Search results for: dimensional accuracy
2280 Nonlinear Analysis of Shear Deformable Deep Beam Resting on Nonlinear Two-Parameter Random Soil
Authors: M. Seguini, D. Nedjar
Abstract:
In this paper, the nonlinear analysis of Timoshenko beam undergoing moderate large deflections and resting on nonlinear two-parameter random foundation is presented, taking into account the effects of shear deformation, beam’s properties variation and the spatial variability of soil characteristics. The finite element probabilistic analysis has been performed by using Timoshenko beam theory with the Von Kàrmàn nonlinear strain-displacement relationships combined to Vanmarcke theory and Monte Carlo simulations, which is implemented in a Matlab program. Numerical examples of the newly developed model is conducted to confirm the efficiency and accuracy of this later and the importance of accounting for the foundation second parameter (Winkler-Pasternak). Thus, the results obtained from the developed model are presented and compared with those available in the literature to examine how the consideration of the shear and spatial variability of soil’s characteristics affects the response of the system.Keywords: nonlinear analysis, soil-structure interaction, large deflection, Timoshenko beam, Euler-Bernoulli beam, Winkler foundation, Pasternak foundation, spatial variability
Procedia PDF Downloads 3292279 DOA Estimation Using Golden Section Search
Authors: Niharika Verma, Sandeep Santosh
Abstract:
DOA technique is a localization technique used in the communication field. Various algorithms have been developed for direction of arrival estimation like MUSIC, ROOT MUSIC, etc. These algorithms depend on various parameters like antenna array elements, number of snapshots and various others. Basically the MUSIC spectrum is evaluated and peaks obtained are considered as the angle of arrivals. The angles evaluated using this process depends on the scanning interval chosen. The accuracy of the results obtained depends on the coarseness of the interval chosen. In this paper, golden section search is applied to the MUSIC algorithm and therefore, more accurate results are achieved. Initially the coarse DOA estimations is done using the MUSIC algorithm in the range -90 to 90 degree at the interval of 10 degree. After the peaks obtained then fine DOA estimation is done using golden section search. Also, the partitioning method is applied to estimate the number of signals incident on the antenna array. Dependency of the algorithm on the number of snapshots is also being explained. Hence, the accurate results are being determined using this algorithm.Keywords: Direction of Arrival (DOA), golden section search, MUSIC, number of snapshots
Procedia PDF Downloads 4492278 Computer Aided Diagnostic System for Detection and Classification of a Brain Tumor through MRI Using Level Set Based Segmentation Technique and ANN Classifier
Authors: Atanu K Samanta, Asim Ali Khan
Abstract:
Due to the acquisition of huge amounts of brain tumor magnetic resonance images (MRI) in clinics, it is very difficult for radiologists to manually interpret and segment these images within a reasonable span of time. Computer-aided diagnosis (CAD) systems can enhance the diagnostic capabilities of radiologists and reduce the time required for accurate diagnosis. An intelligent computer-aided technique for automatic detection of a brain tumor through MRI is presented in this paper. The technique uses the following computational methods; the Level Set for segmentation of a brain tumor from other brain parts, extraction of features from this segmented tumor portion using gray level co-occurrence Matrix (GLCM), and the Artificial Neural Network (ANN) to classify brain tumor images according to their respective types. The entire work is carried out on 50 images having five types of brain tumor. The overall classification accuracy using this method is found to be 98% which is significantly good.Keywords: brain tumor, computer-aided diagnostic (CAD) system, gray-level co-occurrence matrix (GLCM), tumor segmentation, level set method
Procedia PDF Downloads 5152277 The Relationship between the Environmental and Financial Performance of Australian Electricity Producers
Authors: S. Forughi, A. De Zoysa, S. Bhati
Abstract:
The present study focuses on the environmental performance of the companies in the electricity-producing sector and its relationship with their financial performance. We will review the major studies that examined the relationship between the environmental and financial performance of firms in various industries. While the classical economic debates consider the environmental friendly activities costly and harmful to a firm’s profitability, it is claimed that firms will be rewarded with higher profitability in long run through the investments in environmental friendly activities. In this context, prior studies have examined the relationship between the environmental and financial performance of firms operating in different industry sectors. Our study will employ an environmental indicator to increase the accuracy of the results and be employed as an independent variable in our developed econometric model to evaluate the impact of the financial performance of the firms on their environmental friendly activities in the context of companies operating in the Australian electricity-producing sector. As a result, we expect our methodology to contribute to the literature and the findings of the study will help us to provide recommendations and policy implications to the electricity producers.Keywords: Australian electricity sector, efficiency measurement, environmental-financial performance interaction, environmental index
