Search results for: AIS service provider selection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6050

Search results for: AIS service provider selection

2690 The Importance of Downstream Supply Chain in Supply Chain Risk Management: Multi-Objective Optimization

Authors: Zohreh Khojasteh-Ghamari, Takashi Irohara

Abstract:

One of the efficient ways in supply chain risk management is avoiding the interruption in Supply Chain (SC) before it occurs. Although the majority of the organizations focus on their first-tier suppliers to avoid risk in the SC, studies show that in only 60 percent of the disruption cases the reason is first tier suppliers. In the 40 percent of the SC disruptions, the reason is downstream SC, which is the second tier and lower. Due to the increasing complexity and interrelation of modern supply chains, the SC elements have become difficult to trace. Moreover, studies show that there is a vital need to better understand the integration of risk and visibility, especially in the context of multiple objectives. In this study, we propose a multi-objective programming model to avoid disruption in SC. The objective of this study is evaluating the effect of downstream SCV on managing supply chain risk. We propose a multi-objective mathematical programming model with the objective functions of minimizing the total cost and maximizing the downstream supply chain visibility (SCV). The decision variable is supplier selection. We assume there are several manufacturers and several candidate suppliers. For each manufacturer, our model proposes the best suppliers with the lowest cost and maximum visibility in downstream supply chain. We examine the applicability of the model by numerical examples. We also define several scenarios for datasets and observe the tendency. The results show that minimum visibility in downstream SC is needed to have a safe SC network.

Keywords: downstream supply chain, optimization, supply chain risk, supply chain visibility

Procedia PDF Downloads 248
2689 Improving Order Quantity Model with Emergency Safety Stock (ESS)

Authors: Yousef Abu Nahleh, Alhasan Hakami, Arun Kumar, Fugen Daver

Abstract:

This study considers the problem of calculating safety stocks in disaster situations inventory systems that face demand uncertainties. Safety stocks are essential to make the supply chain, which is controlled by forecasts of customer needs, in response to demand uncertainties and to reach predefined goal service levels. To solve the problem of uncertainties due to the disaster situations affecting the industry sector, the concept of Emergency Safety Stock (ESS) was proposed. While there exists a huge body of literature on determining safety stock levels, this literature does not address the problem arising due to the disaster and dealing with the situations. In this paper, the problem of improving the Order Quantity Model to deal with uncertainty of demand due to disasters is managed by incorporating a new idea called ESS which is based on the probability of disaster occurrence and uses probability matrix calculated from the historical data.

Keywords: Emergency Safety Stocks, safety stocks, Order Quantity Model, supply chain

Procedia PDF Downloads 351
2688 Large-Capacity Image Information Reduction Based on Single-Cue Saliency Map for Retinal Prosthesis System

Authors: Yili Chen, Xiaokun Liang, Zhicheng Zhang, Yaoqin Xie

Abstract:

In an effort to restore visual perception in retinal diseases, an electronic retinal prosthesis with thousands of electrodes has been developed. The image processing strategies of retinal prosthesis system converts the original images from the camera to the stimulus pattern which can be interpreted by the brain. Practically, the original images are with more high resolution (256x256) than that of the stimulus pattern (such as 25x25), which causes a technical image processing challenge to do large-capacity image information reduction. In this paper, we focus on developing an efficient image processing stimulus pattern extraction algorithm by using a single cue saliency map for extracting salient objects in the image with an optimal trimming threshold. Experimental results showed that the proposed stimulus pattern extraction algorithm performs quite well for different scenes in terms of the stimulus pattern. In the algorithm performance experiment, our proposed SCSPE algorithm have almost five times of the score compared with Boyle’s algorithm. Through experiment s we suggested that when there are salient objects in the scene (such as the blind meet people or talking with people), the trimming threshold should be set around 0.4max, in other situations, the trimming threshold values can be set between 0.2max-0.4max to give the satisfied stimulus pattern.

Keywords: retinal prosthesis, image processing, region of interest, saliency map, trimming threshold selection

Procedia PDF Downloads 250
2687 Logistic and Its Importance in Turkish Food Sector and an Analysis of the Logistics Sector in Turkey

Authors: Şule Turhan, Özlem Turan

Abstract:

Permanence in the international markets for many global companies is about being known as having effective logistics which targets customer satisfaction management and lower costs. Under competitive conditions, the necessity of providing the products to customers quickly and on time for the companies which constantly aim to improve their profitability increased the strategic importance of the logistics concept. Food logistic is one of the most difficult areas in logistics. In the process from manufacturer to final consumer, quality and hygiene standards must be provided constantly. In food logistics, reliable and extensive service network has great importance and on time delivery is the target. Developing logistics industry provide the supply of foods in the country and the development of export markets more quickly and has an important role in providing added value to the country's economy. Turkey that creates a bridge between the east and the west is an attractive market for logistics companies. In this study, by examining both the place and the importance of logistics in Turkish food sector, recommendations will be made for the food industry.

Keywords: logistics, Turkish food industry, competition, food industry

Procedia PDF Downloads 375
2686 A Convergent Interacting Particle Method for Computing Kpp Front Speeds in Random Flows

Authors: Tan Zhang, Zhongjian Wang, Jack Xin, Zhiwen Zhang

Abstract:

We aim to efficiently compute the spreading speeds of reaction-diffusion-advection (RDA) fronts in divergence-free random flows under the Kolmogorov-Petrovsky-Piskunov (KPP) nonlinearity. We study a stochastic interacting particle method (IPM) for the reduced principal eigenvalue (Lyapunov exponent) problem of an associated linear advection-diffusion operator with spatially random coefficients. The Fourier representation of the random advection field and the Feynman-Kac (FK) formula of the principal eigenvalue (Lyapunov exponent) form the foundation of our method implemented as a genetic evolution algorithm. The particles undergo advection-diffusion and mutation/selection through a fitness function originated in the FK semigroup. We analyze the convergence of the algorithm based on operator splitting and present numerical results on representative flows such as 2D cellular flow and 3D Arnold-Beltrami-Childress (ABC) flow under random perturbations. The 2D examples serve as a consistency check with semi-Lagrangian computation. The 3D results demonstrate that IPM, being mesh-free and self-adaptive, is simple to implement and efficient for computing front spreading speeds in the advection-dominated regime for high-dimensional random flows on unbounded domains where no truncation is needed.

