Search results for: visualizing network internals
1452 A Conv-Long Short-term Memory Deep Learning Model for Traffic Flow Prediction
Authors: Ali Reza Sattarzadeh, Ronny J. Kutadinata, Pubudu N. Pathirana, Van Thanh Huynh
Abstract:
Traffic congestion has become a severe worldwide problem, affecting everyday life, fuel consumption, time, and air pollution. The primary causes of these issues are inadequate transportation infrastructure, poor traffic signal management, and rising population. Traffic flow forecasting is one of the essential and effective methods in urban congestion and traffic management, which has attracted the attention of researchers. With the development of technology, undeniable progress has been achieved in existing methods. However, there is a possibility of improvement in the extraction of temporal and spatial features to determine the importance of traffic flow sequences and extraction features. In the proposed model, we implement the convolutional neural network (CNN) and long short-term memory (LSTM) deep learning models for mining nonlinear correlations and their effectiveness in increasing the accuracy of traffic flow prediction in the real dataset. According to the experiments, the results indicate that implementing Conv-LSTM networks increases the productivity and accuracy of deep learning models for traffic flow prediction.Keywords: deep learning algorithms, intelligent transportation systems, spatiotemporal features, traffic flow prediction
Procedia PDF Downloads 1741451 Planning Strategies for Urban Flood Mitigation through Different Case Studies of Best Practices across the World
Authors: Bismina Akbar, Smitha M. V.
Abstract:
Flooding is a global phenomenon that causes widespread devastation, economic damage, and loss of human lives. In the past twenty years, the number of reported flood events has increased significantly. Millions of people around the globe are at risk of flooding from coastal, dam breaks, groundwater, and urban surface water and wastewater sources. Climate change is one of the important causes for them since it affects, directly and indirectly, the river network. Although the contribution of climate change is undeniable, human contributions are there to increase the frequency of floods. There are different types of floods, such as Flash floods, Coastal floods, Urban floods, River (or fluvial) floods, and Ponding (or pluvial flooding). This study focuses on formulating mitigation strategies for urban flood risk reduction through analysis of different best practice case studies, including China, Japan, Indonesia, and Brazil. The mitigation measures suggest that apart from the structural and non-structural measures, environmental considerations like blue-green solutions are beneficial for flood risk reduction. And also, Risk-Informed Master plans are essential nowadays to take risk-based decision processes that enable more sustainability and resilience.Keywords: hazard, mitigation, risk reduction, urban flood
Procedia PDF Downloads 781450 Modeling of Daily Global Solar Radiation Using Ann Techniques: A Case of Study
Authors: Said Benkaciali, Mourad Haddadi, Abdallah Khellaf, Kacem Gairaa, Mawloud Guermoui
Abstract:
In this study, many experiments were carried out to assess the influence of the input parameters on the performance of multilayer perceptron which is one the configuration of the artificial neural networks. To estimate the daily global solar radiation on the horizontal surface, we have developed some models by using seven combinations of twelve meteorological and geographical input parameters collected from a radiometric station installed at Ghardaïa city (southern of Algeria). For selecting of best combination which provides a good accuracy, six statistical formulas (or statistical indicators) have been evaluated, such as the root mean square errors, mean absolute errors, correlation coefficient, and determination coefficient. We noted that multilayer perceptron techniques have the best performance, except when the sunshine duration parameter is not included in the input variables. The maximum of determination coefficient and correlation coefficient are equal to 98.20 and 99.11%. On the other hand, some empirical models were developed to compare their performances with those of multilayer perceptron neural networks. Results obtained show that the neural networks techniques give the best performance compared to the empirical models.Keywords: empirical models, multilayer perceptron neural network, solar radiation, statistical formulas
Procedia PDF Downloads 3481449 Multipurpose Agricultural Robot Platform: Conceptual Design of Control System Software for Autonomous Driving and Agricultural Operations Using Programmable Logic Controller
Authors: P. Abhishesh, B. S. Ryuh, Y. S. Oh, H. J. Moon, R. Akanksha
Abstract:
This paper discusses about the conceptual design and development of the control system software using Programmable logic controller (PLC) for autonomous driving and agricultural operations of Multipurpose Agricultural Robot Platform (MARP). Based on given initial conditions by field analysis and desired agricultural operations, the structural design development of MARP is done using modelling and analysis tool. PLC, being robust and easy to use, has been used to design the autonomous control system of robot platform for desired parameters. The robot is capable of performing autonomous driving and three automatic agricultural operations, viz. hilling, mulching, and sowing of seeds in the respective order. The input received from various sensors on the field is later transmitted to the controller via ZigBee network to make the changes in the control program to get desired field output. The research is conducted to provide assistance to farmers by reducing labor hours for agricultural activities by implementing automation. This study will provide an alternative to the existing systems with machineries attached behind tractors and rigorous manual operations on agricultural field at effective cost.Keywords: agricultural operations, autonomous driving, MARP, PLC
