beyond the ISO recommended range and seem to counter the current approach of small wheel bicycle design. Therefore, it was successfully shown that the guidelines for big wheelers do not translate directly to small wheelers, but careful selection of the front geometry could make small wheel bicycles as stable as big wheel bicycles.

Keywords: big wheel bicycle, design approach, ISO requirements, small wheel bicycle, stability and performance

Procedia PDF Downloads 175
22079 Mechanical Properties of Carbon Fibre Reinforced Thermoplastic Composites Consisting of Recycled Carbon Fibres and Polyamide 6 Fibres

Authors: Mir Mohammad Badrul Hasan, Anwar Abdkader, Chokri Cherif

Abstract:

With the increasing demand and use of carbon fibre reinforced composites (CFRC), disposal of the carbon fibres (CF) and end of life composite parts is gaining tremendous importance on the issue especially of sustainability. Furthermore, a number of processes (e. g. pyrolysis, solvolysis, etc.) are available currently to obtain recycled CF (rCF) from end-of-life CFRC. Since the CF waste or rCF are neither allowed to be thermally degraded nor landfilled (EU Directive 1999/31/EC), profitable recycling and re-use concepts are urgently necessary. Currently, the market for materials based on rCF mainly consists of random mats (nonwoven) made from short fibres. The strengths of composites that can be achieved from injection-molded components and from nonwovens are between 200-404 MPa and are characterized by low performance and suitable for non-structural applications such as in aircraft and vehicle interiors. On the contrary, spinning rCF to yarn constructions offers good potential for higher CFRC material properties due to high fibre orientation and compaction of rCF. However, no investigation is reported till yet on the direct comparison of the mechanical properties of thermoplastic CFRC manufactured from virgin CF filament yarn and spun yarns from staple rCF. There is a lack of understanding on the level of performance of the composites that can be achieved from hybrid yarns consisting of rCF and PA6 fibres. In this drop back, extensive research works are being carried out at the Textile Machinery and High-Performance Material Technology (ITM) on the development of new thermoplastic CFRC from hybrid yarns consisting of rCF. For this purpose, a process chain is developed at the ITM starting from fibre preparation to hybrid yarns manufacturing consisting of staple rCF by mixing with thermoplastic fibres. The objective is to apply such hybrid yarns for the manufacturing of load bearing textile reinforced thermoplastic CFRCs. In this paper, the development of innovative multi-component core-sheath hybrid yarn structures consisting of staple rCF and polyamide 6 (PA 6) on a DREF-3000 friction spinning machine is reported. Furthermore, Unidirectional (UD) CFRCs are manufactured from the developed hybrid yarns, and the mechanical properties of the composites such as tensile and flexural properties are analyzed. The results show that the UD composite manufactured from the developed hybrid yarns consisting of staple rCF possesses approximately 80% of the tensile strength and E-module to those produced from virgin CF filament yarn. The results show a huge potential of the DREF-3000 friction spinning process to develop composites from rCF for high-performance applications.

Keywords: recycled carbon fibres, hybrid yarn, friction spinning, thermoplastic composite

Procedia PDF Downloads 241
22078 A Process Model for Online Trip Reservation System

Authors: Sh. Wafa, M. Alanoud, S. Liyakathunisa

Abstract:

Online booking for a trip or hotel has become an indispensable traveling tool today, people tend to be more interested in selecting air flight travel as their first choice when going for a long trip. People's shopping behavior has greatly changed by the advent of social network. Traditional ticket booking methods are considered as outdated with the advancement in tools and technology. Web based booking framework is an 'absolute necessity to have' for any visit or movement business that is investing heaps of energy noting telephone calls, sending messages or considering employing more staff. In this paper, we propose a process model for online trip reservation for our designed web application. Our proposed system will be highly beneficial and helps in reduction in time and cost for customers.

Keywords: trip, hotel, reservation, process model, time, cost, web app

Procedia PDF Downloads 187
22077 Multi Agent System Architecture Oriented Prometheus Methodology Design for Reverse Logistics

Authors: F. Lhafiane, A. Elbyed, M. Bouchoum

Abstract:

The design of Reverse logistics Network has attracted growing attention with the stringent pressures from both environmental awareness and business sustainability. Reverse logistical activities include return, remanufacture, disassemble and dispose of products can be quite complex to manage. In addition, demand can be difficult to predict, and decision making is one of the challenges tasks. This complexity has amplified the need to develop an integrated architecture for product return as an enterprise system. The main purpose of this paper is to design Multi agent system (MAS) architecture using the Prometheus methodology to efficiently manage reverse logistics processes. The proposed MAS architecture includes five types of agents: Gate keeping Agent, Collection Agent, Sorting Agent, Processing Agent and Disposal Agent which act respectively during the five steps of reverse logistics Network.