Keywords: KPP front speeds, random flows, Feynman-Kac semigroups, interacting particle method, convergence analysis

Procedia PDF Downloads 51
2685 Total Quality Management and Competitive Advantage in Companies

Authors: Malki Fatima Zahra Nadia, Kellal Cheiimaa, Brahimi Houria

Abstract:

Total Quality Management (TQM) is one of the most important modern management systems in marketing, that help organizations to survive and remain competitive in the dynamic market with frequent changes. It assists them in gaining a competitive advantage, growth, and excellence compared to their competitors. To understand the impact of TQM on competitive advantage in economic companies, a study was conducted in Ooredoo Telecommunications Company. A questionnaire was designed and distributed to OOredoo' 75 employees in each of the departments of leadership, quality assurance, quality control, research and development, production, customer service, Similarly, resulting in the retrieval of 72 questionnaires. To analyze the descriptive results of the study, the SPSS software version 25 was used. Additionally, Structural Equation Modeling (SEM) with the help of Smart Pls4 software was utilized to test the study's hypotheses. The study concluded that there is an impact between total quality management and competitive advantage in Ooredoo company to different degrees. On this basis, the study recommended the need to implement the total quality management system at the level of all organizations and in various fields.

Keywords: total quality management, ISO system, competitive advantage, competitive strategies

Procedia PDF Downloads 79
2684 Formation of Science Literations Based on Indigenous Science Mbaru Niang Manggarai

Authors: Yuliana Wahyu, Ambros Leonangung Edu

Abstract:

The learning praxis that is proposed by 2013 Curriculum (K-13) is no longer school-oriented as a supply-driven, but now a demand-driven provider. This vision is connected with Jokowi-Kalla Nawacita program to create a competitive nation in the global era. Competition is a social fact that must be faced. Therefore the curriculum will design a process to be the innovators and entrepreneurs.To get this goal, K-13 implements the character education. This aims at creating the innovators and entrepreneurs from an early age (primary school). One part of strengthening it is literacy formations (reading, numeracy, science, ICT, finance, and culture). Thus, science literacy is an integral part of character education. The above outputs are only formed through the innovative process through intra-curricular (blended learning), co-curriculer (hands-on learning) and extra-curricular (personalized learning). Unlike the curriculums before that child cram with the theories dominating the intellectual process, new breakthroughs make natural, social, and cultural phenomena as learning sources. For example, Science in primary schoolsplaceBiology as the platform. And Science places natural, social, and cultural phenomena as a learning field so that students can learn, discover, solve concrete problems, and the prospects of development and application in their everyday lives. Science education not only learns about facts collection or natural phenomena but also methods and scientific attitudes. In turn, Science will form the science literacy. Science literacy have critical, creative, logical, and initiative competences in responding to the issues of culture, science and technology. This is linked with science nature which includes hands-on and minds-on. To sustain the effectiveness of science learning, K-13 opens a new way of viewing a contextual learning model in which facts or natural phenomena are drawn closer to the child's learning environment to be studied and analyzed scientifically. Thus, the topic of elementary science discussion is the practical and contextual things that students encounter. This research is about to contextualize Science in primary schools at Manggarai, NTT, by placing local wisdom as a learning source and media to form the science literacy. Explicitly, this study discovers the concept of science and mathematics in Mbaru Niang. Mbaru Niang is a forgotten potentials of the centralistic-theoretical mainstream curriculum so far. In fact, the traditional Manggarai community stores and inherits much of the science-mathematical indigenous sciences. In the traditional house structures are full of science and mathematics knowledge. Every details have style, sound and mathematical symbols. Learning this, students are able to collaborate and synergize the content and learning resources in student learning activities. This is constructivist contextual learning that will be applied in meaningful learning. Meaningful learning allows students to learn by doing. Students then connect topics to the context, and science literacy is constructed from their factual experiences. The research location will be conducted in Manggarai through observation, interview, and literature study.

Keywords: indigenous science, Mbaru Niang, science literacy, science

Procedia PDF Downloads 211
2683 Evaluation of Different Cowpea Genotypes Using Grain Yield and Canning Quality Traits

Authors: Magdeline Pakeng Mohlala, R. L. Molatudi, M. A. Mofokeng

Abstract:

Cowpea (Vigna unguiculata (L.) Walp) is an important annual leguminous crop in semi-arid and tropics. Most of cowpea grain production in South Africa is mainly used for domestic consumption, as seed planting and little or none gets to be used in industrial processing; thus, there is a need to expand the utilization of cowpea through industrial processing. Agronomic traits contribute to the understanding of the association between yield and its component traits to facilitate effective selection for yield improvement. The aim of this study was to evaluate cowpea genotypes using grain yield and canning quality traits. The field experiment was conducted in two locations in Limpopo Province, namely Syferkuil Agricultural Experimental farm and Ga-Molepo village during 2017/2018 growing season and canning took place at ARC-Grain Crops Potchefstroom. The experiment comprised of 100 cowpea genotypes laid out in a Randomized Complete Block Designs (RCBD). The grain yield, yield components, and canning quality traits were analysed using Genstat software. About 62 genotypes were suitable for canning, 38 were not due to their seed coat texture, and water uptake was less than 80% resulting in too soft (mushy) seeds. Grain yield for RV115, 99k-494-6, ITOOK1263, RV111, RV353 and 53 other genotypes recorded high positive association with number of branches, pods per plant, and number of seeds per pod, unshelled weight and shelled weight for Syferkuil than at Ga-Molepo are therefore recommended for canning quality.

