Search results for: graph attention neural network
6159 Experiential Language Learning as a Tool for Effective Global Leadership
Authors: Christiane Dumont
Abstract:
This paper proposes to revisit foreign-language learning as a tool to increase motivation through advocacy and develop effective natural communication skills, which are critical leadership qualities. To this end, collaborative initiatives undertaken by advanced university students of French with local and international community partners will be reviewed. Close attention will be paid to the acquisition of intercultural skills, the reflective process, as well as the challenges and outcomes. Two international development projects conducted in Haiti will be highlighted, i.e., collaboration with a network of providers in the Haitian cultural heritage preservation and tourism sector (2014-15) and development of investigation and teacher training tools for a primary/secondary school in the Port-au-Prince area (current). The choice of community-service learning as a framework to teach French-as-a-second-language stemmed from the need to raise awareness against stereotypes and prejudice, which hinder the development of effective intercultural skills. This type of experiential education also proved very effective in identifying and preventing miscommunication caused by the lack of face-to-face interaction in our increasingly technology-mediated world. Learners experienced first-hand, the challenges and advantages of face-to-face communication, which, in turn, enhanced their motivation for developing effective intercultural skills. Vygotsky's and Kolb's theories, current research on service learning (Dwight, Eyler), action/project-based pedagogy (Beckett), and reflective learning (TSC Farrell), will provide useful background to analyze the benefits and challenges of community-service learning. The ultimate goal of this paper is to find out what makes experiential learning truly unique and transformative for both the learners and the community they wish to serve. It will demonstrate how enhanced motivation, community engagement, and clear, concise, and respectful communication impact and empower learners. The underlying hope is to help students in high-profile, and leading-edge industries become effective global leaders.Keywords: experiential learning, intercultural communication, reflective learning, effective leadership, learner motivation
Procedia PDF Downloads 1056158 Cognitive Performance Post Stroke Is Affected by the Timing of Evaluation
Authors: Ayelet Hersch, Corrine Serfaty, Sigal Portnoy
Abstract:
Stroke survivors commonly report persistent fatigue and sleep disruptions during rehabilitation and post-recovery. While limited research has explored the impact of stroke on a patient's chronotype, there is a gap in understanding the differences in cognitive performance based on treatment timing. Study objectives: (a) To characterize the sleep chronotype in sub-acute post-stroke individuals. (b) Explore cognitive task performance differences during preferred and non-preferred hours. (c) Examine the relationships between sleep quality and cognitive performance. For this intra-subject study, twenty participants (mean age 60.2±8.6) post-first stroke (6-12 weeks post stroke) underwent assessments at preferred and non-preferred chronotypic times. The assessment included demographic surveys, the Munich Chronotype Questionnaire, Montreal Cognitive Assessment (MoCA), Rivermead Behavioral Memory Test (RBMT), a fatigue questionnaire, and 4-5 days of actigraphy (wrist-worn wGT3X-BT, ActiGraph) to record sleep characteristics. Four sleep quality indices were extracted from actigraphy wristwatch recordings: The average of total sleep time per day (minutes), the average number of awakenings during the sleep period per day, the efficiency of sleep (total hours of sleep per day divided by hours spent in bed per day, averaged across the days and presented as percentage), and the Wake after Sleep Onset (WASO) index, indicating the average number of minutes elapsed from the onset of sleep to the first awakening. Stroke survivors exhibited an earlier sleep chronotype post-injury compared to pre-injury. Enhanced attention, as indicated by higher RBMT scores, occurred during preferred hours. Specifically, 30% of the study participants demonstrated an elevation in their final scores during their preferred hours, transitioning from the category of "mild memory impairment" to "normal memory." However, no significant differences emerged in executive functions, attention tasks, and MoCA scores between preferred and non-preferred hours. The Wake After Sleep Onset (WASO) index correlated with MoCA/RBMT scores during preferred hours (r=0.53/0.51, p=0.021/0.027, respectively). The number of awakenings correlated with MoCA letter task performance during non-preferred hours (r=0.45, p=0.044). Enhanced attention during preferred hours suggests a potential relationship between chronotype and cognitive performance, highlighting the importance of personalized rehabilitation strategies in stroke care. Further exploration of these relationships could contribute to optimizing the timing of cognitive interventions for stroke survivors.Keywords: sleep chronotype, chronobiology, circadian rhythm, rehabilitation timing
Procedia PDF Downloads 656157 Dynamic Ambulance Deployment to Reduce Ambulance Response Times Using Geographic Information Systems
Authors: Masoud Swalehe, Semra Günay
Abstract:
Developed countries are losing many lives to non-communicable diseases as compared to their developing counterparts. The effects of these diseases are mostly sudden and manifest at a very short time prior to death or a dangerous attack and this has consolidated the significance of emergency medical system (EMS) as one of the vital areas of healthcare service delivery. The primary objective of this research is to reduce ambulance response times (RT) of Eskişehir province EMS since a number of studies have established a relationship between ambulance response times and survival chances of patients especially out of hospital cardiac arrest (OHCA) victims. It has been found out that patients who receive out of hospital medical attention in few (4) minutes after cardiac arrest because of low ambulance response times stand higher chances of survival than their counterparts who take longer times (more than 12 minutes) to receive out of hospital medical care because of higher ambulance response times. The study will make use of geographic information systems (GIS) technology to dynamically reallocate ambulance resources according to demand and time so as to reduce ambulance response times. Geospatial-time distribution of ambulance calls (demand) will be used as a basis for optimal ambulance deployment using system status management (SSM) strategy to achieve much demand coverage with the same number of ambulance resources to cause response time reduction. Drive-time polygons will be used to come up with time specific facility coverage areas and suggesting additional facility candidate sites where ambulance resources can be moved to serve higher demands making use of network analysis techniques. Emergency Ambulance calls’ data from 1st January 2014 to 31st December 2014 obtained from Eskişehir province health directorate will be used in this study. This study will focus on the reduction of ambulance response times which is a key Emergency Medical Services performance indicator.Keywords: emergency medical services, system status management, ambulance response times, geographic information system, geospatial-time distribution, out of hospital cardiac arrest