Procedia PDF Downloads 3282276 Cooperative Sensing for Wireless Sensor Networks
Authors: Julien Romieux, Fabio Verdicchio
Abstract:
Wireless Sensor Networks (WSNs), which sense environmental data with battery-powered nodes, require multi-hop communication. This power-demanding task adds an extra workload that is unfairly distributed across the network. As a result, nodes run out of battery at different times: this requires an impractical individual node maintenance scheme. Therefore we investigate a new Cooperative Sensing approach that extends the WSN operational life and allows a more practical network maintenance scheme (where all nodes deplete their batteries almost at the same time). We propose a novel cooperative algorithm that derives a piecewise representation of the sensed signal while controlling approximation accuracy. Simulations show that our algorithm increases WSN operational life and spreads communication workload evenly. Results convey a counterintuitive conclusion: distributing workload fairly amongst nodes may not decrease the network power consumption and yet extend the WSN operational life. This is achieved as our cooperative approach decreases the workload of the most burdened cluster in the network.Keywords: cooperative signal processing, signal representation and approximation, power management, wireless sensor networks
Procedia PDF Downloads 3942275 Path Planning for Multiple Unmanned Aerial Vehicles Based on Adaptive Probabilistic Sampling Algorithm
Authors: Long Cheng, Tong He, Iraj Mantegh, Wen-Fang Xie
Abstract:
Path planning is essential for UAVs (Unmanned Aerial Vehicle) with autonomous navigation in unknown environments. In this paper, an adaptive probabilistic sampling algorithm is proposed for the GPS-denied environment, which can be utilized for autonomous navigation system of multiple UAVs in a dynamically-changing structured environment. This method can be used for Unmanned Aircraft Systems Traffic Management (UTM) solutions and in autonomous urban aerial mobility, where a number of platforms are expected to share the airspace. A path network is initially built off line based on available environment map, and on-board sensors systems on the flying UAVs are used for continuous situational awareness and to inform the changes in the path network. Simulation results based on MATLAB and Gazebo in different scenarios and algorithms performance measurement show the high efficiency and accuracy of the proposed technique in unknown environments.Keywords: path planning, adaptive probabilistic sampling, obstacle avoidance, multiple unmanned aerial vehicles, unknown environments
Procedia PDF Downloads 1612274 Simulation of Wind Generator with Fixed Wind Turbine under Matlab-Simulink
Authors: Mahdi Motahari, Mojtaba Farzaneh, Armin Parsian Nejad
Abstract:
The rapidly growing wind industry is highly expressing the need for education and training worldwide, particularly on the system level. Modelling and simulating wind generator system using Matlab-Simulink provides expert help in understanding wind systems engineering and system design. Working under Matlab-Simulink we present the integration of the developed WECS model with public electrical grid. A test of the calculated power and Cp related to the experimental equivalent data, using statistical analysis is performed. The statistical indicators of accuracy show better results of the presented method with RMSE: 21%, 22%, MBE : 0.77%, 0.12 % and MAE :3%, 4%.On the other hand we study its behavior when integrated in whole power system. Three level of wind speeds have been chosen: low with 5m/s as the mean value, medium with 8m/s as the mean value and high speed with 12m/s as the mean value. These allowed predicting and supervising the active power produced by the system, characterized respectively by the middle powers of -150 kW, -250kW and -480 kW which will be injected directly into the public electrical grid and the reactive power, characterized respectively by the middle powers of 60 kW, 180 kW and 320 kW and will be consumed by the wind generator.Keywords: modelling, simulation, wind generator, fixed speed wind turbine, Matlab-Simulink
Procedia PDF Downloads 6332273 Comparative Analysis of Predictive Models for Customer Churn Prediction in the Telecommunication Industry
Authors: Deepika Christopher, Garima Anand
Abstract:
To determine the best model for churn prediction in the telecom industry, this paper compares 11 machine learning algorithms, namely Logistic Regression, Support Vector Machine, Random Forest, Decision Tree, XGBoost, LightGBM, Cat Boost, AdaBoost, Extra Trees, Deep Neural Network, and Hybrid Model (MLPClassifier). It also aims to pinpoint the top three factors that lead to customer churn and conducts customer segmentation to identify vulnerable groups. According to the data, the Logistic Regression model performs the best, with an F1 score of 0.6215, 81.76% accuracy, 68.95% precision, and 56.57% recall. The top three attributes that cause churn are found to be tenure, Internet Service Fiber optic, and Internet Service DSL; conversely, the top three models in this article that perform the best are Logistic Regression, Deep Neural Network, and AdaBoost. The K means algorithm is applied to establish and analyze four different customer clusters. This study has effectively identified customers that are at risk of churn and may be utilized to develop and execute strategies that lower customer attrition.Keywords: attrition, retention, predictive modeling, customer segmentation, telecommunications
Procedia PDF Downloads 612272 A Deep Learning-Based Pedestrian Trajectory Prediction Algorithm
Authors: Haozhe Xiang
Abstract:
With the rise of the Internet of Things era, intelligent products are gradually integrating into people's lives. Pedestrian trajectory prediction has become a key issue, which is crucial for the motion path planning of intelligent agents such as autonomous vehicles, robots, and drones. In the current technological context, deep learning technology is becoming increasingly sophisticated and gradually replacing traditional models. The pedestrian trajectory prediction algorithm combining neural networks and attention mechanisms has significantly improved prediction accuracy. Based on in-depth research on deep learning and pedestrian trajectory prediction algorithms, this article focuses on physical environment modeling and learning of historical trajectory time dependence. At the same time, social interaction between pedestrians and scene interaction between pedestrians and the environment were handled. An improved pedestrian trajectory prediction algorithm is proposed by analyzing the existing model architecture. With the help of these improvements, acceptable predicted trajectories were successfully obtained. Experiments on public datasets have demonstrated the algorithm's effectiveness and achieved acceptable results.Keywords: deep learning, graph convolutional network, attention mechanism, LSTM
Procedia PDF Downloads 762271 A Greedy Alignment Algorithm Supporting Medication Reconciliation
Authors: David Tresner-Kirsch
Abstract:
Reconciling patient medication lists from multiple sources is a critical task supporting the safe delivery of patient care. Manual reconciliation is a time-consuming and error-prone process, and recently attempts have been made to develop efficiency- and safety-oriented automated support for professionals performing the task. An important capability of any such support system is automated alignment – finding which medications from a list correspond to which medications from a different source, regardless of misspellings, naming differences (e.g. brand name vs. generic), or changes in treatment (e.g. switching a patient from one antidepressant class to another). This work describes a new algorithmic solution to this alignment task, using a greedy matching approach based on string similarity, edit distances, concept extraction and normalization, and synonym search derived from the RxNorm nomenclature. The accuracy of this algorithm was evaluated against a gold-standard corpus of 681 medication records; this evaluation found that the algorithm predicted alignments with 99% precision and 91% recall. This performance is sufficient to support decision support applications for medication reconciliation.Keywords: clinical decision support, medication reconciliation, natural language processing, RxNorm
Procedia PDF Downloads 2902270 Hybrid Graphene Based Nanomaterial as Highly Efficient Catalyst for the Electrochemical Determination of Ciprofloxacin
Authors: Tien S. H. Pham, Peter J. Mahon, Aimin Yu
Abstract:
The detection of drug molecules by voltammetry has attracted great interest over the past years. However, many drug molecules exhibit poor electrochemical signals at common electrodes which result in low sensitivity in detection. An efficient way to overcome this problem is to modify electrodes with functional materials. Since discovered in 2004, graphene (or reduced graphene oxide) has emerged as one of the most studied two-dimensional carbon materials in condensed matter physics, electrochemistry, and so on due to its exceptional physicochemical properties. Additionally, the continuous development of technology has opened the new window for the successful fabrications of many novel graphene-based nanomaterials to serve in electrochemical analysis. This research aims to synthesize and characterize gold nanoparticle coated beta-cyclodextrin functionalized reduced graphene oxide (Au NP–β-CD–RGO) nanocomposites with highly conductive and strongly electro-catalytic properties as well as excellent supramolecular recognition abilities for the modification of electrodes. The electrochemical responses of ciprofloxacin at the as-prepared nanocomposite modified electrode was effectively amplified was much higher in comparison with that at the bare electrode. The linear concentration range was from 0.01 to 120 µM, with a detection limit of 2.7 nM using differential pulse voltammetry. Thus, Au NP–β-CD–RGO nanocomposite has great potential as an ideal material to construct sensitive sensors for the electrochemical determination of ciprofloxacin or similar antibacterial drugs in the future based on its excellent stability, selectivity, and reproducibility.Keywords: Au nanoparticles, β-CD, ciprofloxacin, electrochemical determination, graphene based nanomaterials
Procedia PDF Downloads 1902269 Application of Two Stages Adaptive Neuro-Fuzzy Inference System to Improve Dissolved Gas Analysis Interpretation Techniques
Authors: Kharisma Utomo Mulyodinoto, Suwarno, A. Abu-Siada
Abstract:
Dissolved Gas Analysis is one of impressive technique to detect and predict internal fault of transformers by using gas generated by transformer oil sample. A number of methods are used to interpret the dissolved gas from transformer oil sample: Doernenberg Ratio Method, IEC (International Electrotechnical Commission) Ratio Method, and Duval Triangle Method. While the assessment of dissolved gas within transformer oil samples has been standardized over the past two decades, analysis of the results is not always straight forward as it depends on personnel expertise more than mathematical formulas. To get over this limitation, this paper is aimed at improving the interpretation of Doernenberg Ratio Method, IEC Ratio Method, and Duval Triangle Method using Two Stages Adaptive Neuro-Fuzzy Inference System (ANFIS). Dissolved gas analysis data from 520 faulty transformers was analyzed to establish the proposed ANFIS model. Results show that the developed ANFIS model is accurate and can standardize the dissolved gas interpretation process with accuracy higher than 90%.Keywords: ANFIS, dissolved gas analysis, Doernenberg ratio method, Duval triangular method, IEC ratio method, transformer