Keywords: agronomic traits, canning quality, genotypes, yield

Procedia PDF Downloads 157
2682 Ontology-Based Backpropagation Neural Network Classification and Reasoning Strategy for NoSQL and SQL Databases

Authors: Hao-Hsiang Ku, Ching-Ho Chi

Abstract:

Big data applications have become an imperative for many fields. Many researchers have been devoted into increasing correct rates and reducing time complexities. Hence, the study designs and proposes an Ontology-based backpropagation neural network classification and reasoning strategy for NoSQL big data applications, which is called ON4NoSQL. ON4NoSQL is responsible for enhancing the performances of classifications in NoSQL and SQL databases to build up mass behavior models. Mass behavior models are made by MapReduce techniques and Hadoop distributed file system based on Hadoop service platform. The reference engine of ON4NoSQL is the ontology-based backpropagation neural network classification and reasoning strategy. Simulation results indicate that ON4NoSQL can efficiently achieve to construct a high performance environment for data storing, searching, and retrieving.

Keywords: Hadoop, NoSQL, ontology, back propagation neural network, high distributed file system

Procedia PDF Downloads 264
2681 Shape Evolution of CdSe Quantum Dots during the Synthesis in the Presence of Silver Halides

Authors: Pavel Kotin, Sergey Dotofeev, Daniil Kozlov, Alexey Garshev

Abstract:

We propose the investigation of CdSe quantum dots which were synthesized in the presence of silver halides. To understand a process of nanoparticle formation in more detail, we varied the silver halide amount in the synthesis and proposed a sampling during colloidal growth. The attempts were focused on the investigation of shape, structure and optical properties of nanoparticles. We used the colloidal method of synthesis. Cadmium oleate, tri-n-octylphosphine selenide (TOPSe) and AgHal in TOP were precursors of cadmium, selenium and silver halides correspondingly. The molar Ag/Cd ratio in synthesis was varied from 1/16 to 1/1. The sampling was basically realized in 20 sec, 5 min, and 30 min after the beginning of quantum dots nucleation. To investigate nanoparticles we used transmission electron microscopy (including high resolution one), X-ray diffraction, and optical spectroscopy. It was established that silver halides lead to obtaining tetrapods with different leg length and large ellipsoidal nanoparticles possessing an intensive near IR photoluminescence. The change of the amount of silver halide in synthesis and the selection of an optimal growth time allows controlling the shape and the share of tetrapods or ellipsoidal nanoparticles in the product. Our main attempts were focused on a detailed investigation of the quantum dots structure and shape evolution and, finally, on mechanisms of such nanoparticle formation.

Keywords: colloidal quantum dots, shape evolution, silver doping, tetrapods

Procedia PDF Downloads 293
2680 Optimal Geothermal Borehole Design Guided By Dynamic Modeling

Authors: Hongshan Guo

Abstract:

Ground-source heat pumps provide stable and reliable heating and cooling when designed properly. The confounding effect of the borehole depth for a GSHP system, however, is rarely taken into account for any optimization: the determination of the borehole depth usually comes prior to the selection of corresponding system components and thereafter any optimization of the GSHP system. The depth of the borehole is important to any GSHP system because the shallower the borehole, the larger the fluctuation of temperature of the near-borehole soil temperature. This could lead to fluctuations of the coefficient of performance (COP) for the GSHP system in the long term when the heating/cooling demand is large. Yet the deeper the boreholes are drilled, the more the drilling cost and the operational expenses for the circulation. A controller that reads different building load profiles, optimizing for the smallest costs and temperature fluctuation at the borehole wall, eventually providing borehole depth as the output is developed. Due to the nature of the nonlinear dynamic nature of the GSHP system, it was found that between conventional optimal controller problem and model predictive control problem, the latter was found to be more feasible due to a possible history of both the trajectory during the iteration as well as the final output could be computed and compared against. Aside from a few scenarios of different weighting factors, the resulting system costs were verified with literature and reports and were found to be relatively accurate, while the temperature fluctuation at the borehole wall was also found to be within acceptable range. It was therefore determined that the MPC is adequate to optimize for the investment as well as the system performance for various outputs.

Keywords: geothermal borehole, MPC, dynamic modeling, simulation

Procedia PDF Downloads 288
2679 The Impact of Management Competency, Project Team, and Process Design to Corporate Performance through Implementing the Self-Development ERP

Authors: Zeplin Jiwa Husada Tarigan, Sautma Ronni Basana, Widjojo Suprapto

Abstract:

Manufacturing companies in East Java develop their own ERP system or alter the ERP system which is developed by other companies to suit their needs. To make their own system, the companies mostly assign several employees from various departments to create a project team, and the employees are from the departments that are going to utilize the ERP system as the integrated data. The project team decides the making of the ERP system from the preparation stage until the going live implementation process. In designing the business process, the top management is working together with the project team until the project is accomplished. The completion of the ERP projects depends on the project to be undertaken itself, the strategy chosen to complete the project, the work method selection, the measurement system to monitor the project, the evaluation system of the project, and, in the end, the declaration of 'going live' of the ERP project. There is an increase in the business performance for the companies that have implemented the information technology or ERP as they manage to integrate all management functions within their companies. To investigate, some questionnaires are distributed to 100 manufacturing companies, and 90 questionnaires are returned; however, there are only 46 companies that develop their own ERP system, so the response rate is 46%. The result of data analysis using PLS shows that the management competency brings impacts to the project team and the process design. The process design is adjusted to the real process in order to implement the ERP, but it does not bring direct impacts to the business performance. The implementation of ERP brings positive impacts to the company business performance.

