Search results for: chemical vapour deposition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5271

Search results for: chemical vapour deposition

1911 The Austenite Role in Duplex Stainless Steel Performance

Authors: Farej Ahmed Emhmmed Alhegagi

Abstract:

Duplex stainless steels are attractive material for apparatus working with sea water, petroleum, refineries, chemical plants,vessels, and pipes operating at high temperatures and/or pressures. The role of austenite phase in duplex stainless steels performance was investigated. Zeron 100, stainless steels with 50/50 ferrite / austenite %, specimens were tested for strength, toughness, embrittlement susceptibility, and assisted environmental cracking (AEC) resistance. Specimens were heat treated at 475°C for different times and loaded to well- selected values of load. The load values were chosen to be within the range of higher / lower than the expected toughness. Sodium chloride solution 3.5wt% environment with polarity of -900mV / SCE was used to investigate the material susceptibility to (AEC). Results showed important effect of austenite on specimens overall mechanical properties. Strength was affected by the ductile nature of austenite phase leading to plastic deformation accommodated by austenite slip system. Austenite embrittlement, either by decomposition or nucleation and growth process, was not observed to take place during specimens heat treatment. Cracking due to (AEC) took place in the ferrite grains and avoided the austenite phase. Specimens showed the austenite to act as a crack arrestor during (AEC) of duplex stainless steels.

Keywords: austenite phase, mechanical properties, embrittlement susceptibility, duplex stainless steels

Procedia PDF Downloads 361
1910 Synthesis of Flavonoid Derivatives Precursors of Active Pharmaceutical Ingredients by Mechanical Chemistry

Authors: Imen Abid, Rachel Calvet, Michel Baltas

Abstract:

Flavonoids are secondary metabolites that belong to a polyphenolic class, present in fruits and vegetables, playing a significant role in biological systems. The structural variations of these flavonoids are associated with many biological and pharmacological activities (antioxidant, anti-inflammatory, anticancer, antibacterial, antifungal, antiviral, and antimalarial). Given their importance in plants and health-promoting roles in humans, significant efforts have been devoted towards their isolation of flavonoids and chemical elaboration (organic synthesis). But with the increasing public concern over environmental degradation and future resources, it is of great importance for chemists to come up with different approaches, less hazardous to human health and the environment. Being employed in large amounts, the solvents used in organic synthesis are high on the list of environmental pollutants. To overcome these problems, our approach is to develop unconventional processes involving solvent-free conditions. The application of mechanical forces to solvent-free or solvent-less reaction mixtures through the use of ball mills offers many advantages over traditional solvent-based strategies. It is one of the unconventional activation methods, which makes it possible to overcome the use of solvents, in the context of green chemistry and more respectful of the environment.

Keywords: organic synthesis, green chemistry, mecanochemistry, pharmaceutical molecules

Procedia PDF Downloads 82
1909 Potential Use of Spore-Forming Biosurfactant Producing Bacteria in Oil-Pollution Bioremediation

Authors: S. N. Al-Bahry, Y. M. Al-Wahaibi, S. J. Joshi, E. A. Elshafie, A. S. Al-Bimani

Abstract:

Oman is one of the oil producing countries in the Arabian Peninsula and the Gulf region. About 30-40 % of oil produced from the Gulf is transported globally along the seacoast of Oman. Oil pollution from normal tanker operations, ballast water, illegal discharges and accidental spills are always serious threats to terrestrial and marine habitats. Due to Oman’s geographical location at arid region where the temperature ranges between high 40s and low 50s Celsius in summers with low annual rainfall, the main source of fresh water is desalinated sea and brackish water. Oil pollution, therefore, pose a major threat to drinking water. Biosurfactants are secondary metabolites produced by microorganisms in hydrophobic environments to release nutrients from solid surfaces, such as oil. In this study, indigenous oil degrading thermophilic spore forming bacteria were isolated from oil fields contaminated soil. The isolates were identified using MALDI-TOF biotyper and 16s RNA. Their growth conditions were optimized for the production of biosurfactant. Surface tension, interfacial tensions and microbial oil biodegradation capabilities were tested. Some thermophilic bacteria degraded either completely or partially heavy crude oil (API 10-15) within 48h suggesting their high potential in oil spill bioremediation and avoiding the commonly used physical and chemical methods which usually lead to other environmental pollution.

Keywords: bacteria, bioremediation, biosurfactant, crude-oil-pollution

Procedia PDF Downloads 429
1908 Microwave-Assisted Torrefaction of Teakwood Biomass Residues: The Effect of Power Level and Fluid Flows

Authors: Lukas Kano Mangalla, Raden Rinova Sisworo, Luther Pagiling

Abstract:

Torrefaction is an emerging thermo-chemical treatment process that aims to improve the quality of biomass fuels. This study focused on upgrading the waste teakwood through microwave torrefaction processes and investigating the key operating parameters to improve energy density for the quality of biochar production. The experiments were carried out in a 250 mL reactor placed in a microwave cavity on two different media, inert and non-inert. The microwave was operated at a frequency of 2.45GHz with power level variations of 540W, 720W, and 900W, respectively. During torrefaction processes, the nitrogen gas flows into the reactor at a rate of 0.125 mL/min, and the air flows naturally. The temperature inside the reactor was observed every 0.5 minutes for 20 minutes using a K-Type thermocouple. Changes in the mass and the properties of the torrefied products were analyzed to predict the correlation between calorific value, mass yield, and level power of the microwave. The results showed that with the increase in the operating power of microwave torrefaction, the calorific value and energy density of the product increased significantly, while mass and energy yield tended to decrease. Air can be a great potential media for substituting the expensive nitrogen to perform the microwave torrefaction for teakwood biomass.