Procedia PDF Downloads 3651448 Isolation Preserving Medical Conclusion Hold Structure via C5 Algorithm
Authors: Swati Kishor Zode, Rahul Ambekar
Abstract:
Data mining is the extraction of fascinating examples on the other hand information from enormous measure of information and choice is made as indicated by the applicable information extracted. As of late, with the dangerous advancement in internet, stockpiling of information and handling procedures, privacy preservation has been one of the major (higher) concerns in data mining. Various techniques and methods have been produced for protection saving data mining. In the situation of Clinical Decision Support System, the choice is to be made on the premise of the data separated from the remote servers by means of Internet to diagnose the patient. In this paper, the fundamental thought is to build the precision of Decision Support System for multiple diseases for different maladies and in addition protect persistent information while correspondence between Clinician side (Client side) also, the Server side. A privacy preserving protocol for clinical decision support network is proposed so that patients information dependably stay scrambled amid diagnose prepare by looking after the accuracy. To enhance the precision of Decision Support System for various malady C5.0 classifiers and to save security, a Homomorphism encryption algorithm Paillier cryptosystem is being utilized.Keywords: classification, homomorphic encryption, clinical decision support, privacy
Procedia PDF Downloads 3321447 Platooning Method Using Dynamic Correlation of Destination Vectors in Urban Areas
Authors: Yuya Tanigami, Naoaki Yamanaka, Satoru Okamoto
Abstract:
Economic losses due to delays in traffic congestion regarding urban transportation networks have become a more serious social problem as traffic volume increases. Platooning has recently been attracting attention from many researchers to alleviate traffic jams, especially on the highway. On highways, platooning can have positive effects, such as reducing inter-vehicular distance and reducing air resistance. However, the impacts of platooning on urban roads have not been addressed in detail since traffic lights may break the platoons. In this study, we propose a platooning method using L2 norm and cosine similarity to form a platoon with highly similar routes. Also, we investigate the sorting method within a platoon according to each vehicle’s straightness. Our proposed sorting platoon method, which uses two lanes, eliminates Head of Line Blocking at the intersection and improves throughput at intersections. This paper proposes a cyber-physical system (CPS) approach to collaborative urban platoon control. We conduct simulations using the traffic simulator SUMO and the road network, which imitates Manhattan Island. Results from the SUMO confirmed that our method shortens the average travel time by 10-20%. This paper shows the validity of forming a platoon based on destination vectors and sorting vehicles within a platoon.Keywords: CPS, platooning, connected car, vector correlation
Procedia PDF Downloads 771446 Study of the Phenomenon Nature of Order and Disorder in BaMn(Fe/V)F7 Fluoride Glass by the Hybrid Reverse Monte Carlo Method
Authors: Sidi Mohamed Mesli, Mohamed Habchi, Mohamed Kotbi, Rafik Benallal, Abdelali Derouiche
Abstract:
Fluoride glasses with a nominal composition of BaMnMF7 (M = FeV assuming isomorphous replacement) have been structurally modelled through the simultaneous simulation of their neutron diffraction patterns by a reverse Monte Carlo (RMC) model and by a Rietveld for disordered materials (RDM) method. Model is consistent with an expected network of interconnected [MF6] polyhedra. The RMC results are accompanied by artificial satellite peaks. To remedy this problem, we use an extension of the RMC algorithm, which introduces an energy penalty term in acceptance criteria. This method is called the Hybrid Reverse Monte Carlo (HRMC) method. The idea of this paper is to apply the (HRMC) method to the title glasses, in order to make a study of the phenomenon nature of order and disorder by displaying and discussing the partial pair distribution functions (PDFs) g(r). We suggest that this method can be used to describe average correlations between components of fluoride glass or similar system.Keywords: fluoride glasses, RMC simulation, neutron scattering, hybrid RMC simulation, Lennard-Jones potential, partial pair distribution functions
Procedia PDF Downloads 5391445 Real Time Monitoring and Control of Proton Exchange Membrane Fuel Cell in Cognitive Radio Environment
Authors: Prakash Thapa, Gye Choon Park, Sung Gi Kwon, Jin Lee
Abstract:
The generation of electric power from a proton exchange membrane (PEM) fuel cell is influenced by temperature, pressure, humidity, flow rate of reactant gaseous and partial flooding of membrane electrode assembly (MEA). Among these factors, temperature and cathode flooding are the most affecting parameters on the performance of fuel cell. This paper describes the detail design and effect of these parameters on PEM fuel cell. Performance of all parameters was monitored, analyzed and controlled by using 5KWatt PEM fuel cell. In the real-time data communication for remote monitoring and control of PEM fuel cell, a normalized least mean square algorithm in cognitive radio environment is used. By the use of this method, probability of energy signal detection will be maximum which solved the frequency shortage problem. So the monitoring system hanging out and slow speed problem will be solved. Also from the control unit, all parameters are controlled as per the system requirement. As a result, PEM fuel cell generates maximum electricity with better performance.Keywords: proton exchange membrane (PEM) fuel cell, pressure, temperature and humidity sensor (PTH), efficiency curve, cognitive radio network (CRN)