Keywords: management competency, project team, process design, ERP implementation, business performance

Procedia PDF Downloads 221
2678 Regional Barriers and Opportunities for Developing Innovation Networks in the New Media Industry: A Comparison between Beijing and Bangalore Regional Innovation Systems

Authors: Cristina Chaminade, Mandar Kulkarni, Balaji Parthasarathy, Monica Plechero

Abstract:

The characteristics of a regional innovation system (RIS) and the specificity of the knowledge base of an industry may contribute to create peculiar paths for innovation and development of firms’ geographic extended innovation networks. However, the relative empirical evidence in emerging economies remains underexplored. The paper aims to fill the research gap by means of some recent qualitative research conducted in 2016 in Beijing (China) and Bangalore (India). It analyzes cases studies of firms in the new media industry, a sector that merges different IT competences with competences from other knowledge domains and that is emerging in those RIS. The results show that while in Beijing the new media sector results to be more in line with the existing institutional setting and governmental goals aimed at targeting specific social aspects and social problems of the population, in Bangalore it remains a more spontaneous firms-led process. In Beijing what matters for the development of innovation networks is the governmental setting and the national and regional strategies to promote science and technology in this sector, internet and mass innovation. The peculiarities of recent governmental policies aligned to the domestic goals may provide good possibilities for start-ups to develop innovation networks. However, due to the specificities of those policies targeting the Chinese market, networking outside the domestic market are not so promoted. Moreover, while some institutional peculiarities, such as a culture of collaboration in the region, may be favorable for local networking, regulations related to Internet censorship may limit the use of global networks particularly when based on virtual spaces. Mainly firms with already some foreign experiences and contact take advantage of global networks. In Bangalore, the role of government in pushing networking for the new media industry at the present stage is quite absent at all geographical levels. Indeed there is no particular strategic planning or prioritizing in the region toward the new media industry, albeit one industrial organization has emerged to represent the animation industry interests. This results in a lack of initiatives for sustaining the integration of complementary knowledge into the local portfolio of IT specialization. Firms actually involved in the new media industry face institutional constrains related to a poor level of local trust and cooperation, something that does not allow for full exploitation of local linkages. Moreover, knowledge-provider organizations in Bangalore remain still a solid base for the IT domain, but not for other domains. Initiatives to link to international networks seem therefore more the result of individual entrepreneurial actions aimed at acquiring complementary knowledge and competencies from different domains and exploiting potentiality in different markets. From those cases, it emerges that role of government, soft institutions and organizations in the two RIS differ substantially in the creation of barriers and opportunities for the development of innovation networks and their specific aim.

Keywords: regional innovation system, emerging economies, innovation network, institutions, organizations, Bangalore, Beijing

Procedia PDF Downloads 333
2677 Automated Adaptions of Semantic User- and Service Profile Representations by Learning the User Context

Authors: Nicole Merkle, Stefan Zander

Abstract:

Ambient Assisted Living (AAL) describes a technological and methodological stack of (e.g. formal model-theoretic semantics, rule-based reasoning and machine learning), different aspects regarding the behavior, activities and characteristics of humans. Hence, a semantic representation of the user environment and its relevant elements are required in order to allow assistive agents to recognize situations and deduce appropriate actions. Furthermore, the user and his/her characteristics (e.g. physical, cognitive, preferences) need to be represented with a high degree of expressiveness in order to allow software agents a precise evaluation of the users’ context models. The correct interpretation of these context models highly depends on temporal, spatial circumstances as well as individual user preferences. In most AAL approaches, model representations of real world situations represent the current state of a universe of discourse at a given point in time by neglecting transitions between a set of states. However, the AAL domain currently lacks sufficient approaches that contemplate on the dynamic adaptions of context-related representations. Semantic representations of relevant real-world excerpts (e.g. user activities) help cognitive, rule-based agents to reason and make decisions in order to help users in appropriate tasks and situations. Furthermore, rules and reasoning on semantic models are not sufficient for handling uncertainty and fuzzy situations. A certain situation can require different (re-)actions in order to achieve the best results with respect to the user and his/her needs. But what is the best result? To answer this question, we need to consider that every smart agent requires to achieve an objective, but this objective is mostly defined by domain experts who can also fail in their estimation of what is desired by the user and what not. Hence, a smart agent has to be able to learn from context history data and estimate or predict what is most likely in certain contexts. Furthermore, different agents with contrary objectives can cause collisions as their actions influence the user’s context and constituting conditions in unintended or uncontrolled ways. We present an approach for dynamically updating a semantic model with respect to the current user context that allows flexibility of the software agents and enhances their conformance in order to improve the user experience. The presented approach adapts rules by learning sensor evidence and user actions using probabilistic reasoning approaches, based on given expert knowledge. The semantic domain model consists basically of device-, service- and user profile representations. In this paper, we present how this semantic domain model can be used in order to compute the probability of matching rules and actions. We apply this probability estimation to compare the current domain model representation with the computed one in order to adapt the formal semantic representation. Our approach aims at minimizing the likelihood of unintended interferences in order to eliminate conflicts and unpredictable side-effects by updating pre-defined expert knowledge according to the most probable context representation. This enables agents to adapt to dynamic changes in the environment which enhances the provision of adequate assistance and affects positively the user satisfaction.

Keywords: ambient intelligence, machine learning, semantic web, software agents

Procedia PDF Downloads 285
2676 Use of McCloskey/Mueller Satisfaction Scale in Evaluating Satisfaction with Working Conditions of Nurses in Slovakia

Authors: Vladimir Siska, Lukas Kober

Abstract:

Introduction: The research deals with the work satisfaction of nurses working in healthcare institutions in the Slovak Republic, and factors influencing it. Employers should create working conditions that are consonant with the requirements of their employees and make the most of motivation strategies to help them answer to the employess' needs in concordance with various needs and motivation process theories. Methodology: In our research, we aimed to investigate the level of work satisfaction in nurses by carrying out a quantitative analysis using the standardized McCloskey/Mueller Satisfaction scale questionnaire. We used the descriptive positioning characteristics (average, median and variability, standard deviation, minimum and maximum) to process the collected data and, to verify our hypotheses; we employed the double-selection Student T-test, Mann-Whitney U test, and a one-way analysis of variance (One-way ANOVA). Results: Nurses´satisfaction with external rewards is influenced by their age, years of experience, and level of completed education, with all of the abovementioned factors also impacting on the nurses' satisfaction with their work schedule. The type of founding authority of the healthcare institution also constitutes an influence on the nurses' satisfaction concerning relationships in the workplace. Conclusion: The feelling of work dissatisfaction can influence employees in many ways, e.g., it can take the form of burn-out syndrome, absenteeism, or increased fluctuation. Therefore, it is important to pay increased attention to all employees of an organisation, regardless of their position.