Keywords: torrefaction, microwave heating, energy enhancement, mass and energy yield

Procedia PDF Downloads 94
1907 Control of Spoilage Fungi by Lactobacilli

Authors: Laref Nora, Guessas Bettache

Abstract:

Lactic acid bacteria (LAB) have a major potential to be used in biopreservation methods because they are safe to consume (GRAS: generally regarded as safe) and they naturally occurring microflora of many foods. The preservative action of LAB is due to several antimicrobial metabolites, including lactic acid, acetic acid, hydrogen peroxide, bacteriocins, carbon dioxide, diacetyl, and reuterin. Several studies have focused on the antifungal activity compounds from natural sources for biopreservation in alternatives to chemical use. LAB has an antifungal activity which may inhibit food spoilage fungi. Lactobacillus strains isolated from silage prepared in our laboratory by fermentation of grass in anaerobic condition were screened for antifungal activity with overlay assay against Aspergillus spp. The antifungal compounds were originated from organic acids; inhibitory activity did not change after treatment with proteolytic enzymes. Lactobacillus strains were able also to inhibit Trichoderma spp, Penicillium spp, Fusarium roseum, and Stemphylim spp by confrontation assay. The inhibitory activity could be detected against the mould Aspergillus spp in the apricot juice but not in a bakery product. These antifungal compounds have the potential to be used as food biopreservation to inhibit conidia germination, and mycelia growth of spoilage fungi depending on food type, pH of food especially in heat, and cold processed foods.

Keywords: lactic acid bacteria, Lactobacillus, Aspergillus, antifungal activity

Procedia PDF Downloads 334
1906 Investigating Nanocrystalline CaF2:Tm for Carbon Beam and Gamma Radiation Dosimetry

Authors: Kanika Sharma, Shaila Bahl, Birendra Singh, Pratik Kumar, S. P. Lochab, A. Pandey

Abstract:

In the present investigation, initially nano-particles of CaF2 were prepared by the chemical co-precipitation method and later the prepared salt was activated by thulium (0.1 mol%) using the combustion technique. The final product was characterized and confirmed by X-Ray diffraction (XRD) and transmission electron microscopy (TEM). Further, the thermoluminescence (TL) properties of the nanophosphor were studied by irradiating it with 1.25 MeV of gamma radiation and 65 MeV of carbon (C6+) ion beam. For gamma rays, two prominent TL peaks were observed with a low temperature peak at around 1070C and a high temperature peak at around 1570C. Furthermore, the nanophosphor maintained a linear TL response for the entire range of studied doses i.e. 10 Gy to 2000 Gy for both the temperature peaks. Moreover, when the nanophosphor was irradiated with 65 MeV of C6+ ion beam the shape and structure of the glow curves remained spectacularly similar and the nanophosphor displayed a linear TL response for the full range of studied fluences i.e. 5*1010 ions/cm2 to 1 *1012 ions/ cm2. Finally, various tests like reproducibility test and batch homogeneity were also carried out to define the final product. Thus, co-precipitation method followed by combustion technique was successful in effectively producing dosimetric grade CaF2:Tm for dosimetry of gamma as well as carbon (C6+) beam.

Keywords: gamma radiation, ion beam, nanocrystalline, radiation dosimetry

Procedia PDF Downloads 187
1905 Characterization of Organic Matter in Spodosol Amazonian by Fluorescence Spectroscopy

Authors: Amanda M. Tadini, Houssam Hajjoul, Gustavo Nicolodelli, Stéphane Mounier, Célia R. Montes, Débora M. B. P. Milori

Abstract:

Soil organic matter (SOM) plays an important role in maintaining soil productivity and accounting for the promotion of biological diversity. The main components of the SOM are the humic substances which can be fractionated according to its solubility in humic acid (HA), fulvic acids (FA) and humin (HU). The determination of the chemical properties of organic matter as well as its interaction with metallic species is an important tool for understanding the structure of the humic fractions. Fluorescence spectroscopy has been studied as a source of information about what is happening at the molecular level in these compounds. Specially, soils of Amazon region are an important ecosystem of the planet. The aim of this study is to understand the molecular and structural composition of HA samples from Spodosol of Amazonia using the fluorescence Emission-Excitation Matrix (EEM) and Time Resolved Fluorescence Spectroscopy (TRFS). The results showed that the samples of HA showed two fluorescent components; one has a more complex structure and the other one has a simpler structure, which was also seen in TRFS through the evaluation of each sample lifetime. Thus, studies of this nature become important because it aims to evaluate the molecular and structural characteristics of the humic fractions in the region that is considered as one of the most important regions in the world, the Amazon.

Keywords: Amazonian soil, characterization, fluorescence, humic acid, lifetime

Procedia PDF Downloads 612
1904 Extractive Bioconversion of Polyhydroxyalkanoates (PHAs) from Ralstonia Eutropha Via Aqueous Two-Phase System-An Integrated Approach

Authors: Y. K. Leong, J. C. W. Lan, H. S. Loh, P. L. Show

Abstract:

Being biodegradable, non-toxic, renewable and have similar or better properties as commercial plastics, polyhydroxy alkanoates (PHAs) can be a potential game changer in the polymer industry. PHAs are the biodegradable polymer produced by bacteria, which are in interest as a sustainable alternative to petrochemical-derived plastics; however, its commercial value has significantly limited by high production and recovery cost of PHA. Aqueous two-phase system (ATPS) offers different chemical and physical environments, which contains about 80-90% water delivers an excellent environment for partitioning of cells, cell organelles and biologically active substances. Extractive bioconversion via ATPS allows the integration of PHA upstream fermentation and downstream purification process, which reduces production steps and time, thus lead to cost reduction. The ability of Ralstonia eutropha to grow under different ATPS conditions was investigated for its potential to be used in a bioconversion system. Changes in tie-line length (TLL) and a volume ratio (Vr) were shown to have an effect on PHA partition coefficient. High PHA recovery yield of 65% with a relatively high purity of 73% was obtained in PEG 6000/Sodium sulphate system with 42.6 wt/wt % TLL and 1.25 Vr. Extractive bioconversion via ATPS is an attractive approach for the combination of PHA production and recovery process.