Keywords: reverse logistics, multi agent system, prometheus methodology

Procedia PDF Downloads 445
22076 Pitfalls and Drawbacks in Visual Modelling of Learning Knowledge by Students

Authors: Tatyana Gavrilova, Vadim Onufriev

Abstract:

Knowledge-based systems’ design requires the developer’s owning the advanced analytical skills. The efficient development of that skills within university courses needs a deep understanding of main pitfalls and drawbacks, which students usually make during their analytical work in form of visual modeling. Thus, it was necessary to hold an analysis of 5-th year students’ learning exercises within courses of 'Intelligent systems' and 'Knowledge engineering' in Saint-Petersburg Polytechnic University. The analysis shows that both lack of system thinking skills and methodological mistakes in course design cause the errors that are discussed in the paper. The conclusion contains an exploration of the issues and topics necessary and sufficient for the implementation of the improved practices in educational design for future curricula of teaching programs.

Keywords: knowledge based systems, knowledge engineering, students’ errors, visual modeling

Procedia PDF Downloads 293
22075 Concrete Mix Design Using Neural Network

Authors: Rama Shanker, Anil Kumar Sachan

Abstract:

Basic ingredients of concrete are cement, fine aggregate, coarse aggregate and water. To produce a concrete of certain specific properties, optimum proportion of these ingredients are mixed. The important factors which govern the mix design are grade of concrete, type of cement and size, shape and grading of aggregates. Concrete mix design method is based on experimentally evolved empirical relationship between the factors in the choice of mix design. Basic draw backs of this method are that it does not produce desired strength, calculations are cumbersome and a number of tables are to be referred for arriving at trial mix proportion moreover, the variation in attainment of desired strength is uncertain below the target strength and may even fail. To solve this problem, a lot of cubes of standard grades were prepared and attained 28 days strength determined for different combination of cement, fine aggregate, coarse aggregate and water. An artificial neural network (ANN) was prepared using these data. The input of ANN were grade of concrete, type of cement, size, shape and grading of aggregates and output were proportions of various ingredients. With the help of these inputs and outputs, ANN was trained using feed forward back proportion model. Finally trained ANN was validated, it was seen that it gave the result with/ error of maximum 4 to 5%. Hence, specific type of concrete can be prepared from given material properties and proportions of these materials can be quickly evaluated using the proposed ANN.

Keywords: aggregate proportions, artificial neural network, concrete grade, concrete mix design

Procedia PDF Downloads 372
22074 The Restoration of the Old District in the Urbanization: The Case Study of Samsen Riverside Community, Dusit District, Bangkok

Authors: Tikhanporn Punluekdej, Saowapa Phaithayawat

Abstract:

The objectives of this research are: 1) to discover the mechanism in the restoration process of the old district, and 2) to study the people participation in the community with related units. This research utilizes qualitative research method together with the tools used in the study of historical and anthropological disciplines. The research revealed that the restoration process of the old district started with the needs of the local people in the community. These people are considered as a young generation in the community. The leading group of the community played a vital role in the restoration process by igniting the whole idea and followed by the help from those who have lived in the area of more than fifty years. The restoration process is the genuine desire of the local people without the intervention of the local politics. The core group would coordinate with the related units in which there were, for instance, the academic institutions in order to find out the most dominant historical features of the community including its settlement. The Crown Property Bureau, as the sole-owner of the land, joined the restoration in the physical development dimension. The restoration was possible due to the cooperation between local people and related units, under the designated plans, budget, and social activities.

Keywords: restoration, urban area, old district, people participation

Procedia PDF Downloads 391
22073 Deep Excavations with Embedded Retaining Walls - Diaphragm Walls

Authors: Sowmiyaa V. S., Tiruvengala Padma, Dhanasekaran B.

Abstract:

Due to urbanization, traffic congestion, air pollution and fuel consumption underground metros are constructed in urban cities nowadays. These metros reduce the commutation time and makes the daily transportation in urban cities hassle free. To construct the underground metros deep excavations are to be carried out. These excavations should be supported by an appropriate earth retaining structures to provide stability and to prevent deformation failures. The failure of deep excavations is catastrophic and hence appropriate caution need to be carried out during design and construction stages. This paper covers the construction aspects, equipment, quality control, design aspects of one of the earth retaining systems the Diaphragm Walls.