Keywords: motivation, nurse, work satisfaction, McCloskey/Mueller satisfaction scale

Procedia PDF Downloads 137
2675 Smart Growth Through Innovation Programs: Challenges and Opportunities

Authors: Hanadi Mubarak Al-Mubaraki, Michael Busler

Abstract:

Innovation is the powerful tools for economic growth and diversification, which lead to smart growth. The objective of this paper is to identify the opportunities and challenges of innovation programs discuss and analyse the implementation of the innovation program in the United States (US) and United Kingdom (UK). To achieve the objectives, the research used a mixed methods approach, quantitative (survey), and qualitative (multi-case study) to examine innovation best practices in developed countries. In addition, the selection of 4 interview case studies of innovation organisations based on the best practices and successful implementation worldwide. The research findings indicated the two challenges such as 1) innovation required business ecosystem support to deliver innovation outcomes such as new product and new services, and 2) foster the climate of innovation &entrepreneurship for economic growth and diversification. Although the two opportunities such as 1) sustainability of the innovation events which lead smart growth, and 2) establish the for fostering the artificial intelligence hub entrepreneurship networking at multi-levels. The research adds value to academicians and practitioners such as government, funded organizations, institutions, and policymakers. The authors aim to conduct future research a comparative study of innovation case studies between developed and developing countries for policy implications worldwide. The Originality of This study contributes to current literature about the innovation best practice in developed and developing countries.

Keywords: economic development, technology transfer, entrepreneurship, innovation program

Procedia PDF Downloads 150
2674 A Proposal to Integrate Spatially Explicit Ecosystem Services with Urban Metabolic Modelling

Authors: Thomas Elliot, Javier Babi Almenar, Benedetto Rugani

Abstract:

The integration of urban metabolism (UM) with spatially explicit ecosystem service (ES) stocks has the potential to advance sustainable urban development. It will correct the lack of spatially specificity of current urban metabolism models. Furthermore, it will include into UM not only the physical properties of material and energy stocks and flows, but also the implications to the natural capital that provides and maintains human well-being. This paper presents the first stages of a modelling framework by which urban planners can assess spatially the trade-offs of ES flows resulting from urban interventions of different character and scale. This framework allows for a multi-region assessment which takes into account sustainability burdens consequent to an urban planning event occurring elsewhere in the environment. The urban boundary is defined as the Functional Urban Audit (FUA) method to account for trans-administrative ES flows. ES are mapped using CORINE land use within the FUA. These stocks and flows are incorporated into a UM assessment method to demonstrate the transfer and flux of ES arising from different urban planning implementations.

Keywords: ecological economics, ecosystem services, spatial planning, urban metabolism

Procedia PDF Downloads 337
2673 From Electroencephalogram to Epileptic Seizures Detection by Using Artificial Neural Networks

Authors: Gaetano Zazzaro, Angelo Martone, Roberto V. Montaquila, Luigi Pavone

Abstract:

Seizure is the main factor that affects the quality of life of epileptic patients. The diagnosis of epilepsy, and hence the identification of epileptogenic zone, is commonly made by using continuous Electroencephalogram (EEG) signal monitoring. Seizure identification on EEG signals is made manually by epileptologists and this process is usually very long and error prone. The aim of this paper is to describe an automated method able to detect seizures in EEG signals, using knowledge discovery in database process and data mining methods and algorithms, which can support physicians during the seizure detection process. Our detection method is based on Artificial Neural Network classifier, trained by applying the multilayer perceptron algorithm, and by using a software application, called Training Builder that has been developed for the massive extraction of features from EEG signals. This tool is able to cover all the data preparation steps ranging from signal processing to data analysis techniques, including the sliding window paradigm, the dimensionality reduction algorithms, information theory, and feature selection measures. The final model shows excellent performances, reaching an accuracy of over 99% during tests on data of a single patient retrieved from a publicly available EEG dataset.

Keywords: artificial neural network, data mining, electroencephalogram, epilepsy, feature extraction, seizure detection, signal processing

Procedia PDF Downloads 191
2672 Digital Literacy Skills for Geologist in Public Sector

Authors: Angsumalin Puntho

Abstract:

Disruptive technology has had a great influence on our everyday lives and the existence of an organization. Geologists in the public sector need to keep up with digital technology and be able to work and collaborate in a more effective manner. The result from SWOT and 7S McKinsey analyses suggest that there are inadequate IT personnel, no individual digital literacy development plan, and a misunderstanding of management policies. The Office of Civil Service Commission develops digital literacy skills that civil servants and government officers should possess in order to work effectively; it consists of nine dimensions, including computer skills, internet skills, cyber security awareness, word processing, spreadsheets, presentation programs, online collaboration, graphics editors and cyber security practices; and six steps of digital literacy development including self-assessment, individual development plan, self-learning, certified test, learning reflection, and practices. Geologists can use digital literacy as a learning tool to develop themselves for better career opportunities.

Keywords: disruptive technology, digital technology, digital literacy, computer skills

Procedia PDF Downloads 121
2671 The Impact of Interrelationship between Business Intelligence and Knowledge Management on Decision Making Process: An Empirical Investigation of Banking Sector in Jordan

Authors: Issa M. Shehabat, Huda F. Y. Nimri

Abstract:

This paper aims to study the relationship between knowledge management in its processes, including knowledge creation, knowledge sharing, knowledge organization, and knowledge application, and business intelligence tools, including OLAP, data mining, and data warehouse, and their impact on the decision-making process in the banking sector in Jordan. A total of 200 questionnaires were distributed to the sample of the study. The study hypotheses were tested using the statistical package SPSS. Study findings suggest that decision-making processes were positively related to knowledge management processes. Additionally, the components of business intelligence had a positive impact on decision-making. The study recommended conducting studies similar to this study in other sectors such as the industrial, telecommunications, and service sectors to contribute to enhancing understanding of the role of the knowledge management processes and business intelligence tools.