Procedia PDF Downloads 3006156 Cognitive Impairment in Chronic Renal Patients on Hemodialysis
Authors: Fabiana Souza Orlandi, Juliana Gomes Duarte, Gabriela Dutra Gesualdo
Abstract:
Chronic renal disease (CKD), accompanied by hemodialysis, causes chronic renal failure in a number of situations that compromises not only physical, personal and environmental aspects, but also psychological, social and family aspects. Objective: To verify the level of cognitive impairment of chronic renal patients on hemodialysis. Methodology: This is a descriptive, cross-sectional study. The present study was performed in a Dialysis Center of a city in the interior of the State of São Paulo. The inclusion criteria were: being 18 years or older; have a medical diagnosis of CKD; being in hemodialysis treatment in this unit; and agree to participate in the research, with the signature of the Informed Consent (TCLE). A total of 115 participants were evaluated through the Participant Characterization Instrument and the Addenbrooke Cognitive Exam - Revised Version (ACE-R), being scored from 0 to 100, stipulating the cut-off note for the complete battery <78 and subdivided into five domains: attention and guidance; memory; fluency; language; (66.9%) and caucasian (54.7%), 53.7 (±14.8) years old. Most of the participants were retired (74.7%), with incomplete elementary schooling (36.5%) and the average time of treatment was 46 months. Most of the participants (61.3%) presented impairment in the area of attention and orientation, 80.4% in the spatial visual domain. Regarding the total ACE-R score, 75.7% of the participants presented scores below the established cut grade. Conclusion: There was a high percentage (75.7%) below the cut-off score established for ACE-R, suggesting that there may be some cognitive impairment among these participants, since the instrument only performs a screening on cognitive health. The results of the study are extremely important so that possible interventions can be traced in order to minimize impairment, thus improving the quality of life of chronic renal patients.Keywords: cognition, chronic renal insufficiency, adult health, dialysis
Procedia PDF Downloads 3666155 Intrusion Detection in Computer Networks Using a Hybrid Model of Firefly and Differential Evolution Algorithms
Authors: Mohammad Besharatloo
Abstract:
Intrusion detection is an important research topic in network security because of increasing growth in the use of computer network services. Intrusion detection is done with the aim of detecting the unauthorized use or abuse in the networks and systems by the intruders. Therefore, the intrusion detection system is an efficient tool to control the user's access through some predefined regulations. Since, the data used in intrusion detection system has high dimension, a proper representation is required to show the basis structure of this data. Therefore, it is necessary to eliminate the redundant features to create the best representation subset. In the proposed method, a hybrid model of differential evolution and firefly algorithms was employed to choose the best subset of properties. In addition, decision tree and support vector machine (SVM) are adopted to determine the quality of the selected properties. In the first, the sorted population is divided into two sub-populations. These optimization algorithms were implemented on these sub-populations, respectively. Then, these sub-populations are merged to create next repetition population. The performance evaluation of the proposed method is done based on KDD Cup99. The simulation results show that the proposed method has better performance than the other methods in this context.Keywords: intrusion detection system, differential evolution, firefly algorithm, support vector machine, decision tree
Procedia PDF Downloads 916154 Utilization of an Object Oriented Tool to Perform Model-Based Safety Analysis According to Extended Failure System Models
Authors: Royia Soliman, Salma ElAnsary, Akram Amin Abdellatif, Florian Holzapfel
Abstract:
Model-Based Safety Analysis (MBSA) is an approach in which the system and safety engineers share a common system model created using a model-based development process. The model can also be extended by the failure modes of the system components. There are two famous approaches for the addition of fault behaviors to system models. The first one is to enclose the failure into the system design directly. The second approach is to develop a fault model separately from the system model, thus combining both independent models for safety analysis. This paper introduces a hybrid approach of MBSA. The approach tries to use informal abstracted models to investigate failure behaviors. The approach will combine various concepts such as directed graph traversal, event lists and Constraint Satisfaction Problems (CSP). The approach is implemented using an Object Oriented programming language. The components are abstracted to its failure logic and relationships of connected components. The implemented approach is tested on various flight control systems, including electrical and multi-domain examples. The various tests are analyzed, and a comparison to different approaches is represented.Keywords: flight control systems, model based safety analysis, safety assessment analysis, system modelling
Procedia PDF Downloads 1646153 Modern Information Security Management and Digital Technologies: A Comprehensive Approach to Data Protection
Authors: Mahshid Arabi
Abstract:
With the rapid expansion of digital technologies and the internet, information security has become a critical priority for organizations and individuals. The widespread use of digital tools such as smartphones and internet networks facilitates the storage of vast amounts of data, but simultaneously, vulnerabilities and security threats have significantly increased. The aim of this study is to examine and analyze modern methods of information security management and to develop a comprehensive model to counteract threats and information misuse. This study employs a mixed-methods approach, including both qualitative and quantitative analyses. Initially, a systematic review of previous articles and research in the field of information security was conducted. Then, using the Delphi method, interviews with 30 information security experts were conducted to gather their insights on security challenges and solutions. Based on the results of these interviews, a comprehensive model for information security management was developed. The proposed model includes advanced encryption techniques, machine learning-based intrusion detection systems, and network security protocols. AES and RSA encryption algorithms were used for data protection, and machine learning models such as Random Forest and Neural Networks were utilized for intrusion detection. Statistical analyses were performed using SPSS software. To evaluate the effectiveness of the proposed model, T-Test and ANOVA statistical tests were employed, and results were measured using accuracy, sensitivity, and specificity indicators of the models. Additionally, multiple regression analysis was conducted to examine the impact of various variables on information security. The findings of this study indicate that the comprehensive proposed model reduced cyber-attacks by an average of 85%. Statistical analysis showed that the combined use of encryption techniques and intrusion detection systems significantly improves information security. Based on the obtained results, it is recommended that organizations continuously update their information security systems and use a combination of multiple security methods to protect their data. Additionally, educating employees and raising public awareness about information security can serve as an effective tool in reducing security risks. This research demonstrates that effective and up-to-date information security management requires a comprehensive and coordinated approach, including the development and implementation of advanced techniques and continuous training of human resources.Keywords: data protection, digital technologies, information security, modern management