Keywords: underground metros, diaphragm wall, quality control of diaphragm wall, design aspects of diaphragm wall

Procedia PDF Downloads 85
22072 Effective Work Roll Cooling toward Stand Reduction in Hot Strip Process

Authors: Temsiri Sapsaman, Anocha Bhocarattanahkul

Abstract:

The maintenance of work rolls in hot strip processing has been lengthy and difficult tasks for hot strip manufacturer because heavy work rolls have to be taken out of the production line, which could take hours. One way to increase the time between maintenance is to improve the effectiveness of the work roll cooling system such that the wear and tear more slowly occurs, while the operation cost is kept low. Therefore, this study aims to improve the work roll cooling system by providing the manufacturer the relationship between the work-roll temperature reduced by cooling and the water flow that can help manufacturer determining the more effective water flow of the cooling system. The relationship is found using simulation with a systematic process adjustment so that the satisfying quality of product is achieved. Results suggest that the manufacturer could reduce the water flow by 9% with roughly the same performance. With the same process adjustment, the feasibility of finishing-mill-stand reduction is also investigated. Results suggest its possibility.

Keywords: work-roll cooling system, hot strip process adjustment, feasibility study, stand reduction

Procedia PDF Downloads 352
22071 Intelligent Drug Delivery Systems

Authors: Shideh Mohseni Movahed, Mansoureh Safari

Abstract:

Intelligent drug delivery systems (IDDS) are innovative technological innovations and clinical way to advance current treatments. These systems differ in technique of therapeutic administration, intricacy, materials and patient compliance to address numerous clinical conditions that require different pharmacological therapies. IDDS capable of releasing an active molecule at the proper site and at a amount that adjusts in response to the progression of the disease or to certain functions/biorhythms of the organism is particularly appealing. In this paper, we describe the most recent advances in the development of intelligent drug delivery systems.

Keywords: drug delivery systems, IDDS, medicine, health

Procedia PDF Downloads 206
22070 Sludge Marvel (Densification): The Ultimate Solution For Doing More With Less Effort!

Authors: Raj Chavan

Abstract:

At present, the United States is home to more than 14,000 Water Resource Recovery Facilities (WRRFs), of which approximately 35% have implemented nutrient limits of some kind. These WRRFs contribute 10 to 15% of the total nutrient burden to surface rivers in the United States and account for approximately 1% of total power demand and 2% of total greenhouse gas emissions (GHG). There are several factors that have influenced the development of densification technologies in the direction of more compact and energy-efficient nutrient removal processes. Prior to surface water discharge, existing facilities that necessitate capacity expansion or biomass densification for greater treatability within the same footprint are being subjected to stricter nutrient removal requirements. Densification of activated sludge as a method for nutrient removal and process intensification at WRRFs has garnered considerable attention in recent times. The biological processes take place within the aerobic sediment granules, which form the basis of the technology. The possibility of generating granular sludge through continuous (or conventional) activated sludge processes (CAS) or densification of biomass through the transfer of activated sludge flocs to a denser biomass aggregate as an exceptionally efficient intensification technique has generated considerable interest. This presentation aims to furnish attendees with a foundational comprehension of densification through the illustration of practical concerns and insights. The subsequent subjects will be deliberated upon. What are some potential techniques for producing and preserving densified granules? What processes are responsible for the densification of biological flocs? How do physical selectors contribute to the process of biological flocs becoming denser? What viable strategies exist for the management of densified biological flocs, and which design parameters of physical selection influence the retention of densified biological flocs? determining operational solutions for floc and granule customization in order to meet capacity and performance objectives? The answers to these pivotal questions will be derived from existing full-scale treatment facilities, bench-scale and pilot-scale investigations, and existing literature data. By the conclusion of the presentation, the audience will possess a fundamental comprehension of the densification concept and its significance in attaining effective effluent treatment. Additionally, case studies pertaining to the design and operation of densification procedures will be incorporated into the presentation.

Keywords: densification, intensification, nutrient removal, granular sludge

Procedia PDF Downloads 57
22069 Design Components and Reliability Aspects of Municipal Waste Water and SEIG Based Micro Hydro Power Plant

Authors: R. K. Saket

Abstract:

This paper presents design aspects and probabilistic approach for generation reliability evaluation of an alternative resource: municipal waste water based micro hydro power generation system. Annual and daily flow duration curves have been obtained for design, installation, development, scientific analysis and reliability evaluation of the MHPP. The hydro potential of the waste water flowing through sewage system of the BHU campus has been determined to produce annual flow duration and daily flow duration curves by ordering the recorded water flows from maximum to minimum values. Design pressure, the roughness of the pipe’s interior surface, method of joining, weight, ease of installation, accessibility to the sewage system, design life, maintenance, weather conditions, availability of material, related cost and likelihood of structural damage have been considered for design of a particular penstock for reliable operation of the MHPP. A MHPGS based on MWW and SEIG is designed, developed, and practically implemented to provide reliable electric energy to suitable load in the campus of the Banaras Hindu University, Varanasi, (UP), India. Generation reliability evaluation of the developed MHPP using Gaussian distribution approach, safety factor concept, peak load consideration and Simpson 1/3rd rule has presented in this paper.