Keywords: business intelligence, knowledge management, decision making, Jordan, banking sector

Procedia PDF Downloads 149
2670 Highly Specific DNA-Aptamer-Based Electrochemical Biosensor for Mercury (II) and Lead (II) Ions Detection in Water Samples

Authors: H. Abu-Ali, A. Nabok, T. Smith

Abstract:

Aptamers are single-strand of DNA or RNA nucleotides sequence which is designed in vitro using selection process known as SELEX (systematic evolution of ligands by exponential enrichment) were developed for the selective detection of many toxic materials. In this work, we have developed an electrochemical biosensor for highly selective and sensitive detection of Hg2+ and Pb2+ using a specific aptamer probe (SAP) labelled with ferrocene (or methylene blue) in (5′) end and the thiol group at its (3′) termini, respectively. The SAP has a specific coil structure that matching with G-G for Pb2+ and T-T for Hg2+ interaction binding nucleotides ions, respectively. Aptamers were immobilized onto surface of screen-printed gold electrodes via SH groups; then the cyclic voltammograms were recorded in binding buffer with the addition of the above metal salts in different concentrations. The resulted values of anode current increase upon binding heavy metal ions to aptamers and analyte due to the presence of electrochemically active probe, i.e. ferrocene or methylene blue group. The correlation between the anodic current values and the concentrations of Hg2+ and Pb2+ ions has been established in this work. To the best of our knowledge, this is the first example of using a specific DNA aptamers for electrochemical detection of heavy metals. Each increase in concentration of 0.1 μM results in an increase in the anode current value by simple DC electrochemical test i.e (Cyclic Voltammetry), thus providing an easy way of determining Hg2+ and Pb2+concentration.

Keywords: aptamer, based, biosensor, DNA, electrochemical, highly, specific

Procedia PDF Downloads 165
2669 Developing a Hybrid Method to Diagnose and Predict Sports Related Concussions with Machine Learning

Authors: Melody Yin

Abstract:

Concussions impact a large amount of adolescents; they make up as much as half of the diagnosed concussions in America. This research proposes a hybrid machine learning model based on the combination of human/knowledge-based domains and computer-generated feature rankings to improve the accuracy of diagnosing sports related concussion (SRC). Using a data set of symptoms collected on the sideline post-SRC events, the symptom selection criteria method has been developed by using Google AutoML's important score function to identify the top 10 symptom features. In addition, symptom domains have been introduced as another parameter, categorizing the symptoms into physical, cognitive, sleep, and emotional domains. The hybrid machine learning model has been trained with a combination of the top 10 symptoms and 4 domains. From the results, the hybrid model was the best performer for symptom resolution time prediction in 2 and 4-week thresholds. This research is a proof of concept study in the use of domains along with machine learning in order to improve concussion prediction accuracy. It is also possible that the use of domains can make the model more efficient due to reduced training time. This research examines the use of a hybrid method in predicting sports-related concussion. This achievement is based on data preprocessing, using a hybrid method to select criteria to achieve high performance.

Keywords: hybrid model, machine learning, sports related concussion, symptom resolution time

Procedia PDF Downloads 171
2668 Comparing Community Health Agents, Physicians and Nurses in Brazil's Family Health Strategy

Authors: Rahbel Rahman, Rogério Meireles Pinto, Margareth Santos Zanchetta

Abstract:

Background: Existing shortcomings of current health-service delivery include poor teamwork, competencies that do not address consumer needs, and episodic rather than continuous care. Brazil’s Sistema Único de Saúde (Unified Health System, UHS) is acknowledged worldwide as a model for delivering community-based care through Estratégia Saúde da Família (FHS; Family Health Strategy) interdisciplinary teams, comprised of Community Health Agents (in Portuguese, Agentes Comunitário de Saude, ACS), nurses, and physicians. FHS teams are mandated to collectively offer clinical care, disease prevention services, vector control, health surveillance and social services. Our study compares medical providers (nurses and physicians) and community-based providers (ACS) on their perceptions of work environment, professional skills, cognitive capacities and job context. Global health administrators and policy makers can leverage on similarities and differences across care providers to develop interprofessional training for community-based primary care. Methods: Cross-sectional data were collected from 168 ACS, 62 nurses and 32 physicians in Brazil. We compared providers’ demographic characteristics (age, race, and gender) and job context variables (caseload, work experience, work proximity to community, the length of commute, and familiarity with the community). Providers perceptions were compared to their work environment (work conditions and work resources), professional skills (consumer-input, interdisciplinary collaboration, efficacy of FHS teams, work-methods and decision-making autonomy), and cognitive capacities (knowledge and skills, skill variety, confidence and perseverance). Descriptive and bi-variate analysis, such as Pearson Chi-square and Analysis of Variance (ANOVA) F-tests, were performed to draw comparisons across providers. Results: Majority of participants were ACS (64%); 24% nurses; and 12% physicians. Majority of nurses and ACS identified as mixed races (ACS, n=85; nurses, n=27); most physicians identified as males (n=16; 52%), and white (n=18; 58%). Physicians were less likely to incorporate consumer-input and demonstrated greater decision-making autonomy than nurses and ACS. ACS reported the highest levels of knowledge and skills but the least confidence compared to nurses and physicians. ACS, nurses, and physicians were efficacious that FHS teams improved the quality of health in their catchment areas, though nurses tend to disagree that interdisciplinary collaboration facilitated their work. Conclusion: To our knowledge, there has been no study comparing key demographic and cognitive variables across ACS, nurses and physicians in the context of their work environment and professional training. We suggest that global health systems can leverage upon the diverse perspectives of providers to implement a community-based primary care model grounded in interprofessional training. Our study underscores the need for in-service trainings to instill reflective skills of providers, improve communication skills of medical providers and curative skills of ACS. Greater autonomy needs to be extended to community based providers to offer care integral to addressing consumer and community needs.