Procedia PDF Downloads 296152 Building a Dynamic News Category Network for News Sources Recommendations
Authors: Swati Gupta, Shagun Sodhani, Dhaval Patel, Biplab Banerjee
Abstract:
It is generic that news sources publish news in different broad categories. These categories can either be generic such as Business, Sports, etc. or time-specific such as World Cup 2015 and Nepal Earthquake or both. It is up to the news agencies to build the categories. Extracting news categories automatically from numerous online news sources is expected to be helpful in many applications including news source recommendations and time specific news category extraction. To address this issue, existing systems like DMOZ directory and Yahoo directory are mostly considered though they are mostly human annotated and do not consider the time dynamism of categories of news websites. As a remedy, we propose an approach to automatically extract news category URLs from news websites in this paper. News category URL is a link which points to a category in news websites. We use the news category URL as a prior knowledge to develop a news source recommendation system which contains news sources listed in various categories in order of ranking. In addition, we also propose an approach to rank numerous news sources in different categories using various parameters like Traffic Based Website Importance, Social media Analysis and Category Wise Article Freshness. Experimental results on category URLs captured from GDELT project during April 2016 to December 2016 show the adequacy of the proposed method.Keywords: news category, category network, news sources, ranking
Procedia PDF Downloads 3866151 Polymeric Composites with Synergetic Carbon and Layered Metallic Compounds for Supercapacitor Application
Authors: Anukul K. Thakur, Ram Bilash Choudhary, Mandira Majumder
Abstract:
In this technologically driven world, it is requisite to develop better, faster and smaller electronic devices for various applications to keep pace with fast developing modern life. In addition, it is also required to develop sustainable and clean sources of energy in this era where the environment is being threatened by pollution and its severe consequences. Supercapacitor has gained tremendous attention in the recent years because of its various attractive properties such as it is essentially maintenance-free, high specific power, high power density, excellent pulse charge/discharge characteristics, exhibiting a long cycle-life, require a very simple charging circuit and safe operation. Binary and ternary composites of conducting polymers with carbon and other layered transition metal dichalcogenides have shown tremendous progress in the last few decades. Compared with bulk conducting polymer, these days conducting polymers have gained more attention because of their high electrical conductivity, large surface area, short length for the ion transport and superior electrochemical activity. These properties make them very suitable for several energy storage applications. On the other hand, carbon materials have also been studied intensively, owing to its rich specific surface area, very light weight, excellent chemical-mechanical property and a wide range of the operating temperature. These have been extensively employed in the fabrication of carbon-based energy storage devices and also as an electrode material in supercapacitors. Incorporation of carbon materials into the polymers increases the electrical conductivity of the polymeric composite so formed due to high electrical conductivity, high surface area and interconnectivity of the carbon. Further, polymeric composites based on layered transition metal dichalcogenides such as molybdenum disulfide (MoS2) are also considered important because they are thin indirect band gap semiconductors with a band gap around 1.2 to 1.9eV. Amongst the various 2D materials, MoS2 has received much attention because of its unique structure consisting of a graphene-like hexagonal arrangement of Mo and S atoms stacked layer by layer to give S-Mo-S sandwiches with weak Van-der-Waal forces between them. It shows higher intrinsic fast ionic conductivity than oxides and higher theoretical capacitance than the graphite.Keywords: supercapacitor, layered transition-metal dichalcogenide, conducting polymer, ternary, carbon
Procedia PDF Downloads 2566150 A Study of Social Media Users’ Switching Behavior
Authors: Chiao-Chen Chang, Yang-Chieh Chin
Abstract:
Social media has created a change in the way the network community is clustered, especially from the location of the community, from the original virtual space to the intertwined network, and thus the communication between people will change from face to face communication to social media-based communication model. However, social media users who have had a fixed engagement may have an intention to switch to another service provider because of the emergence of new forms of social media. For example, some of Facebook or Twitter users switched to Instagram in 2014 because of social media messages or image overloads, and users may seek simpler and instant social media to become their main social networking tool. This study explores the impact of system features overload, information overload, social monitoring concerns, problematic use and privacy concerns as the antecedents on social media fatigue, dissatisfaction, and alternative attractiveness; further influence social media switching. This study also uses the online questionnaire survey method to recover the sample data, and then confirm the factor analysis, path analysis, model fit analysis and mediating analysis with the structural equation model (SEM). Research findings demonstrated that there were significant effects on multiple paths. Based on the research findings, this study puts forward the implications of theory and practice.Keywords: social media, switching, social media fatigue, alternative attractiveness
Procedia PDF Downloads 1406149 Collective Intelligence-Based Early Warning Management for Agriculture
Authors: Jarbas Lopes Cardoso Jr., Frederic Andres, Alexandre Guitton, Asanee Kawtrakul, Silvio E. Barbin
Abstract:
The important objective of the CyberBrain Mass Agriculture Alarm Acquisition and Analysis (CBMa4) project is to minimize the impacts of diseases and disasters on rice cultivation. For example, early detection of insects will reduce the volume of insecticides that is applied to the rice fields through the use of CBMa4 platform. In order to reach this goal, two major factors need to be considered: (1) the social network of smart farmers; and (2) the warning data alarm acquisition and analysis component. This paper outlines the process for collecting the warning and improving the decision-making result to the warning. It involves two sub-processes: the warning collection and the understanding enrichment. Human sensors combine basic suitable data processing techniques in order to extract warning related semantic according to collective intelligence. We identify each warning by a semantic content called 'warncons' with multimedia metaphors and metadata related to these metaphors. It is important to describe the metric to measuring the relation among warncons. With this knowledge, a collective intelligence-based decision-making approach determines the action(s) to be launched regarding one or a set of warncons.Keywords: agricultural engineering, warning systems, social network services, context awareness
Procedia PDF Downloads 3826148 Tourism as Economic Resource for Protecting the Landscape: Introducing Touristic Initiatives in Coastal Protected Areas of Albania
Authors: Enrico Porfido
Abstract:
The paper aims to investigate the relation between landscape and tourism, with a special focus on coastal protected areas of Albania. The relationship between tourism and landscape is bijective: There is no tourism without landscape attractive features and on the other side landscape needs economic resources to be conserved and protected. The survival of each component is strictly related to the other one. Today, the Albanian protected areas appear as isolated islands, too far away from each other to build an efficient network and to avoid waste in terms of energy, economy and working force. This study wants to stress out the importance of cooperation in terms of common strategies and the necessity of introducing a touristic sustainable model in Albania. Comparing the protection system laws of the neighbor countries of the Adriatic-Ionian region and through a desk review on the best practices of protected areas that benefit from touristic activities, the study proposes the creation of the Albanian Riviera Landscape Park. This action will impact positively the whole southern Albania territory, introducing a sustainable tourism network that aims to valorize the local heritage and to stop the coastal exploitation processes. The main output is the definition of future development scenarios in Albania with the establishment of new protected areas and the introduction of touristic initiatives.Keywords: Adriatic-Ionian region, protected areas, tourism for landscape, sustainable tourism
Procedia PDF Downloads 2806147 A Deep Learning Approach to Calculate Cardiothoracic Ratio From Chest Radiographs
Authors: Pranav Ajmera, Amit Kharat, Tanveer Gupte, Richa Pant, Viraj Kulkarni, Vinay Duddalwar, Purnachandra Lamghare
Abstract:
The cardiothoracic ratio (CTR) is the ratio of the diameter of the heart to the diameter of the thorax. An abnormal CTR, that is, a value greater than 0.55, is often an indicator of an underlying pathological condition. The accurate prediction of an abnormal CTR from chest X-rays (CXRs) aids in the early diagnosis of clinical conditions. We propose a deep learning-based model for automatic CTR calculation that can assist the radiologist with the diagnosis of cardiomegaly and optimize the radiology flow. The study population included 1012 posteroanterior (PA) CXRs from a single institution. The Attention U-Net deep learning (DL) architecture was used for the automatic calculation of CTR. A CTR of 0.55 was used as a cut-off to categorize the condition as cardiomegaly present or absent. An observer performance test was conducted to assess the radiologist's performance in diagnosing cardiomegaly with and without artificial intelligence (AI) assistance. The Attention U-Net model was highly specific in calculating the CTR. The model exhibited a sensitivity of 0.80 [95% CI: 0.75, 0.85], precision of 0.99 [95% CI: 0.98, 1], and a F1 score of 0.88 [95% CI: 0.85, 0.91]. During the analysis, we observed that 51 out of 1012 samples were misclassified by the model when compared to annotations made by the expert radiologist. We further observed that the sensitivity of the reviewing radiologist in identifying cardiomegaly increased from 40.50% to 88.4% when aided by the AI-generated CTR. Our segmentation-based AI model demonstrated high specificity and sensitivity for CTR calculation. The performance of the radiologist on the observer performance test improved significantly with AI assistance. A DL-based segmentation model for rapid quantification of CTR can therefore have significant potential to be used in clinical workflows.Keywords: cardiomegaly, deep learning, chest radiograph, artificial intelligence, cardiothoracic ratio
Procedia PDF Downloads 986146 Applying Big Data Analysis to Efficiently Exploit the Vast Unconventional Tight Oil Reserves
Authors: Shengnan Chen, Shuhua Wang
Abstract:
Successful production of hydrocarbon from unconventional tight oil reserves has changed the energy landscape in North America. The oil contained within these reservoirs typically will not flow to the wellbore at economic rates without assistance from advanced horizontal well and multi-stage hydraulic fracturing. Efficient and economic development of these reserves is a priority of society, government, and industry, especially under the current low oil prices. Meanwhile, society needs technological and process innovations to enhance oil recovery while concurrently reducing environmental impacts. Recently, big data analysis and artificial intelligence become very popular, developing data-driven insights for better designs and decisions in various engineering disciplines. However, the application of data mining in petroleum engineering is still in its infancy. The objective of this research aims to apply intelligent data analysis and data-driven models to exploit unconventional oil reserves both efficiently and economically. More specifically, a comprehensive database including the reservoir geological data, reservoir geophysical data, well completion data and production data for thousands of wells is firstly established to discover the valuable insights and knowledge related to tight oil reserves development. Several data analysis methods are introduced to analysis such a huge dataset. For example, K-means clustering is used to partition all observations into clusters; principle component analysis is applied to emphasize the variation and bring out strong patterns in the dataset, making the big data easy to explore and visualize; exploratory factor analysis (EFA) is used to identify the complex interrelationships between well completion data and well production data. Different data mining techniques, such as artificial neural network, fuzzy logic, and machine learning technique are then summarized, and appropriate ones are selected to analyze the database based on the prediction accuracy, model robustness, and reproducibility. Advanced knowledge and patterned are finally recognized and integrated into a modified self-adaptive differential evolution optimization workflow to enhance the oil recovery and maximize the net present value (NPV) of the unconventional oil resources. This research will advance the knowledge in the development of unconventional oil reserves and bridge the gap between the big data and performance optimizations in these formations. The newly developed data-driven optimization workflow is a powerful approach to guide field operation, which leads to better designs, higher oil recovery and economic return of future wells in the unconventional oil reserves.Keywords: big data, artificial intelligence, enhance oil recovery, unconventional oil reserves