Procedia PDF Downloads 1512268 Rising of Single and Double Bubbles during Boiling and Effect of Electric Field in This Process
Authors: Masoud Gholam Ale Mohammad, Mojtaba Hafezi Birgani
Abstract:
An experimental study of saturated pool boiling on a single artificial nucleation site without and with the application of an electric field on the boiling surface has been conducted. N-pentane is boiling on a copper surface and is recorded with a high speed camera providing high quality pictures and movies. The accuracy of the visualization allowed establishing an experimental bubble growth law from a large number of experiments. This law shows that the evaporation rate is decreasing during the bubble growth, and underlines the importance of liquid motion induced by the preceding bubble. Bubble rise is therefore studied: once detached, bubbles accelerate vertically until reaching a maximum velocity in good agreement with a correlation from literature. The bubbles then turn to another direction. The effect of applying an electric field on the boiling surface in finally studied. In addition to changes in the bubble shape, changes are also shown in the liquid plume and the convective structures above the surface. Lower maximum rising velocities were measured in the presence of electric fields, especially with a negative polarity.Keywords: single and double bubbles, electric field, boiling, rising
Procedia PDF Downloads 2292267 MXene-Based Self-Sensing of Damage in Fiber Composites
Authors: Latha Nataraj, Todd Henry, Micheal Wallock, Asha Hall, Christine Hatter, Babak Anasori, Yury Gogotsi
Abstract:
Multifunctional composites with enhanced strength and toughness for superior damage tolerance are essential for advanced aerospace and military applications. Detection of structural changes prior to visible damage may be achieved by incorporating fillers with tunable properties such as two-dimensional (2D) nanomaterials with high aspect ratios and more surface-active sites. While 2D graphene with large surface areas, good mechanical properties, and high electrical conductivity seems ideal as a filler, the single-atomic thickness can lead to bending and rolling during processing, requiring post-processing to bond to polymer matrices. Lately, an emerging family of 2D transition metal carbides and nitrides, MXenes, has attracted much attention since their discovery in 2011. Metallic electronic conductivity and good mechanical properties, even with increased polymer content, coupled with hydrophilicity make MXenes a good candidate as a filler material in polymer composites and exceptional as multifunctional damage indicators in composites. Here, we systematically study MXene-based (Ti₃C₂) coated on glass fibers for fiber reinforced polymer composite for self-sensing using microscopy and micromechanical testing. Further testing is in progress through the investigation of local variations in optical, acoustic, and thermal properties within the damage sites in response to strain caused by mechanical loading.Keywords: damage sensing, fiber composites, MXene, self-sensing
Procedia PDF Downloads 1232266 Numerical Investigation of Pressure Drop and Erosion Wear by Computational Fluid Dynamics Simulation
Authors: Praveen Kumar, Nitin Kumar, Hemant Kumar
Abstract:
The modernization of computer technology and commercial computational fluid dynamic (CFD) simulation has given better detailed results as compared to experimental investigation techniques. CFD techniques are widely used in different field due to its flexibility and performance. Evaluation of pipeline erosion is complex phenomenon to solve by numerical arithmetic technique, whereas CFD simulation is an easy tool to resolve that type of problem. Erosion wear behaviour due to solid–liquid mixture in the slurry pipeline has been investigated using commercial CFD code in FLUENT. Multi-phase Euler-Lagrange model was adopted to predict the solid particle erosion wear in 22.5° pipe bend for the flow of bottom ash-water suspension. The present study addresses erosion prediction in three dimensional 22.5° pipe bend for two-phase (solid and liquid) flow using finite volume method with standard k-ε turbulence, discrete phase model and evaluation of erosion wear rate with varying velocity 2-4 m/s. The result shows that velocity of solid-liquid mixture found to be highly dominating parameter as compared to solid concentration, density, and particle size. At low velocity, settling takes place in the pipe bend due to low inertia and gravitational effect on solid particulate which leads to high erosion at bottom side of pipeline.Keywords: computational fluid dynamics (CFD), erosion, slurry transportation, k-ε Model
Procedia PDF Downloads 4122265 Comparison of Different Intraocular Lens Power Calculation Formulas in People With Very High Myopia
Authors: Xia Chen, Yulan Wang
Abstract:
purpose: To compare the accuracy of Haigis, SRK/T, T2, Holladay 1, Hoffer Q, Barrett Universal II, Emmetropia Verifying Optical (EVO) and Kane for intraocular lens power calculation in patients with axial length (AL) ≥ 28 mm. Methods: In this retrospective single-center study, 50 eyes of 41 patients with AL ≥ 28 mm that underwent uneventful cataract surgery were enrolled. The actual postoperative refractive results were compared to the predicted refraction calculated with different formulas (Haigis, SRK/T, T2, Holladay 1, Hoffer Q, Barrett Universal II, EVO and Kane). The mean absolute prediction errors (MAE) 1 month postoperatively were compared. Results: The MAE of different formulas were as follows: Haigis (0.509), SRK/T (0.705), T2 (0.999), Holladay 1 (0.714), Hoffer Q (0.583), Barrett Universal II (0.552), EVO (0.463) and Kane (0.441). No significant difference was found among the different formulas (P = .122). The Kane and EVO formulas achieved the lowest level of mean prediction error (PE) and median absolute error (MedAE) (p < 0.05). Conclusion: The Kane and EVO formulas had a better success rate than others in predicting IOL power in high myopic eyes with AL longer than 28 mm in this study.Keywords: cataract, power calculation formulas, intraocular lens, long axial length
Procedia PDF Downloads 892264 Optimizing the Morphology and Flow Patterns of Scaffold Perfusion Systems for Effective Cell Deposition Using Computational Fluid Dynamics
Authors: Vineeth Siripuram, Abhineet Nigam
Abstract:
A bioreactor is an engineered system that supports a biologically active environment. Along the years, the advancements in bioreactors have been widely accepted all over the world for varied applications ranging from sewage treatment to tissue cloning. Driven by tissue and organ shortage, tissue engineering has emerged as an alternative to transplantation for the reconstruction of lost or damaged organs. In this study, Computational fluid dynamics (CFD) has been used to model porous medium flow in scaffolds (taken from the literature) with different flow patterns. A detailed analysis of different scaffold geometries and their influence on cell deposition in the perfusion system is been carried out using Computational fluid dynamics (CFD). Considering the fact that, the scaffold should mimic the organs or tissues structures in a three-dimensional manner, certain assumptions were made accordingly. The research on scaffolds has been extensively carried out in different bioreactors. However, there has been less focus on the morphology of the scaffolds and the flow patterns in which the perfusion system is laid upon. The objective of this paper is to employ a computational approach using CFD simulation to determine the optimal morphology and the anisotropic measurements of the various samples of scaffolds. Using predictive computational modelling approach, variables which exert dominant effects on the cell deposition within the scaffold were prioritised and corresponding changes in morphology of scaffold and flow patterns in the perfusion systems are made. A Eulerian approach was carried on in multiple CFD simulations, and it is observed that the morphological and topological changes in the scaffold perfusion system are of great importance in the commercial applications of scaffolds.Keywords: cell seeding, CFD, flow patterns, modelling, perfusion systems, scaffold
Procedia PDF Downloads 1632263 Effect of Joule Heating on Chemically Reacting Micropolar Fluid Flow over Truncated Cone with Convective Boundary Condition Using Spectral Quasilinearization Method
Authors: Pradeepa Teegala, Ramreddy Chetteti
Abstract:
This work emphasizes the effects of heat generation/absorption and Joule heating on chemically reacting micropolar fluid flow over a truncated cone with convective boundary condition. For this complex fluid flow problem, the similarity solution does not exist and hence using non-similarity transformations, the governing fluid flow equations along with related boundary conditions are transformed into a set of non-dimensional partial differential equations. Several authors have applied the spectral quasi-linearization method to solve the ordinary differential equations, but here the resulting nonlinear partial differential equations are solved for non-similarity solution by using a recently developed method called the spectral quasi-linearization method (SQLM). Comparison with previously published work on special cases of the problem is performed and found to be in excellent agreement. The influence of pertinent parameters namely Biot number, Joule heating, heat generation/absorption, chemical reaction, micropolar and magnetic field on physical quantities of the flow are displayed through graphs and the salient features are explored in detail. Further, the results are analyzed by comparing with two special cases, namely, vertical plate and full cone wherever possible.Keywords: chemical reaction, convective boundary condition, joule heating, micropolar fluid, spectral quasilinearization method
Procedia PDF Downloads 3482262 Impact of Artificial Intelligence Technologies on Information-Seeking Behaviors and the Need for a New Information Seeking Model
Authors: Mohammed Nasser Al-Suqri
Abstract:
Former information-seeking models are proposed more than two decades ago. These already existed models were given prior to the evolution of digital information era and Artificial Intelligence (AI) technologies. Lack of current information seeking models within Library and Information Studies resulted in fewer advancements for teaching students about information-seeking behaviors, design of library tools and services. In order to better facilitate the aforementioned concerns, this study aims to propose state-of-the-art model while focusing on the information seeking behavior of library users in the Sultanate of Oman. This study aims for the development, designing and contextualizing the real-time user-centric information seeking model capable of enhancing information needs and information usage along with incorporating critical insights for the digital library practices. Another aim is to establish far-sighted and state-of-the-art frame of reference covering Artificial Intelligence (AI) while synthesizing digital resources and information for optimizing information-seeking behavior. The proposed study is empirically designed based on a mix-method process flow, technical surveys, in-depth interviews, focus groups evaluations and stakeholder investigations. The study data pool is consist of users and specialist LIS staff at 4 public libraries and 26 academic libraries in Oman. The designed research model is expected to facilitate LIS by assisting multi-dimensional insights with AI integration for redefining the information-seeking process, and developing a technology rich model.Keywords: artificial intelligence, information seeking, information behavior, information seeking models, libraries, Sultanate of Oman