Keywords: aqueous two-phase system, extractive bioconversion, polyhydroxy alkanoates, purification

Procedia PDF Downloads 312
1903 Cytotoxic Effect of Crude Extract of Sea Pen Virgularia gustaviana on HeLa and MDA-MB-231 Cancer Cell Lines

Authors: Sharareh Sharifi, Pargol Ghavam Mostafavi, Ali Mashinchian Moradi, Mohammad Hadi Givianrad, Hassan Niknejad

Abstract:

Marine organisms such as soft coral, sponge, ascidians, and tunicate containing rich source of natural compound have been studied in last decades because of their special chemical compounds with anticancer properties. The aim of this study was to investigate anti-cancer property of ethyl acetate extracted from marine sea pen Virgularia gustaviana found from Persian Gulf coastal (Bandar Abbas). The extraction processes were carried out with ethyl acetate for five days. Thin layer chromatography (TLC) and high-performance liquid chromatography (HPLC) were used for qualitative identification of crude extract. The viability of HeLa and MDA-Mb-231 cancer cells was investigated using MTT assay at the concentration of 25, 50, and a 100 µl/ml of ethyl acetate is extracted. The crude extract of Virgularia gustaviana demonstrated ten fractions with different Retention factor (Rf) by TLC and Retention time (Rt) evaluated by HPLC. The crude extract dose-dependently decreased cancer cell viability compared to control group. According to the results, the ethyl acetate extracted from Virgularia gustaviana inhibits the growth of cancer cells, an effect which needs to be further investigated in the future studies.

Keywords: anti-cancer, Hela cancer cell, MDA-Md-231 cancer cell, Virgularia gustavina

Procedia PDF Downloads 432
1902 Introducing α-Oxoester (COBz) as a Protecting Group for Carbohydrates

Authors: Atul Kumar, Veeranjaneyulu Gannedi, Qazi Naveed Ahmed

Abstract:

Oligosaccharides, which are essential to all cellular organisms, play vital roles in cell recognition, signaling, and are involved in a broad range of biological processes. The chemical synthesis of carbohydrates represents a powerful tool to provide homogeneous glycans. In carbohydrate synthesis, the major concern is the orthogonal protection of hydroxyl groups that can be unmasked independently. Classical protecting groups include benzyl ethers (Bn), which are normally cleaved through hydrogenolysis or by means of metal reduction, and acetate (Ac), benzoate (Bz) or pivaloate esters, which are removed using base promoted hydrolysis. In present work a series of α-Oxoester (COBz) protected saccharides, with divergent base sensitivity profiles against benzoyl (Bz) and acetyl (Ac), were designed and KHSO₅/CH₃COCl in methanol was identified as an easy, mild, selective and efficient deprotecting reagent for their removal in the perspective of carbohydrate synthesis. Timely monitoring of later reagent was advantageous in establishing both sequential as well as simultaneous deprotecting of COBz, Bz, and Ac. The salient feature of our work is its ease to generate different acceptors using designed monosaccharides. In summary, we demonstrated α-Oxoester (COBz) as a new protecting group for carbohydrates and the application of this group for the synthesis of Glycosylphosphatidylinositol (GPI) anchor are in progress.

Keywords: α-Oxoester, oligosaccharides, new protecting group, acceptor synthesis, glycosylation

Procedia PDF Downloads 150
1901 Analysis of Composite Health Risk Indicators Built at a Regional Scale and Fine Resolution to Detect Hotspot Areas

Authors: Julien Caudeville, Muriel Ismert

Abstract:

Analyzing the relationship between environment and health has become a major preoccupation for public health as evidenced by the emergence of the French national plans for health and environment. These plans have identified the following two priorities: (1) to identify and manage geographic areas, where hotspot exposures are suspected to generate a potential hazard to human health; (2) to reduce exposure inequalities. At a regional scale and fine resolution of exposure outcome prerequisite, environmental monitoring networks are not sufficient to characterize the multidimensionality of the exposure concept. In an attempt to increase representativeness of spatial exposure assessment approaches, risk composite indicators could be built using additional available databases and theoretical framework approaches to combine factor risks. To achieve those objectives, combining data process and transfer modeling with a spatial approach is a fundamental prerequisite that implies the need to first overcome different scientific limitations: to define interest variables and indicators that could be built to associate and describe the global source-effect chain; to link and process data from different sources and different spatial supports; to develop adapted methods in order to improve spatial data representativeness and resolution. A GIS-based modeling platform for quantifying human exposure to chemical substances (PLAINE: environmental inequalities analysis platform) was used to build health risk indicators within the Lorraine region (France). Those indicators combined chemical substances (in soil, air and water) and noise risk factors. Tools have been developed using modeling, spatial analysis and geostatistic methods to build and discretize interest variables from different supports and resolutions on a 1 km2 regular grid within the Lorraine region. By example, surface soil concentrations have been estimated by developing a Kriging method able to integrate surface and point spatial supports. Then, an exposure model developed by INERIS was used to assess the transfer from soil to individual exposure through ingestion pathways. We used distance from polluted soil site to build a proxy for contaminated site. Air indicator combined modeled concentrations and estimated emissions to take in account 30 polluants in the analysis. For water, drinking water concentrations were compared to drinking water standards to build a score spatialized using a distribution unit serve map. The Lden (day-evening-night) indicator was used to map noise around road infrastructures. Aggregation of the different factor risks was made using different methodologies to discuss weighting and aggregation procedures impact on the effectiveness of risk maps to take decisions for safeguarding citizen health. Results permit to identify pollutant sources, determinants of exposure, and potential hotspots areas. A diagnostic tool was developed for stakeholders to visualize and analyze the composite indicators in an operational and accurate manner. The designed support system will be used in many applications and contexts: (1) mapping environmental disparities throughout the Lorraine region; (2) identifying vulnerable population and determinants of exposure to set priorities and target for pollution prevention, regulation and remediation; (3) providing exposure database to quantify relationships between environmental indicators and cancer mortality data provided by French Regional Health Observatories.

Keywords: health risk, environment, composite indicator, hotspot areas

Procedia PDF Downloads 249
1900 Advanced Oxidation Processes as a Pre-oxidation Step for Biological Treatment of Leachate from Technical Landfills

Authors: Ala Abdessemed, Mohamed Seddik Oussama Belahmadi, Nabil Charchar, Abdefettah Gherib, Bradai Fares, Boussadia Chouaib Nour El-Islem

Abstract:

Algerian cities are confronted with large quantities of waste generated by the disposal of household and similar residues in technical landfills (CET), such as the one in the location of Batna. The interaction between waste components and incoming water generates leachates rich in organic matter and trace elements, which require treatment before discharge. The aim of this study was to propose an effective process for treating the leachates, which were subjected to an initial chemical treatment using the (H₂O₂/UV) system. Optimal treatment conditions were determined at [H₂O₂] of 0.3 M and pH of 8.6. Next, two hybrid biological treatment systems were applied: hybrid system I (H₂O₂/UV/bacteria) and hybrid system II (H₂O₂/UV/bacteria/microalgae). The three processes resulted in the following degradation rates, expressed in terms of total organic carbon (TOC) 27.4% for the (H₂O₂/UV) system; 58.1% for the hybrid system I (H₂O₂/UV/Bacteria); 67.86% for the hybrid system II (H₂O₂/UV/Bacteria/Microalgae). This study demonstrates that a hybrid approach combining advanced oxidation processes and biological treatments is a highly effective alternative to achieve satisfactory treatment.