Keywords: global health systems, interdisciplinary health teams, community health agents, community-based care

Procedia PDF Downloads 237
2667 Purposes of Urdu Translations of the Meanings of Holy Quran

Authors: Muhammad Saleem

Abstract:

The research paper entitled above would be a comprehensive and critical study of translations of the meanings of the Holy Qur’an. The discussion will deal with the targets & purposes of Urdu (National Language of Pakistan) translators of the meanings of the Holy Qur’an. There are more than 400 translations of the meanings of the Holy Qur’an in the Urdu Language. Muslims, non-Muslims and some organizations have made translations of the meanings of the Holy Qur’an to meet various targets. It is observed that all Urdu translators have not translated the Qur’an with a single objective and motivation; rather, some are biased and strive to discredit the Qur’an. Thus, they have made unauthentic and fabricated translations of the Qur’an. Some optimistically believe that they intend to do a service, whereas others pessimistically hold that they treacherously seek to further their rule. Some of them have been observed to be against Islam, starting their activities with spite, but after perceiving the truths of Islam and the miracle and greatness of the Holy Qur’an, they submitted to Islam, embracing it with pure hearts. Some translators made their translations of the meanings of the Holy Qur’an to serve Allah, and some of them have done their translations to earn only. All these translations vary from one to another due to style, trend, type, method and style. Some Urdu translations have been made to fulfill the lingual requirements. Some translations have been made by Muslim scholars to reduce the influence of Urdu translations of the meanings of the Holy Qur’an by Non-Muslims. The article deals with the various purposes of the translators of the meanings of the Holy Qur’an.

Keywords: Qur'an, translation, urdu, language

Procedia PDF Downloads 45
2666 Tertiary Training of Future Health Educators and Health Professionals Involved in Childhood Obesity Prevention and Treatment Strategies

Authors: Thea Werkhoven, Wayne Cotton

Abstract:

Adult and childhood rates of obesity in Australia are health concerns of high national priority, retaining epidemic status in the populations affected. Attempts to prevent further increases in prevalence of childhood obesity in the population aged below eighteen years have had varied success. A multidisciplinary approach has been used, employing strategies in schools, through established health care system usage and public health campaigns. Over the last decade a plateau in prevalence has been reached in the youth population afflicted by obesity and interest has peaked in school based strategies to prevent and treat overweight and obesity. Of interest to this study is the importance of the tertiary training of future health educators or health professionals destined to be involved in obesity prevention and treatment strategies. Health educators and health professionals are considered instrumental to the success of prevention and treatment strategies, required to possess sufficient and accurate knowledge in order to be effective in their positions. A common influence on the success of school based health promoting activities are the weight based attitudes possessed by health educators, known to be negative and biased towards overweight or obese children during training and practice. Whilst the tertiary training of future health professionals includes minimal nutrition education, there is no mandatory training in health education or nutrition for pre-service health educators in Australian tertiary institutions. This study aimed to assess the impact of a pedagogical intervention on pre-service health educators and health professionals enrolled in a health and wellbeing elective. The intervention aimed to increase nutrition knowledge and decrease weight bias and was embedded in the twelve week elective. Participants (n=98) were tertiary students at a major Australian University who were enrolled in health (47%) and non-health related degrees (53%). A quantitative survey using four valid and reliable instruments was conducted to measured nutrition knowledge, antifat attitudes and weight stereotyping attitudes at baseline and post-intervention. Scores on each instrument were compared between time points to check if they had significantly changed and to determine the effect of the intervention on attitudes and knowledge. Antifat attitudes at baseline were considered low and decreased further over the course of the intervention. Scores representing weight bias did decrease but the change was not significant. Fat stereotyping attitudes became stronger over the course of the intervention and this change was significant. Nutrition knowledge significantly improved from baseline to post-intervention. The design of the nutrition knowledge and attitude amelioration content of the intervention was semi-successful in achieving its outcomes. While the level of nutrition knowledge was improved over the course of the intervention, an unintentional increase was observed in weight based prejudice which is known to occur in interventions that employ stigma reduction methodologies. Further research is required into a structured methodology that increases level of nutrition knowledge and ameliorates weight bias at the tertiary level. In this way training provided would help prepare future health educators with the knowledge, skills and attitudes required to be effective and bias free in their practice.

Keywords: education, intervention, nutrition, obesity

Procedia PDF Downloads 216
2665 A Study on the Relation between Auditor Rotation and Audit Quality in Iranian Firms

Authors: Bita Mashayekhi, Marjan Fayyazi, Parisa Sefati

Abstract:

Audit quality is a popular topic in accounting and auditing research because recent decades’ financial crises reduce the reliability of financial reports to public investors and cause significant doubt about the audit profession. Therefore, doing research to identify effective factors in improving audit quality is necessary for bringing back public investors’ trust to financial statements as well as audit reports. In this study, we explore the relationship between audit rotation and audit quality. For this purpose, we employ the Duff (2009) model of audit quality to measure audit quality and use a questionnaire survey of 27 audit service quality attributes. Our results show that there is a negative relationship between auditor’s rotation and audit quality as we consider the auditor’s reputation, capability, assurance, experience, and responsiveness as surrogates for audit quality. There is no evidence for verifying a same relationship when we use the auditor’s independence and expertise for measuring audit quality.