Procedia PDF Downloads 1202261 Modeling Core Flooding Experiments for Co₂ Geological Storage Applications
Authors: Avinoam Rabinovich
Abstract:
CO₂ geological storage is a proven technology for reducing anthropogenic carbon emissions, which is paramount for achieving the ambitious net zero emissions goal. Core flooding experiments are an important step in any CO₂ storage project, allowing us to gain information on the flow of CO₂ and brine in the porous rock extracted from the reservoir. This information is important for understanding basic mechanisms related to CO₂ geological storage as well as for reservoir modeling, which is an integral part of a field project. In this work, a different method for constructing accurate models of CO₂-brine core flooding will be presented. Results for synthetic cases and real experiments will be shown and compared with numerical models to exhibit their predictive capabilities. Furthermore, the various mechanisms which impact the CO₂ distribution and trapping in the rock samples will be discussed, and examples from models and experiments will be provided. The new method entails solving an inverse problem to obtain a three-dimensional permeability distribution which, along with the relative permeability and capillary pressure functions, constitutes a model of the flow experiments. The model is more accurate when data from a number of experiments are combined to solve the inverse problem. This model can then be used to test various other injection flow rates and fluid fractions which have not been tested in experiments. The models can also be used to bridge the gap between small-scale capillary heterogeneity effects (sub-core and core scale) and large-scale (reservoir scale) effects, known as the upscaling problem.Keywords: CO₂ geological storage, residual trapping, capillary heterogeneity, core flooding, CO₂-brine flow
Procedia PDF Downloads 772260 South Atlantic Architects Validation of the Construction Decision Making Inventory
Authors: Tulio Sulbaran, Sandeep Langar
Abstract:
Architects are an integral part of the construction industry and are continuously incorporating decisions that influence projects during their life cycle. These decisions aim at selecting best alternative from the ones available. Unfortunately, this decision making process is mainly unexplored in the construction industry. No instrument to measure construction decision, based on knowledgebase of decision-makers, has existed. Additionally, limited literature is available on the topic. Recently, an instrument to gain an understanding of the construction decision-making process was developed by Dr. Tulio Sulbaran from the University of Texas, San Antonio. The instrument’s name is 'Construction Decision Making Inventory (CDMI)'. The CDMI is an innovative idea to measure the 'What? When? How? Moreover, Who?' of the construction decision-making process. As an innovative idea, its statistical validity (accuracy of the assessment) is yet to be assessed. Thus, the purpose of this paper is to describe the results of a case study with architects in the south-east of the United States aimed to determine the CDMI validity. The results of the case study are important because they assess the validity of the tool. Furthermore, as the architects evaluated each question within the measurements, this study is also guiding the enhancement of the CDMI.Keywords: decision, support, inventory, architect
Procedia PDF Downloads 3312259 Shotcrete Performance Optimisation and Audit Using 3D Laser Scanning
Authors: Carlos Gonzalez, Neil Slatcher, Marcus Properzi, Kan Seah
Abstract:
In many underground mining operations, shotcrete is used for permanent rock support. Shotcrete thickness is a critical measure of the success of this process. 3D Laser Mapping, in conjunction with Jetcrete, has developed a 3D laser scanning system specifically for measuring the thickness of shotcrete. The system is mounted on the shotcrete spraying machine and measures the rock faces before and after spraying. The calculated difference between the two 3D surface models is measured as the thickness of the sprayed concrete. Typical work patterns for the shotcrete process required a rapid and automatic system. The scanning takes place immediately before and after the application of the shotcrete so no convergence takes place in the interval between scans. Automatic alignment of scans without targets was implemented which allows for the possibility of movement of the spraying machine between scans. Case studies are presented where accuracy tests are undertaken and automatic audit reports are calculated. The use of 3D imaging data for the calculation of shotcrete thickness is an important tool for geotechnical engineers and contract managers, and this could become the new state-of-the-art methodology for the mining industry.Keywords: 3D imaging, shotcrete, surface model, tunnel stability
Procedia PDF Downloads 2942258 Additive Manufacturing of Titanium Metamaterials for Tissue Engineering
Authors: Tuba Kizilirmak