Keywords: leachate, landfill, advanced oxidation processes, biological treatment, bacteria, microalgae, total organic carbon

Procedia PDF Downloads 72
1899 Electro-Oxidation of Glycerol Using Nickel Deposited Carbon Ceramic Electrode and Product Analysis Using High Performance Liquid Chromatography

Authors: Mulatu Kassie Birhanu

Abstract:

Electro-oxidation of glycerol is an important process to convert the less price glycerol into other expensive (essential) and energy-rich chemicals. In this study, nickel was electro-deposited on laboratory-made carbon ceramic electrode (CCE) substrate using electrochemical techniques that is cyclic voltammetry (CV) to prepare an electro-catalyst (Ni/CCE) for electro-oxidation of glycerol. Carbon ceramic electrode was prepared from graphite and methyl tri-methoxy silane (MTMOS) through the processes called hydrolysis and condensation with methanol in acidic media (HCl) by a sol-gel technique. Physico-chemical characterization of bare CCE and modified (deposited) CCE (Ni/CCE) was measured and evaluated by Fourier Transform Infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and X-ray diffraction (XRD). Electro-oxidation of glycerol was performed in 0.1 M glycerol in alkaline media (0.5 M NaOH). High-Performance Liquid Chromatography (HPLC) technique was used to identify and determine the concentration of glycerol, reaction intermediates and oxidized products of glycerol after its electro-oxidation is performed. The conversion (%) of electro-oxidation of glycerol during 9-hour oxidation was 73% and 36% at 1.8V and 1.6V vs. RHE, respectively. Formate, oxalate, glycolate and glycerate are the main oxidation products of glycerol with selectivity (%) of 75%, 8.6%, 1.1% and 0.95 % at 1.8 V vs. RHE and 55.4%, 2.2%, 1.0% and 0.6% at 1.6 V vs. RHE respectively. The result indicates that formate is the main product in the electro-oxidation of glycerol on Ni/CCE using the indicated applied potentials.

Keywords: carbon-ceramic electrode, electrodeposition, electro-oxidation, Methyltrimethoxysilane

Procedia PDF Downloads 240
1898 Pyrolysis of Mixed Plastic Fractions with PP, PET and PA

Authors: Rudi P. Nielsen, Karina H. Hansen, Morten E. Simonsen

Abstract:

To improve the possibility of the chemical recycling of mixed plastic waste, such as municipal plastic waste, work has been conducted to gain an understanding of the effect of typical polymers from waste (PP, PET, and PA) on the quality of the pyrolysis oil produced. Plastic fractions were pyrolyzed in a lab-scale reactor system, with mixture compositions of up to 15 wt.% PET and five wt.% PA in a PP matrix and processing conditions from 400 to 450°C. The experiments were conducted as a full factorial design and in duplicates to provide reliable results and the possibility to determine any interactions between the parameters. The products were analyzed using FT-IR and GC-MS for compositional information as well as the determination of calorific value, ash content, acid number, density, viscosity, and elemental analysis to provide further data on the fuel quality of the pyrolysis oil. Oil yield was found to be between 61 and 84 wt.%, while char yield was below 2.6 wt.% in all cases. The calorific value of the produced oil was between 32 and 46 MJ/kg, averaging at approx. 41 MJ/kg, thus close to that of heavy fuel oil. The oil product was characterized to contain aliphatic and cyclic hydrocarbons, alcohols, and ethers with chain lengths between 10 and 25 carbon atoms. Overall, it was found that the addition of PET decreased oil yield, while the addition of both PA and PET decreased oil quality in general by increasing acid number (PET), decreasing calorific value (PA), and increasing nitrogen content (PA). Furthermore, it was identified that temperature increased ammonia production from PA during pyrolysis, while ammonia production was decreased by the addition of PET.

Keywords: PET, plastic waste, polyamide, polypropylene, pyrolysis

Procedia PDF Downloads 150
1897 Development and Experimental Validation of Coupled Flow-Aerosol Microphysics Model for Hot Wire Generator

Authors: K. Ghosh, S. N. Tripathi, Manish Joshi, Y. S. Mayya, Arshad Khan, B. K. Sapra

Abstract:

We have developed a CFD coupled aerosol microphysics model in the context of aerosol generation from a glowing wire. The governing equations can be solved implicitly for mass, momentum, energy transfer along with aerosol dynamics. The computationally efficient framework can simulate temporal behavior of total number concentration and number size distribution. This formulation uniquely couples standard K-Epsilon scheme with boundary layer model with detailed aerosol dynamics through residence time. This model uses measured temperatures (wire surface and axial/radial surroundings) and wire compositional data apart from other usual inputs for simulations. The model predictions show that bulk fluid motion and local heat distribution can significantly affect the aerosol behavior when the buoyancy effect in momentum transfer is considered. Buoyancy generated turbulence was found to be affecting parameters related to aerosol dynamics and transport as well. The model was validated by comparing simulated predictions with results obtained from six controlled experiments performed with a laboratory-made hot wire nanoparticle generator. Condensation particle counter (CPC) and scanning mobility particle sizer (SMPS) were used for measurement of total number concentration and number size distribution at the outlet of reactor cell during these experiments. Our model-predicted results were found to be in reasonable agreement with observed values. The developed model is fast (fully implicit) and numerically stable. It can be used specifically for applications in the context of the behavior of aerosol particles generated from glowing wire technique and in general for other similar large scale domains. Incorporation of CFD in aerosol microphysics framework provides a realistic platform to study natural convection driven systems/ applications. Aerosol dynamics sub-modules (nucleation, coagulation, wall deposition) have been coupled with Navier Stokes equations modified to include buoyancy coupled K-Epsilon turbulence model. Coupled flow-aerosol dynamics equation was solved numerically and in the implicit scheme. Wire composition and temperature (wire surface and cell domain) were obtained/measured, to be used as input for the model simulations. Model simulations showed a significant effect of fluid properties on the dynamics of aerosol particles. The role of buoyancy was highlighted by observation and interpretation of nucleation zones in the planes above the wire axis. The model was validated against measured temporal evolution, total number concentration and size distribution at the outlet of hot wire generator cell. Experimentally averaged and simulated total number concentrations were found to match closely, barring values at initial times. Steady-state number size distribution matched very well for sub 10 nm particle diameters while reasonable differences were noticed for higher size ranges. Although tuned specifically for the present context (i.e., aerosol generation from hotwire generator), the model can also be used for diverse applications, e.g., emission of particles from hot zones (chimneys, exhaust), fires and atmospheric cloud dynamics.