Keywords: self excited induction generator, annual and daily flow duration curve, sewage system, municipal waste water, reliability evaluation, Gaussian distribution, Simpson 1/3rd rule

Procedia PDF Downloads 542
22068 Development of a Wall Climbing Robotic Ground Penetrating Radar System for Inspection of Vertical Concrete Structures

Authors: Md Omar Faruq Howlader, Tariq Pervez Sattar, Sandra Dudley

Abstract:

This paper describes the design process of a 200 MHz Ground Penetrating Radar (GPR) and a battery powered concrete vertical concrete surface climbing mobile robot. The key design feature is a miniaturized 200 MHz dipole antenna using additional radiating arms and procedure records a reduction of 40% in length compared to a conventional antenna. The antenna set is mounted in front of the robot using a servo mechanism for folding and unfolding purposes. The robot’s adhesion mechanism to climb the reinforced concrete wall is based on neodymium permanent magnets arranged in a unique combination to concentrate and maximize the magnetic flux to provide sufficient adhesion force for GPR installation. The experiments demonstrated the robot’s capability of climbing reinforced concrete wall carrying the attached prototype GPR system and perform floor-to-wall transition and vice versa. The developed GPR’s performance is validated by its capability of detecting and localizing an aluminium sheet and a reinforcement bar (rebar) of 12 mm diameter buried under a test rig built of wood to mimic the concrete structure environment. The present robotic GPR system proves the concept of feasibility of undertaking inspection procedure on large concrete structures in hazardous environments that may not be accessible to human inspectors.

Keywords: climbing robot, dipole antenna, ground penetrating radar (GPR), mobile robots, robotic GPR

Procedia PDF Downloads 254
22067 The Emoji Method: An Approach for Identifying and Formulating Problem Ideas

Authors: Thorsten Herrmann, Alexander Laukemann, Hansgeorg Binz, Daniel Roth

Abstract:

For the analysis of already identified and existing problems, the pertinent literature provides a comprehensive collection of approaches as well as methods in order to analyze the problems in detail. But coming up with problems, which are assets worth pursuing further, is often challenging. However, the importance of well-formulated problem ideas and their influence of subsequent creative processes are incontestable and proven. In order to meet the covered challenges, the Institute for Engineering Design and Industrial Design (IKTD) developed the Emoji Method. This paper presents the Emoji Method, which support designers to generate problem ideas in a structured way. Considering research findings from knowledge management and innovation management, research into emojis and emoticons reveal insights by means of identifying and formulating problem ideas within the early design phase. The simple application and the huge supporting potential of the Emoji Method within the early design phase are only few of the many successful results of the conducted evaluation. The Emoji Method encourages designers to identify problem ideas and describe them in a structured way in order to start focused with generating solution ideas for the revealed problem ideas.

Keywords: emojis, problem ideas, innovation management, knowledge management

Procedia PDF Downloads 131
22066 Biogeography Based CO2 and Cost Optimization of RC Cantilever Retaining Walls

Authors: Ibrahim Aydogdu, Alper Akin

Abstract:

In this study, the development of minimizing the cost and the CO2 emission of the RC retaining wall design has been performed by Biogeography Based Optimization (BBO) algorithm. This has been achieved by developing computer programs utilizing BBO algorithm which minimize the cost and the CO2 emission of the RC retaining walls. Objective functions of the optimization problem are defined as the minimized cost, the CO2 emission and weighted aggregate of the cost and the CO2 functions of the RC retaining walls. In the formulation of the optimum design problem, the height and thickness of the stem, the length of the toe projection, the thickness of the stem at base level, the length and thickness of the base, the depth and thickness of the key, the distance from the toe to the key, the number and diameter of the reinforcement bars are treated as design variables. In the formulation of the optimization problem, flexural and shear strength constraints and minimum/maximum limitations for the reinforcement bar areas are derived from American Concrete Institute (ACI 318-14) design code. Moreover, the development length conditions for suitable detailing of reinforcement are treated as a constraint. The obtained optimum designs must satisfy the factor of safety for failure modes (overturning, sliding and bearing), strength, serviceability and other required limitations to attain practically acceptable shapes. To demonstrate the efficiency and robustness of the presented BBO algorithm, the optimum design example for retaining walls is presented and the results are compared to the previously obtained results available in the literature.

Keywords: bio geography, meta-heuristic search, optimization, retaining wall

Procedia PDF Downloads 382