Abstract:
Distinct properties of porous metamaterials have been largely processed for biomedicine requiring a three-dimensional (3D) porous structure engaged with fine mechanical features, biodegradation ability, and biocompatibility. Applications of metamaterials are (i) porous orthopedic and dental implants; (ii) in vitro cell culture of metamaterials and bone regeneration of metamaterials in vivo; (iii) macro-, micro, and nano-level porous metamaterials for sensors, diagnosis, and drug delivery. There are some specific properties to design metamaterials for tissue engineering. These are surface to volume ratio, pore size, and interconnection degrees are selected to control cell behavior and bone ingrowth. In this study, additive manufacturing technique selective laser melting will be used to print the scaffolds. Selective Laser Melting prints the 3D components according to designed 3D CAD models and manufactured materials, adding layers progressively by layer. This study aims to design metamaterials with Ti6Al4V material, which gives benefit in respect of mechanical and biological properties. Ti6Al4V scaffolds will support cell attachment by conferring a suitable area for cell adhesion. This study will control the osteoblast cell attachment on Ti6Al4V scaffolds after the determination of optimum stiffness and other mechanical properties which are close to mechanical properties of bone. Before we produce the samples, we will use a modeling technique to simulate the mechanical behavior of samples. These samples include different lattice models with varying amounts of porosity and density.Keywords: additive manufacturing, titanium lattices, metamaterials, porous metals
Procedia PDF Downloads 1992257 Comparison of Statistical Methods for Estimating Missing Precipitation Data in the River Subbasin Lenguazaque, Colombia
Authors: Miguel Cañon, Darwin Mena, Ivan Cabeza
Abstract:
In this work was compared and evaluated the applicability of statistical methods for the estimation of missing precipitations data in the basin of the river Lenguazaque located in the departments of Cundinamarca and Boyacá, Colombia. The methods used were the method of simple linear regression, distance rate, local averages, mean rates, correlation with nearly stations and multiple regression method. The analysis used to determine the effectiveness of the methods is performed by using three statistical tools, the correlation coefficient (r2), standard error of estimation and the test of agreement of Bland and Altmant. The analysis was performed using real rainfall values removed randomly in each of the seasons and then estimated using the methodologies mentioned to complete the missing data values. So it was determined that the methods with the highest performance and accuracy in the estimation of data according to conditions that were counted are the method of multiple regressions with three nearby stations and a random application scheme supported in the precipitation behavior of related data sets.Keywords: statistical comparison, precipitation data, river subbasin, Bland and Altmant
Procedia PDF Downloads 4702256 CFD Simulation and Experimental Validation of the Bubble-Induced Flow during Electrochemical Water Splitting
Authors: Gabriel Wosiak, Jeyse da Silva, Sthefany S. Sena, Renato N. de Andrade, Ernesto Pereira
Abstract:
The bubble formation during hydrogen production by electrolysis and several electrochemical processes is an inherent phenomenon and can impact the energy consumption of the processes. In this work, it was reported both experimental and computational results describe the effect of bubble displacement, which, under the cases investigated, leads to the formation of a convective flow in the solution. The process is self-sustained, and a solution vortex is formed, which modifies the bubble growth and covering at the electrode surface. Using the experimental data, we have built a model to simulate it, which, with high accuracy, describes the phenomena. Then, it simulated many different experimental conditions and evaluated the effects of the boundary conditions on the bubble surface covering the surface. We have observed a position-dependent bubble covering the surface, which has an effect on the water-splitting efficiency. It was shown that the bubble covering is not uniform at the electrode surface, and using statistical analysis; it was possible to evaluate the influence of the gas type (H2 and O2), current density, and the bubble size (and cross-effects) on the covering fraction and the asymmetric behavior over the electrode surface.Keywords: water splitting, bubble, electrolysis, hydrogen production
Procedia PDF Downloads 1032255 Wind Wave Modeling Using MIKE 21 SW Spectral Model
Authors: Pouya Molana, Zeinab Alimohammadi
Abstract:
Determining wind wave characteristics is essential for implementing projects related to Coastal and Marine engineering such as designing coastal and marine structures, estimating sediment transport rates and coastal erosion rates in order to predict significant wave height (H_s), this study applies the third generation spectral wave model, Mike 21 SW, along with CEM model. For SW model calibration and verification, two data sets of meteorology and wave spectroscopy are used. The model was exposed to time-varying wind power and the results showed that difference ratio mean, standard deviation of difference ratio and correlation coefficient in SW model for H_s parameter are 1.102, 0.279 and 0.983, respectively. Whereas, the difference ratio mean, standard deviation and correlation coefficient in The Choice Experiment Method (CEM) for the same parameter are 0.869, 1.317 and 0.8359, respectively. Comparing these expected results it is revealed that the Choice Experiment Method CEM has more errors in comparison to MIKE 21 SW third generation spectral wave model and higher correlation coefficient does not necessarily mean higher accuracy.Keywords: MIKE 21 SW, CEM method, significant wave height, difference ratio