Keywords: nanoparticles, k-epsilon model, buoyancy, CFD, hot wire generator, aerosol dynamics

Procedia PDF Downloads 143
1896 Understanding the Effect of Fall Armyworm and Integrated Pest Management Practices on the Farm Productivity and Food Security in Malawi

Authors: Innocent Pangapanga, Eric Mungatana

Abstract:

Fall armyworm (FAW) (Spodoptera frugiperda), an invasive lepidopteran pest, has caused substantial yield loss since its first detection in September 2016, thereby threatening the farm productivity food security and poverty reduction initiatives in Malawi. Several stakeholders, including households, have adopted chemical pesticides to control FAW without accounting for its costs on welfare, health and the environment. Thus, this study has used panel data endogenous switching regression model to investigate the impact of FAW and the integrated pest management (IPM) –related practices on-farm productivity and food security. The study finds that FAW substantively reduces farm productivity by seven (7) percent and influences the adoption of IPM –related practices, namely, intercropping, mulching, and agroforestry, by 6 percent, ceteris paribus. Interestingly, multiple adoptions of the IPM -related practices noticeably increase farm productivity by 21 percent. After accounting for potential endogeneity through the endogenous switching regression model, the IPM practices further demonstrate tenfold more improvement on food security, implying the role of the IPM –related practices in containing the effect of FAW at the household level.

Keywords: hunger, invasive fall army worms, integrated pest management practices, farm productivity, endogenous switching regression

Procedia PDF Downloads 140
1895 Interventions to Control Listeria Monocytogenes on Sliced Mushrooms

Authors: Alanna Goodman, Kayla Murray, Keith Warriner

Abstract:

The following reports on a comparative study on the efficacy of different decontamination technologies to decrease Listeria monocytogenes inoculated onto white sliced mushrooms and assesses the fate of residual levels during posttreatment storage under aerobic conditions at 8uC. The treatments were chemical (hydrogen peroxide, peroxyacetic acid, ozonated water, electrolyzed water, chitosan, lactic acid), biological (Listeria bacteriophages), and physical (UV-C, UV:hydrogen peroxide). None of the treatments achieved .1.2 log CFU reduction in L. monocytogenes levels; bacteriophages at a multiplicity of infection of 100 and 3% (vol/vol) hydrogen peroxide were the most effective of the treatments tested. However, growth of residual L. monocytogenes during posttreatment storage attained levels equal to or greater than levels in the nontreated controls. The growth of L. monocytogenes was inhibited on mushrooms treated with chitosan, electrolyzed water, peroxyacetic acid, or UV. Yet, L. monocytogenes inoculated onto mushrooms and treated with UV:hydrogen peroxide decreased during posttreatment storage, through a combination of sublethal injury and dehydration of the mushroom surface. Although mushrooms treated with UV:hydrogen peroxide became darker during storage, the samples were visually acceptable relative to controls. In conclusion, of the treatments evaluated, UV:hydrogen peroxide holds promise to control L. monocytogenes on mushroom surfaces.

Keywords: listeria monocytogenes, sliced mushrooms, bacteriophages, UV, sanitizers

Procedia PDF Downloads 478
1894 Performance of an Improved Fluidized System for Processing Green Tea

Authors: Nickson Kipng’etich Lang’at, Thomas Thoruwa, John Abraham, John Wanyoko

Abstract:

Green tea is made from the top two leaves and buds of a shrub, Camellia sinensis, of the family Theaceae and the order Theales. The green tea leaves are picked and immediately sent to be dried or steamed to prevent fermentation. Fluid bed drying technique is a common drying method used in drying green tea because of its ease in design and construction and fluidization of fine tea particles. Major problems in this method are significant loss of chemical content of the leaf and green appearance of tea, retention of high moisture content in the leaves and bed channeling and defluidization. The energy associated with the drying technology has been shown to be a vital factor in determining the quality of green tea. As part of the implementation, prototype dryer was built that facilitated sequence of operations involving steaming, cooling, pre-drying and final drying. The major findings of the project were in terms of quality characteristics of tea leaves and energy consumption during processing. The optimal design achieved a moisture content of 4.2 ± 0.84%. With the optimum drying temperature of 100 ºC, the specific energy consumption was 1697.8 kj.Kg-1 and evaporation rate of 4.272 x 10-4 Kg.m-2.s-1. The energy consumption in a fluidized system can be further reduced by focusing on energy saving designs.

Keywords: evaporation rate, fluid bed dryer, maceration, specific energy consumption

Procedia PDF Downloads 315
1893 UF as Pretreatment of RO for Tertiary Treatment of Biologically Treated Distillery Spentwash

Authors: Pinki Sharma, Himanshu Joshi

Abstract:

Distillery spentwash contains high chemical oxygen demand (COD), biological oxygen demand (BOD), color, total dissolved solids (TDS) and other contaminants even after biological treatment. The effluent can’t be discharged as such in the surface water bodies or land without further treatment. Reverse osmosis (RO) treatment plants have been installed in many of the distilleries at tertiary level. But at most of the places these plants are not properly working due to high concentration of organic matter and other contaminants in biologically treated spentwash. To make the membrane treatment proven and reliable technology, proper pre-treatment is mandatory. In the present study, ultra-filtration (UF) as pre-treatment of RO at tertiary stage was performed. Operating parameters namely initial pH (pHo: 2–10), trans-membrane pressure (TMP: 4-20 bars) and temperature (T: 15- 43°C) used for conducting experiments with UF system. Experiments were optimized at different operating parameters in terms of COD, color, TDS and TOC removal by using response surface methodology (RSM) with central composite design. The results showed that removal of COD, color and TDS by 62%, 93.5% and 75.5%, with UF, respectively at optimized conditions with increased permeate flux from 17.5 l/m2/h (RO) to 38 l/m2/h (UF-RO). The performance of the RO system was greatly improved both in term of pollutant removal as well as water recovery.