Procedia PDF Downloads 2836145 Dynamic Risk Model for Offshore Decommissioning Using Bayesian Belief Network
Authors: Ahmed O. Babaleye, Rafet E. Kurt
Abstract:
The global oil and gas industry is beginning to witness an increase in the number of installations moving towards decommissioning. Decommissioning of offshore installations is a complex, costly and hazardous activity, making safety one of the major concerns. Among existing removal options, complete and partial removal options pose the highest risks. Therefore, a dynamic risk model of the accidents from the two options is important to assess the risks on an overall basis. In this study, a risk-based safety model is developed to conduct quantitative risk analysis (QRA) for jacket structure systems failure. Firstly, bow-tie (BT) technique is utilised to model the causal relationship between the system failure and potential accident scenarios. Subsequently, to relax the shortcomings of BT, Bayesian Belief Networks (BBNs) were established to dynamically assess associated uncertainties and conditional dependencies. The BBN is developed through a similitude mapping of the developed bow-tie. The BBN is used to update the failure probabilities of the contributing elements through diagnostic analysis, thus, providing a case-specific and realistic safety analysis method when compared to a bow-tie. This paper presents the application of dynamic safety analysis to guide the allocation of risk control measures and consequently, drive down the avoidable cost of remediation.Keywords: Bayesian belief network, offshore decommissioning, dynamic safety model, quantitative risk analysis
Procedia PDF Downloads 2806144 Sustainability Modelling and Sustainability Evaluation of a Mechanical System in a Concurrent Engineering Environment: A Digraph and Matrix Approach
Authors: Anand Ankush, Wani Mohammed Farooq
Abstract:
A procedure based on digraph and matrix method is developed for modelling and evaluation of sustainability of Mechanical System in a concurrent engineering environment.The sustainability parameters of a Mechanical System are identified and are called sustainability attributes. Consideration of attributes and their interrelations is rudiment in modeling and evaluation of sustainability index. Sustainability attributes of a Mechanical System are modelled in termsof sustainability digraph. The graph is represented by a one-to-one matrix for sustainability expression which is based on sustainability attributes. A variable sustainability relationship permanent matrix is defined to develop sustainability expression(VPF-t) which is also useful in comparing two systems in a concurrent environment. The sustainability index of Mechanical System is obtained from permanent of matrix by substituting the numerical values of attributes and their interrelations. A higher value of index implies better sustainability of system.The ideal value of index is obtained from matrix expression which is useful in assessing relative sustainability of a Mechanical System in a concurrent engineering environment. The procedure is not only useful for evaluation of sustainability of a Mechanical System at conceptual design stage but can also be used for design and development of systems at system design stage. A step-by-step procedure for evaluation of sustainability index is also suggested and is illustrated by means of an example.Keywords: digraph, matrix method, mechanical system, sustainability
Procedia PDF Downloads 3646143 Offset Dependent Uniform Delay Mathematical Optimization Model for Signalized Traffic Network Using Differential Evolution Algorithm
Authors: Tahseen Saad, Halim Ceylan, Jonathan Weaver, Osman Nuri Çelik, Onur Gungor Sahin
Abstract:
A new concept of uniform delay offset dependent mathematical optimization problem is derived as the main objective for this study using a differential evolution algorithm. To control the coordination problem, which depends on offset selection and to estimate uniform delay based on the offset choice in a traffic signal network. The assumption is the periodic sinusoidal function for arrival and departure patterns. The cycle time is optimized at the entry links and the optimized value is used in the non-entry links as a common cycle time. The offset optimization algorithm is used to calculate the uniform delay at each link. The results are illustrated by using a case study and are compared with the canonical uniform delay model derived by Webster and the highway capacity manual’s model. The findings show new model minimizes the total uniform delay to almost half compared to conventional models. The mathematical objective function is robust. The algorithm convergence time is fast.Keywords: area traffic control, traffic flow, differential evolution, sinusoidal periodic function, uniform delay, offset variable
Procedia PDF Downloads 2756142 Working with Children and Young People as a much Neglected Area of Education within the Social Studies Curriculum in Poland
Authors: Marta Czechowska-Bieluga
Abstract:
Social work education in Poland focuses mostly on developing competencies that address the needs of individuals and families affected by a variety of life's problems. As a result of the ageing of the Polish population, much attention is equally devoted to adults, including the elderly. However, social work with children and young people is the area of education which should be given more consideration. Social work students are mostly trained to cater to the needs of families and the competencies aimed to respond to the needs of children and young people do not receive enough attention and are only offered as elective classes. This paper strives to review the social work programmes offered by the selected higher education institutions in Poland in terms of social work training aimed at helping children and young people to address their life problems. The analysis conducted in this study indicates that university education for social work focuses on training professionals who will provide assistance only to adults. Due to changes in the social and political situation, including, in particular, changes in social policy implemented for the needy, it is necessary to extend this area of education to include the specificity of the support for children and young people; especially, in the light of the appearance of new support professions within the area of social work. For example, family assistants, whose task is to support parents in performing their roles as guardians and educators, also assist children. Therefore, it becomes necessary to equip social work professionals with competencies which include issues related to the quality of life of underage people living in families. Social work curricula should be extended to include the issues of child and young person development and the patterns governing this phase of life.Keywords: social work education, social work programmes, social worker, university
Procedia PDF Downloads 2896141 Competitive Adsorption of Al, Ga and In by Gamma Irradiation Induced Pectin-Acrylamide-(Vinyl Phosphonic Acid) Hydrogel
Authors: Md Murshed Bhuyan, Hirotaka Okabe, Yoshiki Hidaka, Kazuhiro Hara
Abstract:
Pectin-Acrylamide- (Vinyl Phosphonic Acid) Hydrogels were prepared from their blend by using gamma radiation of various doses. It was found that the gel fraction of hydrogel increases with increasing the radiation dose reaches a maximum and then started decreasing with increasing the dose. The optimum radiation dose and the composition of raw materials were determined on the basis of equilibrium swelling which resulted in 20 kGy absorbed dose and 1:2:4 (Pectin:AAm:VPA) composition. Differential scanning calorimetry reveals the gel strength for using them as the adsorbent. The FTIR-spectrum confirmed the grafting/ crosslinking of the monomer on the backbone of pectin chain. The hydrogels were applied in adsorption of Al, Ga, and In from multielement solution where the adsorption capacity order for those three elements was found as – In>Ga>Al. SEM images of hydrogels and metal adsorbed hydrogels indicate the gel network and adherence of the metal ions in the interpenetrating network of the hydrogel which were supported by EDS spectra. The adsorption isotherm models were studied and found that the Langmuir adsorption isotherm model was well fitted with the data. Adsorption data were also fitted to different adsorption kinetic and diffusion models. Desorption of metal adsorbed hydrogels was performed in 5% nitric acid where desorption efficiency was found around 90%.Keywords: hydrogel, gamma radiation, vinyl phosphonic acid, metal adsorption
Procedia PDF Downloads 1526140 Study on the Incidence of Chikungunya Infection in Swat Region
Authors: Nasib Zaman, Maneesha Kour, Muhammad Rizwan, Fazal Akbar
Abstract:
Abstract: Chikungunya fever is a re-emerging rapidly spreading mosquito-borne disease cause by Aedes albopictus and Aedes aegypti mosquito vectors. Currently, it is affecting millions of people globally. Objective: This study's main objective was to find the incidence of chikungunya fever in the Swat region and the factors associated with the spread of this infection. Method: This study was carried out in different areas of Swat. Blood samples and data were collected from selected patients, and a questionnaire was filled for each patient. 3-5ml of the specimen was taken from the patient's vein and serum, or plasma was separated by centrifugation. Chikungunya tests were performed for IgG and IgM antibodies. The data was analyzed by SPSS and Graph Paid Prism 5. Results: A total of 169 patients were included in this study, out of which 103 (60.9%) having age less than 30 years were positive for chikungunya infection and 66 (39.1%) having more than 30 years were negative for this infection. Only 1 (0.6%) were positive for both IgG and IgM antibody. About 15 (8.9%) patients have diagnosed with positive IgG antibodies, and 25 (26.6%) patients were positive for IgM positive antibodies. The infection rate was significantly higher in males compared to females 71 (59.6%) vs. 14 (38%) P value=0.088, OR=1.7. Conclusion: This study concludes clinical knowledge and awareness that are necessary for a diagnosis of chikungunya infection properly. Therefore it is important to educate people for the eradication of this infection. Recommendation: This study also recommends investigating the other risk factors associated with this infection.Keywords: Chikungunya, risk factor, Incidence, antibodies, mosquito
Procedia PDF Downloads 1286139 Microwave Assisted Thermal Cracking of Castor Oil Zeolite ZSM-5 as Catalyst for Biofuel Production
Authors: Ghazi Faisal Najmuldeen, Ali Abdul Rahman–Al Ezzi, Tharmathas A/L Alagappan
Abstract:
The aim of this investigation was to produce biofuel from castor oil through microwave assisted thermal cracking with zeolite ZSM-5 as catalyst. The obtained results showed that microwave assisted thermal cracking of castor oil with Zeolite ZSM-5 as catalyst generates products consisting of alcohol, methyl esters and fatty acids. The products obtained from this experimental procedure by the cracking of castor oil are components of biodiesel. Samples of cracked castor oil containing 1, 3 and 5wt % catalyst was analyzed, however, only the sample containing the 5wt % catalyst showed significant presence of condensate. FTIR and GCMS studies show that the condensate obtained is an unsaturated fatty acid, is 9, 12-octadecadienoic acid, suitable for biofuel use. 9, 12-octadecadienoic acid is an unsaturated fatty acid with a molecular weight of 280.445 g/mol. Characterization of the sample demonstrates that functional group for the products from the three samples display a similar peak in the FTIR graph analysis at 1700 cm-1 and 3600 cm-1. The result obtained from GCMS shows that there are 16 peaks obtained from the sample. The compound with the highest peak area is 9, 12-octadecadienoic acid with a retention time of 9.941 and 24.65 peak areas. All these compounds are organic material and can be characterized as biofuel and biodiesel.Keywords: castor oil, biofuel, biodiesel, thermal cracking, microwave
Procedia PDF Downloads 2326138 Reactive Transport Modeling in Carbonate Rocks: A Single Pore Model
Authors: Priyanka Agrawal, Janou Koskamp, Amir Raoof, Mariette Wolthers
Abstract:
Calcite is the main mineral found in carbonate rocks, which form significant hydrocarbon reservoirs and subsurface repositories for CO2 sequestration. The injected CO2 mixes with the reservoir fluid and disturbs the geochemical equilibrium, triggering calcite dissolution. Different combinations of fluid chemistry and injection rate may therefore result in different evolution of porosity, permeability and dissolution patterns. To model the changes in porosity and permeability Kozeny-Carman equation K∝〖(∅)〗^n is used, where K is permeability and ∅ is porosity. The value of n is mostly based on experimental data or pore network models. In pore network models, this derivation is based on accuracy of relation used for conductivity and pore volume change. In fact, at a single pore scale, this relationship is the result of the pore shape development due to dissolution. We have prepared a new reactive transport model for a single pore which simulates the complex chemical reaction of carbonic-acid induced calcite dissolution and subsequent pore-geometry evolution at a single pore scale. We use COMSOL Multiphysics package 5.3 for the simulation. COMSOL utilizes the arbitary-Lagrangian Eulerian (ALE) method for the free-moving domain boundary. We examined the effect of flow rate on the evolution of single pore shape profiles due to calcite dissolution. We used three flow rates to cover diffusion dominated and advection-dominated transport regimes. The fluid in diffusion dominated flow (Pe number 0.037 and 0.37) becomes less reactive along the pore length and thus produced non-uniform pore shapes. However, for the advection-dominated flow (Pe number 3.75), the fast velocity of the fluid keeps the fluid relatively more reactive towards the end of the pore length, thus yielding uniform pore shape. Different pore shapes in terms of inlet opening vs overall pore opening will have an impact on the relation between changing volumes and conductivity. We have related the shape of pore with the Pe number which controls the transport regimes. For every Pe number, we have derived the relation between conductivity and porosity. These relations will be used in the pore network model to get the porosity and permeability variation.Keywords: single pore, reactive transport, calcite system, moving boundary
Procedia PDF Downloads 3746137 Pathology of Today’s Lifestyle
Authors: Nasrin Badrkhani
Abstract:
Human beings step into this world to live thus, the way of living holds undeniable importance. Addressing the contemporary lifestyle is a necessity that has attracted the attention of scholars. To formulate an ideal lifestyle, we need to progress in two dimensions: the instrumental and the content dimensions. In the context of lifestyle, which is the software part of Islamic civilization, we have not made significant progress. In analyzing the Iranian-Islamic lifestyle, it must be said that our current lifestyle is eclectic, and we need to refine it by selecting one or two main factors, which other factors are dependent on, and work on them so that the secondary factors change on their own. Lifestyle is a broad concept that, in addition to goals, includes an individual's thoughts about themselves, the world, and their unique way of striving to achieve their goals under specific conditions. The discussion of harm becomes relevant for an institution when it cannot fulfill the expected functions or is on the verge of dissolution. There is no doubt that today's Iranian family is far from being the balanced family that should be the cornerstone of a healthy society. The generation gap, as a global issue, is a problem facing Iranian society and families. The weakening of the element of faith, prioritizing worldly benefits over divine satisfaction, the prominence of material pleasures over spiritual joy, individualism and attention to personal interests instead of altruism and sacrifice, increased grounds for establishing relationships outside the framework of marriage, and the fading culture of hijab reduce the felt need to form a family. In a general summary regarding the pathology of the lifestyle of Iranians, it must be said that the consumerist lifestyle or the libertinism that some of our families have adopted is, whatever it may be, not beneficial for our country and society in terms of the development and perfection of future generations. We need to design alternative lifestyles that are suitable for our society and are also geared towards the elevation of our children.Keywords: social problems, gap generation, communication, lifestyle of Iranians
Procedia PDF Downloads 146136 An Adaptive Dimensionality Reduction Approach for Hyperspectral Imagery Semantic Interpretation
Authors: Akrem Sellami, Imed Riadh Farah, Basel Solaiman
Abstract:
With the development of HyperSpectral Imagery (HSI) technology, the spectral resolution of HSI became denser, which resulted in large number of spectral bands, high correlation between neighboring, and high data redundancy. However, the semantic interpretation is a challenging task for HSI analysis due to the high dimensionality and the high correlation of the different spectral bands. In fact, this work presents a dimensionality reduction approach that allows to overcome the different issues improving the semantic interpretation of HSI. Therefore, in order to preserve the spatial information, the Tensor Locality Preserving Projection (TLPP) has been applied to transform the original HSI. In the second step, knowledge has been extracted based on the adjacency graph to describe the different pixels. Based on the transformation matrix using TLPP, a weighted matrix has been constructed to rank the different spectral bands based on their contribution score. Thus, the relevant bands have been adaptively selected based on the weighted matrix. The performance of the presented approach has been validated by implementing several experiments, and the obtained results demonstrate the efficiency of this approach compared to various existing dimensionality reduction techniques. Also, according to the experimental results, we can conclude that this approach can adaptively select the relevant spectral improving the semantic interpretation of HSI.Keywords: band selection, dimensionality reduction, feature extraction, hyperspectral imagery, semantic interpretation
Procedia PDF Downloads 3546135 An Energy Holes Avoidance Routing Protocol for Underwater Wireless Sensor Networks
Authors: A. Khan, H. Mahmood
Abstract:
In Underwater Wireless Sensor Networks (UWSNs), sensor nodes close to water surface (final destination) are often preferred for selection as forwarders. However, their frequent selection makes them depleted of their limited battery power. In consequence, these nodes die during early stage of network operation and create energy holes where forwarders are not available for packets forwarding. These holes severely affect network throughput. As a result, system performance significantly degrades. In this paper, a routing protocol is proposed to avoid energy holes during packets forwarding. The proposed protocol does not require the conventional position information (localization) of holes to avoid them. Localization is cumbersome; energy is inefficient and difficult to achieve in underwater environment where sensor nodes change their positions with water currents. Forwarders with the lowest water pressure level and the maximum number of neighbors are preferred to forward packets. These two parameters together minimize packet drop by following the paths where maximum forwarders are available. To avoid interference along the paths with the maximum forwarders, a packet holding time is defined for each forwarder. Simulation results reveal superior performance of the proposed scheme than the counterpart technique.Keywords: energy holes, interference, routing, underwater
Procedia PDF Downloads 4096134 Reflecting on Deafblindness: Recommendations for Implementing Effective Strategies
Authors: V. Argyropoulos, M. Nikolaraizi, K. Tanou
Abstract:
There is little available information concerning the cognitive and communicative abilities of the people who are deaf-blind. This mainly stems from the general inadequacy of existing assessment instruments employed with deafblind individuals. Although considerable variability exists with regard to cognitive capacities of the deaf-blind, careful examination of the literature reveals that the majority of these persons suffer from significant deficits in cognitive and adaptive functioning. The few reports available primarily are case studies, narrative program descriptions, or position papers by workers in the field. Without the objective verification afforded by controlled research, specialists in psychology, education, and other rehabilitation services must rely on personal speculations or biases to guide their decisions in the planning, implementation, and evaluation of services to deaf-blind children and adults. This paper highlights the framework and discusses the results of an action research network. The aim of this study was twofold: a) to describe and analyse the different ways in which a student with deafblindness approached a number of developmental issues such as novel tasks, exploration and manipulation of objects, reactions to social stimuli, motor coordination, and quality of play and b) to map the appropriate functional approach for the specific student that could be used to develop strategies for classroom participation and socialization. The persons involved in this collaborative action research scheme were general teachers, a school counsellor, academic staff and student teachers. Rating scales and checklists were used to gather information in natural activities and settings, and additional data were also obtained through interviews with the educators of the student. The findings of this case study indicated that there is a great need to focus on the development of effective intervention strategies. The results showed that the identification of positive reinforcers for this population might represent an important and challenging aspect of behaviour programmes. Finally, the findings suggest that additional empirical work is needed to increase attention to methodological and social validity issues.Keywords: action research, cognitive and communicative abilities, deafblindness, effective strategies