Keywords: audit quality, auditor’s rotation, reputation, capability, assurance, experience, responsiveness, independence, expertise

Procedia PDF Downloads 235
2664 Developing a Comprehensive Green Building Rating System Tailored for Nigeria: Analyzing International Sustainable Rating Systems to Create Environmentally Responsible Standards for the Nigerian Construction Industry and Built Environment

Authors: Azeez Balogun

Abstract:

Inexperienced building score practices are continually evolving and vary across areas. Yet, a few middle ideas stay steady, such as website selection, design, energy efficiency, water and material conservation, indoor environmental great, operational optimization, and waste discount. The essence of green building lies inside the optimization of 1 or more of those standards. This paper conducts a comparative analysis of 7 extensively recognized sustainable score structures—BREEAM, CASBEE, green GLOBES, inexperienced superstar, HK-BEAM, IGBC green homes, and LEED—based totally on the perceptions and opinions of stakeholders in Nigeria certified in green constructing rating systems. The purpose is to pick out and adopt an appropriate green building rating device for Nigeria. Numerous components of those systems had been tested to determine the high-quality health of the Nigerian built environment. The findings imply that LEED, the important machine within the USA and Canada, is the most suitable for Nigeria due to its sturdy basis, extensive funding, and confirmed blessings. LEED obtained the highest rating of eighty out of one hundred points on this assessment.

Keywords: structure, built surroundings, inexperienced building score gadget, Nigeria Inexperienced Constructing Council, sustainability

Procedia PDF Downloads 35
2663 Order Fulfilment Strategy in E-Commerce Warehouse Based on Simulation: Business Customers Case

Authors: Aurelija Burinskiene

Abstract:

This paper presents the study for an e-commerce warehouse. The study is aiming to improve order fulfillment activity by identifying the strategy presenting the best performance. A simulation model was proposed to reach the target of this research. This model enables various scenario tests in an e-commerce warehouse, allowing them to find out for the best order fulfillment strategy. By using simulation, model authors investigated customers’ orders representing on-line purchases for one month. Experiments were designed to evaluate various order picking methods applicable to the fulfillment of customers’ orders. The research uses cost components analysis and helps to identify the best possible order picking method improving the overall performance of e-commerce warehouse and fulfillment service to the customers. The results presented show that the application of order batching strategy is the most applicable because it brings distance savings of around 6.7 percentage. This result could be improved by taking an assortment clustering action until 8.34 percentage. So, the recommendations were given to apply the method for future e-commerce warehouse operations.

Keywords: e-commerce, order, fulfilment, strategy, simulation

Procedia PDF Downloads 155
2662 Influence of Extractives Leaching from Larch Wood on Durability of Semi-Transparent Oil-Based Coating during Accelerated Weathering

Authors: O. Dvorak, M. Panek, E. Oberhofnerova, I. Sterbova

Abstract:

Extractives contained in larch wood (Larix decidua, Mill.) reduce the service-life of exterior coating systems, especially transparent and semi-transparent. The aim of this work was to find out whether the initial several-week leaching of extractives from untreated wood in the exterior will positively affect the selected characteristics and the overall life of the semi-transparent oil-based coating. Samples exposed to exterior leaching for 10 or 20 weeks, and the reference samples without leaching were then treated with a coating system. Testing was performed by the method of artificial accelerated weathering in the UV chamber combined with thermal cycling during 6 weeks. The changes of colour, gloss, surface wetting, microscopic analyses of surfaces, and visual damage of paint were evaluated. Only 20-week initial leaching had a positive effect. Both to increase the color stability during aging, but also to slightly increase the overall life of the tested semi-transparent coating system on larch wood.

Keywords: larch wood, coating, durability. extractives

Procedia PDF Downloads 137
2661 Using Statistical Significance and Prediction to Test Long/Short Term Public Services and Patients' Cohorts: A Case Study in Scotland

Authors: Raptis Sotirios

Abstract:

Health and social care (HSc) services planning and scheduling are facing unprecedented challenges due to the pandemic pressure and also suffer from unplanned spending that is negatively impacted by the global financial crisis. Data-driven can help to improve policies, plan and design services provision schedules using algorithms assist healthcare managers’ to face unexpected demands using fewer resources. The paper discusses services packing using statistical significance tests and machine learning (ML) to evaluate demands similarity and coupling. This is achieved by predicting the range of the demand (class) using ML methods such as CART, random forests (RF), and logistic regression (LGR). The significance tests Chi-Squared test and Student test are used on data over a 39 years span for which HSc services data exist for services delivered in Scotland. The demands are probabilistically associated through statistical hypotheses that assume that the target service’s demands are statistically dependent on other demands as a NULL hypothesis. This linkage can be confirmed or not by the data. Complementarily, ML methods are used to linearly predict the above target demands from the statistically found associations and extend the linear dependence of the target’s demand to independent demands forming, thus groups of services. Statistical tests confirm ML couplings making the prediction also statistically meaningful and prove that a target service can be matched reliably to other services, and ML shows these indicated relationships can also be linear ones. Zero paddings were used for missing years records and illustrated better such relationships both for limited years and in the entire span offering long term data visualizations while limited years groups explained how well patients numbers can be related in short periods or can change over time as opposed to behaviors across more years. The prediction performance of the associations is measured using Receiver Operating Characteristic(ROC) AUC and ACC metrics as well as the statistical tests, Chi-Squared and Student. Co-plots and comparison tables for RF, CART, and LGR as well as p-values and Information Exchange(IE), are provided showing the specific behavior of the ML and of the statistical tests and the behavior using different learning ratios. The impact of k-NN and cross-correlation and C-Means first groupings is also studied over limited years and the entire span. It was found that CART was generally behind RF and LGR, but in some interesting cases, LGR reached an AUC=0 falling below CART, while the ACC was as high as 0.912, showing that ML methods can be confused padding or by data irregularities or outliers. On average, 3 linear predictors were sufficient, LGR was found competing RF well, and CART followed with the same performance at higher learning ratios. Services were packed only if when significance level(p-value) of their association coefficient was more than 0.05. Social factors relationships were observed between home care services and treatment of old people, birth weights, alcoholism, drug abuse, and emergency admissions. The work found that different HSc services can be well packed as plans of limited years, across various services sectors, learning configurations, as confirmed using statistical hypotheses.

Keywords: class, cohorts, data frames, grouping, prediction, prob-ability, services

Procedia PDF Downloads 240