Keywords: bio-digested distillery spentwash, reverse osmosis, response surface methodology, ultra-filtration

Procedia PDF Downloads 348
1892 Comparative Analysis of Three Types of Recycled Aggregates and its Use in Masonry Mortar Fabrication

Authors: Mariano Gonzalez Cortina, Pablo Saiz Martinez, Francisco Fernandez Martinez, Antonio Rodriguez Sanchez

Abstract:

Construction sector incessant activity of the last years preceding the crisis has originated a high waste generation and an increased use of raw materials. The main aim of this research is to compare three types of recycled aggregates and the feasibility to incorporate them into masonry mortar fabrication. The tests were developed using two types of binders: CEM II/B-L 32.5 N and CEM IV/B (V) 32.5 N. 50%, 75% and 100% of natural sand were replaced with three types of recycled aggregates. Cement-to-aggregate by dry weight proportions were 1:3 and 1:4. Physical and chemical characterization of recycled aggregates showed continues particle size distribution curve, lower density and higher absorption, which was the reason to use additive to obtain required mortar consistency. Main crystalline phases determined in the X-Ray diffraction test were calcite, quartz, and gypsum. Performed tests show that cement-based mortars fabricated with CEM IV/B (V) 32. 5 N can incorporate recycled aggregates coming from ceramic, concrete and mixed recycling processes, using 1:3 and 1:4 cement-to-aggregate proportions, complying with the limits established by the Spanish standards. It was concluded that recycled mortar coming from concrete recycling process is the one which presents better characteristics.

Keywords: construction and demolition waste, masonry mortar, mechanical properties, recycled aggregate, waste treatment

Procedia PDF Downloads 424
1891 Comparison of Different Activators Impact on the Alkali-Activated Aluminium-Silicate Composites

Authors: Laura Dembovska, Ina Pundiene, Diana Bajare

Abstract:

Alkali-activated aluminium-silicate composites (AASC) can be used in the production of innovative materials with a wide range of properties and applications. AASC are associated with low CO₂ emissions; in the production process, it is possible to use industrial by-products and waste, thereby minimizing the use of a non-renewable natural resource. This study deals with the preparation of heat-resistant porous AASC based on chamotte for high-temperature applications up to 1200°C. Different fillers, aluminium scrap recycling waste as pores forming agent and alkali activation with 6M sodium hydroxide (NaOH) and potassium hydroxide (KOH) solution were used. Sodium hydroxide (NaOH) is widely used for the synthesis of AASC compared to potassium hydroxide (KOH), but comparison of using different activator for geopolymer synthesis is not well established. Changes in chemical composition of AASC during heating were identified and quantitatively analyzed by using DTA, dimension changes during the heating process were determined by using HTOM, pore microstructure was examined by SEM, and mineralogical composition of AASC was determined by XRD. Lightweight porous AASC activated with NaOH have been obtained with density in range from 600 to 880 kg/m³ and compressive strength from 0.8 to 2.7 MPa, but for AAM activated with KOH density was in range from 750 to 850 kg/m³ and compressive strength from 0.7 to 2.1 MPa.

Keywords: alkali activation, alkali activated materials, elevated temperature application, heat resistance

Procedia PDF Downloads 181
1890 Oral Toxicity of Low Doses of Fungicides, Propinebe, Propiconazole and Their Mixtures in the Male Rat

Authors: Mallem Leila, Aiche Mohamed Amine, Boulakoud Mohamed Salah

Abstract:

A number of chemical compounds are being used to protect agricultural crops from diseases. Residues of these chemicals lead to environmental pollution and pose some threat to non target organisms, human and animal. The aim of this study is to detect the toxicity of these fungicides and their mixtures in the fertility and biochemical’s parameters in the rat. The male of rats (28) were used, they were divided in four groups (7 rats of each group) and one group was used as control. Rats were dosed orally with propiconazole (60 mg/kg body weight/day), propinebe (100 mg/Kg body weight/day) and their mixture (50:50) for 4 weeks. Animals were observed for clinical toxicity. At the end of treatment period, animals of all groups were scarified and samples of different organs were fixed in the formol 10% for histopathological study, and blood was collected for hematological and biochemical’s analysis. The results indicated that the fungicide and their mixture of fungicides were toxic in the treated animals. The semen study showed a decrease in the count, mobility and speed of spermatozoa in all treated group especially those dosed with the mixture and Propiconazole, it was also a decrease in the weight of the testis and epidydimis in the treated group as compared with control. Remarquable histological changes were observed in the testis and epidydimis and liver in the group treated with mixture.

Keywords: fungicides, mixture, fertility, hematological, biochemical's parameters

Procedia PDF Downloads 573
1889 Rational Design of Potent Compounds for Inhibiting Ca2+ -Dependent Calmodulin Kinase IIa, a Target of Alzheimer’s Disease

Authors: Son Nguyen, Thanh Van, Ly Le

Abstract:

Ca2+ - dependent calmodulin kinase IIa (CaMKIIa) has recently been found to associate with protein tau missorting and polymerization in Alzheimer’s Disease (AD). However, there has yet inhibitors targeting CaMKIIa to investigate the correlation between CaMKIIa activity and protein tau polymer formation. Combining virtual screening and our statistics in binding contribution scoring function (BCSF), we rationally identified potential compounds that bind to specific CaMKIIa active site and specificity-affinity distribution of the ligand within the active site. Using molecular dynamics simulation, we identified structural stability of CaMKIIa and potent inhibitors, and site-directed bonding, separating non-specific and specific molecular interaction features. Despite of variation in confirmation of simulation time, interactions of the potent inhibitors were found to be strongly associated with the unique chemical features extracted from molecular binding poses. In addition, competitive inhibitors within CaMKIIa showed an important molecular recognition pattern toward specific ligand features. Our approach combining virtual screening with BCSF may provide an universally applicable method for precise identification in the discovery of compounds.