Procedia PDF Downloads 4601444 Signal Estimation and Closed Loop System Performance in Atrial Fibrillation Monitoring with Communication Channels
Authors: Mohammad Obeidat, Ayman Mansour
Abstract:
In this paper a unique issue rising from feedback control of Atrial Fibrillation monitoring system with embedded communication channels has been investigated. One of the important factors to measure the performance of the feedback control closed loop system is disturbance and noise attenuation factor. It is important that the feedback system can attenuate such disturbances on the atrial fibrillation heart rate signals. Communication channels depend on network traffic conditions and deliver different throughput, implying that the sampling intervals may change. Since signal estimation is updated on the arrival of new data, its dynamics actually change with the sampling interval. Consequently, interaction among sampling, signal estimation, and the controller will introduce new issues in remotely controlled Atrial Fibrillation system. This paper treats a remotely controlled atrial fibrillation system with one communication channel which connects between the heart rate and rhythm measurements to the remote controller. Typical and optimal signal estimation schemes is represented by a signal averaging filter with its time constant derived from the step size of the signal estimation algorithm.Keywords: atrial fibrillation, communication channels, closed loop, estimation
Procedia PDF Downloads 3801443 The DC Behavioural Electrothermal Model of Silicon Carbide Power MOSFETs under SPICE
Authors: Lakrim Abderrazak, Tahri Driss
Abstract:
This paper presents a new behavioural electrothermal model of power Silicon Carbide (SiC) MOSFET under SPICE. This model is based on the MOS model level 1 of SPICE, in which phenomena such as Drain Leakage Current IDSS, On-State Resistance RDSon, gate Threshold voltage VGSth, the transconductance (gfs), I-V Characteristics Body diode, temperature-dependent and self-heating are included and represented using behavioural blocks ABM (Analog Behavioural Models) of Spice library. This ultimately makes this model flexible and easily can be integrated into the various Spice -based simulation softwares. The internal junction temperature of the component is calculated on the basis of the thermal model through the electric power dissipated inside and its thermal impedance in the form of the localized Foster canonical network. The model parameters are extracted from manufacturers' data (curves data sheets) using polynomial interpolation with the method of simulated annealing (S A) and weighted least squares (WLS). This model takes into account the various important phenomena within transistor. The effectiveness of the presented model has been verified by Spice simulation results and as well as by data measurement for SiC MOS transistor C2M0025120D CREE (1200V, 90A).Keywords: SiC power MOSFET, DC electro-thermal model, ABM Spice library, SPICE modelling, behavioural model, C2M0025120D CREE.
Procedia PDF Downloads 5811442 Traffic Congestion Analysis and Modeling for Urban Roads of Srinagar City
Authors: Adinarayana Badveeti, Mohammad Shafi Mir
Abstract:
In Srinagar City, in India, traffic congestion is a condition on transport networks that occurs as use increases and is characterized by slower speeds, longer trip times, and increased vehicular queuing. Traffic congestion is conventionally measured using indicators such as roadway level-of-service, the Travel Time Index and their variants. Several measures have been taken in order to counteract congestion like road pricing, car pooling, improved traffic management, etc. While new road construction can temporarily relieve congestion in the longer term, it simply encourages further growth in car traffic through increased travel and a switch away from public transport. The full paper report, on which this abstract is based, aims to provide policymakers and technical staff with the real-time data, conceptual framework and guidance on some of the engineering tools necessary to manage congestion in such a way as to reduce its overall impact on individuals, families, communities, and societies dynamic, affordable, liveable and attractive urban regions will never be free of congestion. Road transport policies, however, should seek to manage congestion on a cost-effective basis with the aim of reducing the burden that excessive congestion imposes upon travellers and urban dwellers throughout the urban road network.Keywords: traffic congestion, modeling, traffic management, travel time index
Procedia PDF Downloads 3221441 Seismic Activity in the Lake Kivu Basin: Implication for Seismic Risk Management
Authors: Didier Birimwiragi Namogo
Abstract:
The Kivu Lake Basin is located in the Western Branch of the East African Rift. In this basin is located a multitude of active faults, on which earthquakes occur regularly. The most recent earthquakes date from 2008, 2015, 2016, 2017 and 2019. The cities of Bukabu and Goma in DR Congo and Giseyi in Rwanda are the most impacted by this intense seismic activity in the region. The magnitude of the strongest earthquakes in the region is 6.1. The 2008 earthquake was particularly destructive, killing several people in DR Congo and Rwanda. This work aims to complete the distribution of seismicity in the region, deduce areas of weakness and establish a hazard map that can assist in seismic risk management. Using the local seismic network of the Goma Volcano Observatory, the earthquakes were relocated, and their focus mechanism was studied. The results show that most of these earthquakes occur on active faults described by Villeneuve in 1938. The alignment of the earthquakes shows a pace that follows directly the directions of the faults described by this author. The study of the focus mechanism of these earthquakes, also shows that these are in particular normal faults whose stresses show an extensive activity. Such study can be used for the establishment of seismic risk management tools.Keywords: earthquakes, hazard map, faults, focus mechanism
Procedia PDF Downloads 1401440 The Hawza Al-’Ilmiyya and Its Role in Preserving the Shia Identity through Jurisprudence
Authors: Raied Khayou
Abstract:
The Hawza Al-'Ilmiyya is a network of religious seminaries in the Shia branch of Islam. This research mainly focuses on the oldest school located in Najaf, Iraq, because its core curriculum and main characteristics have been unchanged since the fourth century of Islam. Relying on a thorough literature review of Arabic and English publications, and interviews with current and previous students of the seminary, the current research outlines the factors proving how this seminary was crucial in keeping the Shia religious identity intact despite sometimes gruesome attempts of interference and persecution. There are several factors that helped the seminary to preserve its central importance. First, rooted in their theology, Shia Muslims believe that the Hawza Al-’Ilmiyya and its graduates carry a sacred authority. Secondly, the financial independence of the Seminary helped to keep it intact from any governmental or political meddling. Third, its unique teaching method, its matchless openness for new students, and its flexible curriculum made it attractive for many students who were interested in learning more about Shia theology and jurisprudence. The Hawza Al-‘Ilmiyya has the exclusive right to train clerics who hold the religious authority of Shia Islamic jurisprudence, and the seminary’s success in staying independent throughout history kept Shia Islamic theology independent, as well.Keywords: Hawza Al'Ilmiyya, religious seminary, Shia Muslim education, Islamic jurisprudence
Procedia PDF Downloads 1021439 Analysing Techniques for Fusing Multimodal Data in Predictive Scenarios Using Convolutional Neural Networks
Authors: Philipp Ruf, Massiwa Chabbi, Christoph Reich, Djaffar Ould-Abdeslam
Abstract:
In recent years, convolutional neural networks (CNN) have demonstrated high performance in image analysis, but oftentimes, there is only structured data available regarding a specific problem. By interpreting structured data as images, CNNs can effectively learn and extract valuable insights from tabular data, leading to improved predictive accuracy and uncovering hidden patterns that may not be apparent in traditional structured data analysis. In applying a single neural network for analyzing multimodal data, e.g., both structured and unstructured information, significant advantages in terms of time complexity and energy efficiency can be achieved. Converting structured data into images and merging them with existing visual material offers a promising solution for applying CNN in multimodal datasets, as they often occur in a medical context. By employing suitable preprocessing techniques, structured data is transformed into image representations, where the respective features are expressed as different formations of colors and shapes. In an additional step, these representations are fused with existing images to incorporate both types of information. This final image is finally analyzed using a CNN.Keywords: CNN, image processing, tabular data, mixed dataset, data transformation, multimodal fusion
Procedia PDF Downloads 1251438 Intelligent Control of Doubly Fed Induction Generator Wind Turbine for Smart Grid
Authors: Amal A. Hassan, Faten H. Fahmy, Abd El-Shafy A. Nafeh, Hosam K. M. Youssef
Abstract:
Due to the growing penetration of wind energy into the power grid, it is very important to study its interactions with the power system and to provide good control technique in order to deliver high quality power. In this paper, an intelligent control methodology is proposed for optimizing the controllers’ parameters of doubly fed induction generator (DFIG) based wind turbine generation system (WTGS). The genetic algorithm (GA) and particle swarm optimization (PSO) are employed and compared for the parameters adaptive tuning of the proposed proportional integral (PI) multiple controllers of the back to back converters of the DFIG based WTGS. For this purpose, the dynamic model of WTGS with DFIG and its associated controllers is presented. Furthermore, the simulation of the system is performed using MATLAB/SIMULINK and SIMPOWERSYSTEM toolbox to illustrate the performance of the optimized controllers. Finally, this work is validated to 33-bus test radial system to show the interaction between wind distributed generation (DG) systems and the distribution network.Keywords: DFIG wind turine, intelligent control, distributed generation, particle swarm optimization, genetic algorithm
Procedia PDF Downloads 2691437 Distribution Urban Public Spaces Among Riyadh Residential Neighborhoods
Authors: Abdulwahab Alalyani, Mahbub Rashid
Abstract:
Urban Open Space (UOS) a central role to promotes community health, including daily activities, but these resources may not available, accessible enough, and or equitably be distributed. This paper measures and compares spatial equity of the availability and accessibility UOS among low, middle, and high-income neighborhoods in Riyadh city. The measurement mothdulgy for the UOSavailability was by calculating the total of UOS with respect to the population total (m2/inhabitant) and the accessibility indicted by using walking distance of a 0.25 mi (0.4 km) buffering streets network.All UOS were mapped and measured using geographical information systems. To evaluate the significant differences in UOS availability and accessibility across low, medium, and high-income Riyadh neighborhoods, we used a One-way ANOVA analysis of covariance to test the differences.The findings are as follows; finding, UOSavailability was lower than global standers. Riyadh has only 1.13 m2 per capita of UOS, and the coverage accessible area by walking distance to UOS was lower than 50%. The final finding, spatial equity of the availability and accessibility, were significantly different among Riyadh neighborhoods based on socioeconomic status. The future development of UOS should be focused on increasing Urban park availability and should be given priority to those low-income and unhealthy communities.Keywords: distribution urban open space, urban open space accessibility, spatial equity, riyadh city
Procedia PDF Downloads 1051436 A Smart Monitoring System for Preventing Gas Risks in Indoor
Authors: Gyoutae Park, Geunjun Lyu, Yeonjae Lee, Jaheon Gu, Sanguk Ahn, Hiesik Kim
Abstract:
In this paper, we propose a system for preventing gas risks through the use of wireless communication modules and intelligent gas safety appliances. Our system configuration consists of an automatic extinguishing system, detectors, a wall-pad, and a microcomputer controlled micom gas meter to monitor gas flow and pressure as well as the occurrence of earthquakes. The automatic fire extinguishing system checks for both combustible gaseous leaks and monitors the environmental temperature, while the detector array measures smoke and CO gas concentrations. Depending on detected conditions, the micom gas meter cuts off an inner valve and generates a warning, the automatic fire-extinguishing system cuts off an external valve and sprays extinguishing materials, or the sensors generate signals and take further action when smoke or CO are detected. Information on intelligent measures taken by the gas safety appliances and sensors are transmitted to the wall-pad, which in turn relays this as real time data to a server that can be monitored via an external network (BcN) connection to a web or mobile application for the management of gas safety. To validate this smart-home gas management system, we field-tested its suitability for use in Korean apartments under several scenarios.Keywords: gas sensor, leak, gas safety, gas meter, gas risk, wireless communication
Procedia PDF Downloads 4181435 Forecasting 24-Hour Ahead Electricity Load Using Time Series Models
Authors: Ramin Vafadary, Maryam Khanbaghi
Abstract:
Forecasting electricity load is important for various purposes like planning, operation, and control. Forecasts can save operating and maintenance costs, increase the reliability of power supply and delivery systems, and correct decisions for future development. This paper compares various time series methods to forecast 24 hours ahead of electricity load. The methods considered are the Holt-Winters smoothing, SARIMA Modeling, LSTM Network, Fbprophet, and Tensorflow probability. The performance of each method is evaluated by using the forecasting accuracy criteria, namely, the mean absolute error and root mean square error. The National Renewable Energy Laboratory (NREL) residential energy consumption data is used to train the models. The results of this study show that the SARIMA model is superior to the others for 24 hours ahead forecasts. Furthermore, a Bagging technique is used to make the predictions more robust. The obtained results show that by Bagging multiple time-series forecasts, we can improve the robustness of the models for 24 hours ahead of electricity load forecasting.Keywords: bagging, Fbprophet, Holt-Winters, LSTM, load forecast, SARIMA, TensorFlow probability, time series
Procedia PDF Downloads 971434 Optimization in Locating Firefighting Stations Using GIS Data and AHP Model; A Case Study on Arak City
Authors: Hasan Heydari
Abstract:
In recent decades, locating urban services is one of the significant discussions in urban planning. Among these considerations, cities require more accurate planning in order to supply citizen needs, especially part of urban safety. In order to gain this goal, one of the main tasks of urban planners and managers is specifying suitable sites to locate firefighting stations. This study has been done to reach this purpose. Therefore effective criteria consist of coverage radius, population density, proximity to pathway network, land use (compatible and incompatible neighborhood) have been specified. After that, descriptive and local information of the criteria was provided and their layers were created in ArcGIS 9.3. Using Analytic Hierarchy Process (AHP) these criteria and their sub-criteria got the weights. These layers were classified regarding their weights and finally were overlaid by Index Overlay Model and provided the final site selection map for firefighting stations of Arak city. The results gained by analyzing in GIS environment indicate the existing fire station don’t cover the whole city sufficiently and some of the stations have established on the unsuitable sites. The output map indicates the best sites to locate firefighting stations of Arak.Keywords: site-selection, firefighting stations, analytic hierarchy process (AHP), GIS, index overlay model