Procedia PDF Downloads 4072254 Hyperspectral Data Classification Algorithm Based on the Deep Belief and Self-Organizing Neural Network
Authors: Li Qingjian, Li Ke, He Chun, Huang Yong
Abstract:
In this paper, the method of combining the Pohl Seidman's deep belief network with the self-organizing neural network is proposed to classify the target. This method is mainly aimed at the high nonlinearity of the hyperspectral image, the high sample dimension and the difficulty in designing the classifier. The main feature of original data is extracted by deep belief network. In the process of extracting features, adding known labels samples to fine tune the network, enriching the main characteristics. Then, the extracted feature vectors are classified into the self-organizing neural network. This method can effectively reduce the dimensions of data in the spectrum dimension in the preservation of large amounts of raw data information, to solve the traditional clustering and the long training time when labeled samples less deep learning algorithm for training problems, improve the classification accuracy and robustness. Through the data simulation, the results show that the proposed network structure can get a higher classification precision in the case of a small number of known label samples.Keywords: DBN, SOM, pattern classification, hyperspectral, data compression
Procedia PDF Downloads 3442253 Recognition of Gene Names from Gene Pathway Figures Using Siamese Network
Authors: Muhammad Azam, Micheal Olaolu Arowolo, Fei He, Mihail Popescu, Dong Xu
Abstract:
The number of biological papers is growing quickly, which means that the number of biological pathway figures in those papers is also increasing quickly. Each pathway figure shows extensive biological information, like the names of genes and how the genes are related. However, manually annotating pathway figures takes a lot of time and work. Even though using advanced image understanding models could speed up the process of curation, these models still need to be made more accurate. To improve gene name recognition from pathway figures, we applied a Siamese network to map image segments to a library of pictures containing known genes in a similar way to person recognition from photos in many photo applications. We used a triple loss function and a triplet spatial pyramid pooling network by combining the triplet convolution neural network and the spatial pyramid pooling (TSPP-Net). We compared VGG19 and VGG16 as the Siamese network model. VGG16 achieved better performance with an accuracy of 93%, which is much higher than OCR results.Keywords: biological pathway, image understanding, gene name recognition, object detection, Siamese network, VGG
Procedia PDF Downloads 2952252 Prediction Fluid Properties of Iranian Oil Field with Using of Radial Based Neural Network
Authors: Abdolreza Memari
Abstract:
In this article in order to estimate the viscosity of crude oil,a numerical method has been used. We use this method to measure the crude oil's viscosity for 3 states: Saturated oil's viscosity, viscosity above the bubble point and viscosity under the saturation pressure. Then the crude oil's viscosity is estimated by using KHAN model and roller ball method. After that using these data that include efficient conditions in measuring viscosity, the estimated viscosity by the presented method, a radial based neural method, is taught. This network is a kind of two layered artificial neural network that its stimulation function of hidden layer is Gaussian function and teaching algorithms are used to teach them. After teaching radial based neural network, results of experimental method and artificial intelligence are compared all together. Teaching this network, we are able to estimate crude oil's viscosity without using KHAN model and experimental conditions and under any other condition with acceptable accuracy. Results show that radial neural network has high capability of estimating crude oil saving in time and cost is another advantage of this investigation.Keywords: viscosity, Iranian crude oil, radial based, neural network, roller ball method, KHAN model
Procedia PDF Downloads 5042251 Using Maximization Entropy in Developing a Filipino Phonetically Balanced Wordlist for a Phoneme-Level Speech Recognition System
Authors: John Lorenzo Bautista, Yoon-Joong Kim
Abstract:
In this paper, a set of Filipino Phonetically Balanced Word list consisting of 250 words (PBW250) were constructed for a phoneme-level ASR system for the Filipino language. The Entropy Maximization is used to obtain phonological balance in the list. Entropy of phonemes in a word is maximized, providing an optimal balance in each word’s phonological distribution using the Add-Delete Method (PBW algorithm) and is compared to the modified PBW algorithm implemented in a dynamic algorithm approach to obtain optimization. The gained entropy score of 4.2791 and 4.2902 for the PBW and modified algorithm respectively. The PBW250 was recorded by 40 respondents, each with 2 sets data. Recordings from 30 respondents were trained to produce an acoustic model that were tested using recordings from 10 respondents using the HMM Toolkit (HTK). The results of test gave the maximum accuracy rate of 97.77% for a speaker dependent test and 89.36% for a speaker independent test.Keywords: entropy maximization, Filipino language, Hidden Markov Model, phonetically balanced words, speech recognition
Procedia PDF Downloads 459