Keywords: Alzheimer’s disease, Ca 2+ -dependent calmodulin kinase IIa, protein tau, molecular docking

Procedia PDF Downloads 275
1888 Biodegradation Potential of Selected Micromycetes Against Dyeing Unit Effluents of Sapphire Industry, Raiwind Road Lahore

Authors: Samina Sarwar, Hajra Khalil

Abstract:

Mycoremediation is emerging as a potential approach for eco-friendly and cost-effective remediation of polluted effluents collected from the dyeing unit of the textile industry was examined. This work dealt with the analyses of the bio remedial capability of some potential indigenous six fungal isolates viz., Aspergillus alliaceus, Aspergillus flavus, Aspergillus fumigatus Aspergillus niger, Penicillium sp. and Rhizopus oryzae were identified and selected for studies. All fungal species were known to bring bioremediation, which had been confirmed by measuring the percentage reduction potential in different parameters, i.e., pH, Electrical Conductivity (EC), Total Suspended Solids (TSS), Total Dissolved Solids (TDS), Biological Oxygen Demand (BOD) and Chemical Oxygen Demand (COD). Rhizopus oryzae showed the highest reduction in pH, EC, and BOD, while Aspergillus fumigatus showed the highest reduction in TDS and TSS, and COD under the optimal conditions of this study. The biodegradation potential of these fungal species was confirmed, evidenced by excellent evaluation of experimental data to propose Rhizopus oryzae and Aspergillus fumigatus as a cost-effective solution to treat the effluents from the dyeing unit of the textile industry.

Keywords: biological reduction, fungal isolates, micromycetes, mycoremediation

Procedia PDF Downloads 79
1887 Biodegradation Potential of Selected Micromycetes against Dyeing Unit Effluents of Sapphire Industry in Raiwind Road Lahore

Authors: Samina Sarwar, Hajra Khalil

Abstract:

Mycoremediation is emerging as a potential approach for eco-friendly and cost-effective remediation of polluted effluents collected from the dyeing unit of the textile industry was examined. This work dealt with the analyses of the bio remedial capability of some potential indigenous six fungal isolates viz., Aspergillus alliaceus, Aspergillus flavus, Aspergillus fumigatus Aspergillus niger, Penicillium sp. and Rhizopus oryzae were identified and selected for studies. All fungal species were known to bring bioremediation, which had been confirmed by measuring the percentage reduction potential in different parameters, i.e., pH, Electrical Conductivity (EC), Total Suspended Solids (TSS), Total Dissolved Solids (TDS), Biological Oxygen Demand (BOD) and Chemical Oxygen Demand (COD). Rhizopus oryzae showed the highest reduction in pH, EC, and BOD, while Aspergillus fumigatus showed the highest reduction in TDS and TSS, and COD under the optimal conditions of this study. The biodegradation potential of these fungal species was confirmed, evidenced by excellent evaluation of experimental data to propose Rhizopus oryzae and Aspergillus fumigatus as a cost-effective solution to treat the effluents from the dyeing unit of the textile industry.

Keywords: biological reduction, fungal isolates, micromycetes, mycoremediation

Procedia PDF Downloads 95
1886 3D Scanning Documentation and X-Ray Radiography Examination for Ancient Egyptian Canopic Jar

Authors: Abdelrahman Mohamed Abdelrahman

Abstract:

Canopic jars are one of the vessels of funerary nature used by the ancient Egyptian in mummification process that were used to save the viscera of the mummified body after being extracted from the body and treated. Canopic jars are made of several types of materials like Limestone, Alabaster, and Pottery. The studied canopic jar dates back to Late period, located in the Grand Egyptian Museum (GEM), Giza, Egypt. This jar carved from limestone with carved hieroglyphic inscriptions, and it filled and closed by mortar from inside. Some aspects of damage appeared in the jar, such as dust, dirts, classification, wide crack, weakness of limestone. In this study, we used documentation and investigation modern techniques to document and examine the jar. 3D scanning and X-ray Radiography imaging used in applied study. X-ray imaging showed that the mortar was placed at a time when the jar contained probably viscera where the mortar appeared that not reach up to the base of the inner jar. Through the three-dimensional photography, the jar was documented, and we have 3D model of the jar, and now we have the ability through the computer to see any part of the jar in all its details. After that, conservation procedures have been applied with high accuracy to conserve the jar, including mechanical, wet, and chemical cleaning, filling wide crack in the body of the jar using mortar consisting of calcium carbonate powder mixing with primal E330 S, and consolidation, so the limestone became strong after using paraloid B72 2% concentrate as a consolidate material.

Keywords: vessel, limestone, canopic jar, mortar, 3D scanning, X-ray radiography

Procedia PDF Downloads 80
1885 Magnetic Treatment of Irrigation Water and Its Effect on Water Salinity

Authors: Muhammad Waqar Ashraf

Abstract:

The influence of magnetic field on the structure of water and aqueous solutions are similar and can alter the physical and chemical properties of water-dispersed systems. With the application of magnetic field, hydration of salt ions and other impurities slides down and improve the possible technological characteristics of the water. Magnetic field can enhance the characteristic of water i.e. better salt solubility, kinetic changes in salt crystallization, accelerated coagulation, etc. Gulf countries are facing critical problem due to depletion of water resources and increasing food demands to cover the human needs; therefore water shortage is being increasingly accepted as a major limitation for increased agricultural production and food security. In arid and semi-arid regions sustainable agricultural development is influenced to a great extent by water quality that might be used economically and effectively in developing agriculture programs. In the present study, the possibility of using magnetized water to desalinate the soil is accounted for the enhanced dissolving capacity of the magnetized water. Magnetic field has been applied to treat brackish water. The study showed that the impact of magnetic field on saline water is sustained up to three hours (with and without shaking). These results suggest that even low magnetic field can decrease the electrical conductivity and total dissolved solids which are good for the removal of salinity from the irrigated land by using magnetized water.