Procedia PDF Downloads 3491433 Analysis of Possible Draught Size of Container Vessels on the Lower Danube
Authors: Todor Bačkalić, Marinko Maslarić, Milosav Georgijević, Sanja Bojić
Abstract:
Water transport could be the backbone of the future European combined transport system. The future transport policy in landlocked countries from the Danube Region has to be based on inland waterway transport (IWT). The development of the container transport on inland waterways depends directly on technical-exploitative characteristics of the network of inland waterways. Research of navigational abilities of inland waterways is the basic step in transport planning. The size of the vessel’s draught (T) is the limiting value in project tasks and it depends on the depth of the waterway. Navigation characteristics of rivers have to be determined as precise as possible, especially from the aspect of determination of the possible draught of vessels. This article outlines a rationale, why it is necessary to develop competence about infrastructure risk in water transport. Climate changes are evident and require special attention and global monitoring. Current risk assessment methods for Inland waterway transport just consider some dramatic events. We present a new method for the assessment of risk and vulnerability of inland waterway transport where river depth represents a crucial part. The analysis of water level changes in the lower Danube was done for two significant periods (1965-1979 and 1998-2012).Keywords: container vessel, draught, probability, the Danube
Procedia PDF Downloads 4611432 A Methodology for Investigating Public Opinion Using Multilevel Text Analysis
Authors: William Xiu Shun Wong, Myungsu Lim, Yoonjin Hyun, Chen Liu, Seongi Choi, Dasom Kim, Kee-Young Kwahk, Namgyu Kim
Abstract:
Recently, many users have begun to frequently share their opinions on diverse issues using various social media. Therefore, numerous governments have attempted to establish or improve national policies according to the public opinions captured from various social media. In this paper, we indicate several limitations of the traditional approaches to analyze public opinion on science and technology and provide an alternative methodology to overcome these limitations. First, we distinguish between the science and technology analysis phase and the social issue analysis phase to reflect the fact that public opinion can be formed only when a certain science and technology is applied to a specific social issue. Next, we successively apply a start list and a stop list to acquire clarified and interesting results. Finally, to identify the most appropriate documents that fit with a given subject, we develop a new logical filter concept that consists of not only mere keywords but also a logical relationship among the keywords. This study then analyzes the possibilities for the practical use of the proposed methodology thorough its application to discover core issues and public opinions from 1,700,886 documents comprising SNS, blogs, news, and discussions.Keywords: big data, social network analysis, text mining, topic modeling
Procedia PDF Downloads 2981431 Urban Areas Management in Developing Countries: Analysis of the Urban Areas Crossed with Risk of Storm Water Drains, Aswan-Egypt
Authors: Omar Hamdy, Schichen Zhao, Hussein Abd El-Atty, Ayman Ragab, Muhammad Salem
Abstract:
One of the most risky areas in Aswan is Abouelreesh, which is suffering from flood disasters, as heavy deluge inundates urban areas causing considerable damage to buildings and infrastructure. Moreover, the main problem was the urban sprawl towards this risky area. This paper aims to identify the urban areas located in the risk areas prone to flash floods. Analyzing this phenomenon needs a lot of data to ensure satisfactory results; however, in this case the official data and field data were limited, and therefore, free sources of satellite data were used. This paper used ArcGIS tools to obtain the storm water drains network by analyzing DEM files. Additionally, historical imagery in Google Earth was studied to determine the age of each building. The last step was to overlay the urban area layer and the storm water drains layer to identify the vulnerable areas. The results of this study would be helpful to urban planners and government officials to make the disasters risk estimation and develop primary plans to recover the risky area, especially urban areas located in torrents.Keywords: risk area, DEM, storm water drains, GIS
Procedia PDF Downloads 4611430 Persistent Bacteremia in Cases of Endodontic Re-Treatments
Authors: Ilma Robo, Manola Kelmendi, Kleves Elezi, Nevila Alliu
Abstract:
The most important stage in deciding whether to re-treat or not endodontically is to find the reason for the clinical in-success. Therefore, endodontic re-treatment aims to eliminate the etiology of the pathology, where the main ones are the bacteria remaining in the inter-radicular spaces or the presence of other irritants that can be not only bacterial toxins but also the elements that keep the batteries fixed or extra-canal toxins such as extraction outside the apex of the canal filling. Shortcomings of endodontic treatment can be corrected, if possible, only with endodontic re-treatment that is initially attempted orthograde, and if clinical endodontic success is not achieved again, it can be performed retrograde or surgically. The elements that do not help in this direction are the anatomical deformations in the canal network of the tooth roots, in the presence of the delta at the apex of the tooth root, in the isthmuses present, all of which can be explained by the endodontic canal anatomical morphology. Actually, even if the causative endodontic bacteria remains isolated and without an exit in the healthy periodontal tissues, then this can also be a clinical endodontic success, regardless of the fact that the endodontic isolation occurred only in the exits such as the apex or the accessory canals. Clinical endodontic in-success occurs only when bacterial residues emerge or provide an exit in the healthy periradicular tissues or along the entire length of the canal where the accessory canals exit.Keywords: endodontic success, E. foecalis, nanoparticles, laser diode, antibacterial, antiseptic
Procedia PDF Downloads 531429 The Epidemiology of Hospital Maternal Deaths, Haiti 2017-2020
Authors: Berger Saintius, Edna Ariste, Djeamsly Salomon
Abstract:
Background: Maternal mortality is a preventable global health problem that affects developed, developing, and underdeveloped countries alike. Globally, maternal mortality rates have declined since 1990, but 830 women die every day from pregnancy and childbirth-related causes that are often preventable. Haiti, with a number of 529 maternal deaths per 100,000 live births, is one of the countries with the highest maternal mortality rate in the Caribbean. This study consists of analyzing maternal death surveillance data in Haiti from 2017-2020. Method : A descriptive study was conducted; data were extracted from the National Epidemiological Surveillance Network of maternal deaths from 2017 to 2020. Sociodemographic variables were analyzed. Excel and Epi Info 7.2 were used for data analysis. Frequency and proportion measurements were calculated. Results: 756 deaths were recorded for the study period: 42 (6%) in 2017, 168 (22%) in 2018, 265 (35%) in 2019, and 281 (37%) in 2020. The North Department recorded the highest number of deaths, 167 (22%). 83(11%) in Les Cayes. 96% of these deaths are people aged between 15 and 49. Conclusion. Maternal mortality is a major health problem in Haiti. Mobilization, participation, and involvement of communities, increase in obstetric care coverage and promotion of Family Planning are among the strategies to fight this problem.Keywords: epidemiology, maternal death, hospital, Haiti
Procedia PDF Downloads 911428 NR/PEO Block Copolymer: A Chelating Exchanger for Metal Ions
Authors: M. S. Mrudula, M. R. Gopinathan Nair
Abstract:
In order to utilize the natural rubber for developing new green polymeric materials for specialty applications, we have prepared natural rubber and polyethylene oxide based polymeric networks by two shot method. The polymeric networks thus formed have been used as chelating exchanger for metal ion binding. Chelating exchangers are, in general, coordinating copolymers containing one or more electron donor atoms such as N, S, O, and P that can form coordinate bonds with metals. Hydrogels are water- swollen network of hydrophilic homopolymer or copolymers. They acquire a great interest due to the facility of the incorporation of different chelating groups into the polymeric networks. Such polymeric hydrogels are promising materials in the field of hydrometallurgical applications and water purification due to their chemical stability. The current study discusses the swelling response of the polymeric networks as a function of time, temperature, pH and [NaCl] and sorption studies. Equilibrium swelling has been observed to depend on both structural aspects of the polymers and environmental factors. Metal ion sorption shows that these polymeric networks can be used for removal, separation, and enrichment of metal ions from aqueous solutions and can play an important role for environmental remediation of municipal and industrial wastewater.Keywords: block copolymer, adsorption, chelating exchanger, swelling study, polymer, metal complexes
Procedia PDF Downloads 3441427 The Impact of Artificial Intelligence on Spare Parts Technology
Authors: Amir Andria Gad Shehata
Abstract:
Minimizing the inventory cost, optimizing the inventory quantities, and increasing system operational availability are the main motivations to enhance forecasting demand of spare parts in a major power utility company in Medina. This paper reports in an effort made to optimize the orders quantities of spare parts by improving the method of forecasting the demand. The study focuses on equipment that has frequent spare parts purchase orders with uncertain demand. The pattern of the demand considers a lumpy pattern which makes conventional forecasting methods less effective. A comparison was made by benchmarking various methods of forecasting based on experts’ criteria to select the most suitable method for the case study. Three actual data sets were used to make the forecast in this case study. Two neural networks (NN) approaches were utilized and compared, namely long short-term memory (LSTM) and multilayer perceptron (MLP). The results as expected, showed that the NN models gave better results than traditional forecasting method (judgmental method). In addition, the LSTM model had a higher predictive accuracy than the MLP model.Keywords: spare part, spare part inventory, inventory model, optimization, maintenanceneural network, LSTM, MLP, forecasting demand, inventory management
Procedia PDF Downloads 661426 User Selections on Social Network Applications
Authors: C. C. Liang
Abstract:
MSN used to be the most popular application for communicating among social networks, but Facebook chat is now the most popular. Facebook and MSN have similar characteristics, including usefulness, ease-of-use, and a similar function, which is the exchanging of information with friends. Facebook outperforms MSN in both of these areas. However, the adoption of Facebook and abandonment of MSN have occurred for other reasons. Functions can be improved, but users’ willingness to use does not just depend on functionality. Flow status has been established to be crucial to users’ adoption of cyber applications and to affects users’ adoption of software applications. If users experience flow in using software application, they will enjoy using it frequently, and even change their preferred application from an old to this new one. However, no investigation has examined choice behavior related to switching from Facebook to MSN based on a consideration of flow experiences and functions. This investigation discusses the flow experiences and functions of social-networking applications. Flow experience is found to affect perceived ease of use and perceived usefulness; perceived ease of use influences information ex-change with friends, and perceived usefulness; information exchange influences perceived usefulness, but information exchange has no effect on flow experience.Keywords: consumer behavior, social media, technology acceptance model, flow experience
Procedia PDF Downloads 3571425 Computer Aided Analysis of Breast Based Diagnostic Problems from Mammograms Using Image Processing and Deep Learning Methods
Authors: Ali Berkan Ural
Abstract:
This paper presents the analysis, evaluation, and pre-diagnosis of early stage breast based diagnostic problems (breast cancer, nodulesorlumps) by Computer Aided Diagnosing (CAD) system from mammogram radiological images. According to the statistics, the time factor is crucial to discover the disease in the patient (especially in women) as possible as early and fast. In the study, a new algorithm is developed using advanced image processing and deep learning method to detect and classify the problem at earlystagewithmoreaccuracy. This system first works with image processing methods (Image acquisition, Noiseremoval, Region Growing Segmentation, Morphological Operations, Breast BorderExtraction, Advanced Segmentation, ObtainingRegion Of Interests (ROIs), etc.) and segments the area of interest of the breast and then analyzes these partly obtained area for cancer detection/lumps in order to diagnosis the disease. After segmentation, with using the Spectrogramimages, 5 different deep learning based methods (specified Convolutional Neural Network (CNN) basedAlexNet, ResNet50, VGG16, DenseNet, Xception) are applied to classify the breast based problems.Keywords: computer aided diagnosis, breast cancer, region growing, segmentation, deep learning
Procedia PDF Downloads 981424 Predictive Analytics in Traffic Flow Management: Integrating Temporal Dynamics and Traffic Characteristics to Estimate Travel Time
Authors: Maria Ezziani, Rabie Zine, Amine Amar, Ilhame Kissani
Abstract:
This paper introduces a predictive model for urban transportation engineering, which is vital for efficient traffic management. Utilizing comprehensive datasets and advanced statistical techniques, the model accurately forecasts travel times by considering temporal variations and traffic dynamics. Machine learning algorithms, including regression trees and neural networks, are employed to capture sequential dependencies. Results indicate significant improvements in predictive accuracy, particularly during peak hours and holidays, with the incorporation of traffic flow and speed variables. Future enhancements may integrate weather conditions and traffic incidents. The model's applications range from adaptive traffic management systems to route optimization algorithms, facilitating congestion reduction and enhancing journey reliability. Overall, this research extends beyond travel time estimation, offering insights into broader transportation planning and policy-making realms, empowering stakeholders to optimize infrastructure utilization and improve network efficiency.Keywords: predictive analytics, traffic flow, travel time estimation, urban transportation, machine learning, traffic management
Procedia PDF Downloads 861423 Developing a Web-Based Workflow Management System in Cloud Computing Platforms
Authors: Wang Shuen-Tai, Lin Yu-Ching, Chang Hsi-Ya
Abstract:
Cloud computing is the innovative and leading information technology model for enabling convenient, on-demand network access to a shared pool of configurable computing resources that can be rapidly provisioned and released with minimal management effort. In this paper, we aim at the development of workflow management system for cloud computing platforms based on our previous research on the dynamic allocation of the cloud computing resources and its workflow process. We took advantage of the HTML 5 technology and developed web-based workflow interface. In order to enable the combination of many tasks running on the cloud platform in sequence, we designed a mechanism and developed an execution engine for workflow management on clouds. We also established a prediction model which was integrated with job queuing system to estimate the waiting time and cost of the individual tasks on different computing nodes, therefore helping users achieve maximum performance at lowest payment. This proposed effort has the potential to positively provide an efficient, resilience and elastic environment for cloud computing platform. This development also helps boost user productivity by promoting a flexible workflow interface that lets users design and control their tasks' flow from anywhere.Keywords: web-based, workflow, HTML5, Cloud Computing, Queuing System
Procedia PDF Downloads 309