Keywords: magnetic treatment, saline water, hardness of water, removal of salinity

Procedia PDF Downloads 503
1884 Experimental Study on Granulated Steel Slag as an Alternative to River Sand

Authors: K. Raghu, M. N. Vathhsala, Naveen Aradya, Sharth

Abstract:

River sand is the most preferred fine aggregate for mortar and concrete. River sand is a product of natural weathering of rocks over a period of millions of years and is mined from river beds. Sand mining has disastrous environmental consequences. The excessive mining of river bed is creating an ecological imbalance. This has lead to have restrictions imposed by ministry of environment on sand mining. Driven by the acute need for sand, stone dust or manufactured sand prepared from the crushing and screening of coarse aggregate is being used as sand in the recent past. However manufactured sand is also a natural material and has quarrying and quality issues. To reduce the burden on the environment, alternative materials to be used as fine aggregates are being extensively investigated all over the world. Looking to the quantum of requirements, quality and properties there has been a global consensus on a material – Granulated slags. Granulated slag has been proven as a suitable material for replacing natural sand / crushed fine aggregates. In developed countries, the use of granulated slag as fine aggregate to replace natural sand is well established and is in regular practice. In the present paper Granulated slag has been experimented for usage in mortar. Slags are the main by-products generated during iron and steel production in the steel industry. Over the past decades, the steel production has increased and, consequently, the higher volumes of by-products and residues generated which have driven to the reuse of these materials in an increasingly efficient way. In recent years new technologies have been developed to improve the recovery rates of slags. Increase of slags recovery and use in different fields of applications like cement making, construction and fertilizers help in preserving natural resources. In addition to the environment protection, these practices produced economic benefits, by providing sustainable solutions that can allow the steel industry to achieve its ambitious targets of “zero waste” in coming years. Slags are generated at two different stages of steel production, iron making and steel making known as BF(Blast Furnace) slag and steel slag respectively. The slagging agent or fluxes, such as lime stone, dolomite and quartzite added into BF or steel making furnaces in order to remove impurities from ore, scrap and other ferrous charges during smelting. The slag formation is the result of a complex series of physical and chemical reactions between the non-metallic charge(lime stone, dolomite, fluxes), the energy sources(coal, coke, oxygen, etc.) and refractory materials. Because of the high temperatures (about 15000 C) during their generation, slags do not contain any organic substances. Due to the fact that slags are lighter than the liquid metal, they float and get easily removed. The slags protect the metal bath from atmosphere and maintain temperature through a kind of liquid formation. These slags are in liquid state and solidified in air after dumping in the pit or granulated by impinging water systems. Generally, BF slags are granulated and used in cement making due to its high cementious properties, and steel slags are mostly dumped due to unfavourable physio-chemical conditions. The increasing dump of steel slag not only occupies a plenty of land but also wastes resources and can potentially have an impact on the environment due to water pollution. Since BF slag contains little Fe and can be used directly. BF slag has found a wide application, such as cement production, road construction, Civil Engineering work, fertilizer production, landfill daily cover, soil reclamation, prior to its application outside the iron and steel making process.

Keywords: steel slag, river sand, granulated slag, environmental

Procedia PDF Downloads 246
1883 Treatment and Characterization of Cadmium Metal From Textile Factory Wastewater by Electrochemical Process Using Aluminum Plate Electrode

Authors: Dessie Tibebe, Yeshifana Ayenew, Marye Mulugeta, Yezbie Kassa, Zerubabel Moges, Dereje Yenealem, Tarekegn Fentie, Agmas Amare, Hailu Sheferaw Ayele

Abstract:

Electrochemical treatment technology is a technique used for wastewater treatment due to its ability to eliminate impurities that are not easily removed by chemical processes. The objective of the study is the treatment and characterization of textile wastewater by an electrochemical process. The results obtained at various operational parameters indicated that at 20 minutes of electrochemical process at ( pH =7), initial concentration 10 mg/L, current density 37.5 mA/cm², voltage 9 v and temperature 25⁰C the highest removal efficiency was achieved. The kinetics of removal of selected metal by electrochemical treatment has been successfully described by the first-order rate equation. The results of microscopic techniques using SEM for the scarified electrode before treatment were uniform and smooth, but after the electrochemical process, the morphology was completely changed. This is due to the detection of the adsorbed aluminum hydroxide coming from adsorption of the conducting electrolyte, chemicals used in the experiments, alloying and the scrap impurities of the anode and cathode. The FTIR spectroscopic analysis broad bands at 3450 cm-¹ representing O-H functional groups, while the presence of H-O-H and Al-H groups are indicated by the bands at 2850-2750 cm-¹ and 1099 representing C-H functional groups.

Keywords: electrochemical, treatment, textile wastewater, kinetics, removal efficiency

Procedia PDF Downloads 100
1882 Water-Repellent Finishing on Cotton Fabric by SF₆ Plasma

Authors: We'aam Alali, Ziad Saffour, Saker Saloum

Abstract:

Low-pressure, sulfur hexafluoride (SF₆) remote radio-frequency (RF) plasma, ignited in a hollow cathode discharge (HCD-L300) plasma system, has been shown to be a powerful method in cotton fabric finishing to achieve water-repellent property. This plasma was ignited at an SF6 flow rate of (200 cm), low pressure (0.5 mbar), and radio frequency (13.56 MHz) with a power of (300 W). The contact angle has been measured as a function of the plasma exposure period using the water contact angle measuring device (WCA), and the changes in the morphology, chemical structure, and mechanical properties as tensile strength and elongation at the break of the fabric have also been investigated using the scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDX), attenuated total reflectance Fourier transform Infrared spectroscopy (ATR-FTIR), and tensile test device, respectively. In addition, weight loss of the fabric and the fastness of washing have been studied. It was found that the exposure period of the fabric to the plasma is an important parameter. Moreover, a good water-repellent cotton fabric can be obtained by treating it with SF₆ plasma for a short time (1 min) without degrading its mechanical properties. Regarding the modified morphology of the cotton fabric, it was found that grooves were formed on the surface of the fibers after treatment. Chemically, the fluorine atoms were attached to the surface of the fibers.

Keywords: cotton fabric, SEM, SF₆ plasma, water-repellency

Procedia PDF Downloads 83