Procedia PDF Downloads 1856133 Shark Detection and Classification with Deep Learning
Authors: Jeremy Jenrette, Z. Y. C. Liu, Pranav Chimote, Edward Fox, Trevor Hastie, Francesco Ferretti
Abstract:
Suitable shark conservation depends on well-informed population assessments. Direct methods such as scientific surveys and fisheries monitoring are adequate for defining population statuses, but species-specific indices of abundance and distribution coming from these sources are rare for most shark species. We can rapidly fill these information gaps by boosting media-based remote monitoring efforts with machine learning and automation. We created a database of shark images by sourcing 24,546 images covering 219 species of sharks from the web application spark pulse and the social network Instagram. We used object detection to extract shark features and inflate this database to 53,345 images. We packaged object-detection and image classification models into a Shark Detector bundle. We developed the Shark Detector to recognize and classify sharks from videos and images using transfer learning and convolutional neural networks (CNNs). We applied these models to common data-generation approaches of sharks: boosting training datasets, processing baited remote camera footage and online videos, and data-mining Instagram. We examined the accuracy of each model and tested genus and species prediction correctness as a result of training data quantity. The Shark Detector located sharks in baited remote footage and YouTube videos with an average accuracy of 89\%, and classified located subjects to the species level with 69\% accuracy (n =\ eight species). The Shark Detector sorted heterogeneous datasets of images sourced from Instagram with 91\% accuracy and classified species with 70\% accuracy (n =\ 17 species). Data-mining Instagram can inflate training datasets and increase the Shark Detector’s accuracy as well as facilitate archiving of historical and novel shark observations. Base accuracy of genus prediction was 68\% across 25 genera. The average base accuracy of species prediction within each genus class was 85\%. The Shark Detector can classify 45 species. All data-generation methods were processed without manual interaction. As media-based remote monitoring strives to dominate methods for observing sharks in nature, we developed an open-source Shark Detector to facilitate common identification applications. Prediction accuracy of the software pipeline increases as more images are added to the training dataset. We provide public access to the software on our GitHub page.Keywords: classification, data mining, Instagram, remote monitoring, sharks
Procedia PDF Downloads 1216132 Numerical Solution of Manning's Equation in Rectangular Channels
Authors: Abdulrahman Abdulrahman
Abstract:
When the Manning equation is used, a unique value of normal depth in the uniform flow exists for a given channel geometry, discharge, roughness, and slope. Depending on the value of normal depth relative to the critical depth, the flow type (supercritical or subcritical) for a given characteristic of channel conditions is determined whether or not flow is uniform. There is no general solution of Manning's equation for determining the flow depth for a given flow rate, because the area of cross section and the hydraulic radius produce a complicated function of depth. The familiar solution of normal depth for a rectangular channel involves 1) a trial-and-error solution; 2) constructing a non-dimensional graph; 3) preparing tables involving non-dimensional parameters. Author in this paper has derived semi-analytical solution to Manning's equation for determining the flow depth given the flow rate in rectangular open channel. The solution was derived by expressing Manning's equation in non-dimensional form, then expanding this form using Maclaurin's series. In order to simplify the solution, terms containing power up to 4 have been considered. The resulted equation is a quartic equation with a standard form, where its solution was obtained by resolving this into two quadratic factors. The proposed solution for Manning's equation is valid over a large range of parameters, and its maximum error is within -1.586%.Keywords: channel design, civil engineering, hydraulic engineering, open channel flow, Manning's equation, normal depth, uniform flow
Procedia PDF Downloads 2216131 Model-Driven and Data-Driven Approaches for Crop Yield Prediction: Analysis and Comparison
Authors: Xiangtuo Chen, Paul-Henry Cournéde
Abstract:
Crop yield prediction is a paramount issue in agriculture. The main idea of this paper is to find out efficient way to predict the yield of corn based meteorological records. The prediction models used in this paper can be classified into model-driven approaches and data-driven approaches, according to the different modeling methodologies. The model-driven approaches are based on crop mechanistic modeling. They describe crop growth in interaction with their environment as dynamical systems. But the calibration process of the dynamic system comes up with much difficulty, because it turns out to be a multidimensional non-convex optimization problem. An original contribution of this paper is to propose a statistical methodology, Multi-Scenarios Parameters Estimation (MSPE), for the parametrization of potentially complex mechanistic models from a new type of datasets (climatic data, final yield in many situations). It is tested with CORNFLO, a crop model for maize growth. On the other hand, the data-driven approach for yield prediction is free of the complex biophysical process. But it has some strict requirements about the dataset. A second contribution of the paper is the comparison of these model-driven methods with classical data-driven methods. For this purpose, we consider two classes of regression methods, methods derived from linear regression (Ridge and Lasso Regression, Principal Components Regression or Partial Least Squares Regression) and machine learning methods (Random Forest, k-Nearest Neighbor, Artificial Neural Network and SVM regression). The dataset consists of 720 records of corn yield at county scale provided by the United States Department of Agriculture (USDA) and the associated climatic data. A 5-folds cross-validation process and two accuracy metrics: root mean square error of prediction(RMSEP), mean absolute error of prediction(MAEP) were used to evaluate the crop prediction capacity. The results show that among the data-driven approaches, Random Forest is the most robust and generally achieves the best prediction error (MAEP 4.27%). It also outperforms our model-driven approach (MAEP 6.11%). However, the method to calibrate the mechanistic model from dataset easy to access offers several side-perspectives. The mechanistic model can potentially help to underline the stresses suffered by the crop or to identify the biological parameters of interest for breeding purposes. For this reason, an interesting perspective is to combine these two types of approaches.Keywords: crop yield prediction, crop model, sensitivity analysis, paramater estimation, particle swarm optimization, random forest
Procedia PDF Downloads 2316130 Particle Size Analysis of Itagunmodi Southwestern Nigeria Alluvial Gold Ore Sample by Gaudin Schumann Method
Authors: Olaniyi Awe, Adelana R. Adetunji, Abraham Adeleke
Abstract:
Mining of alluvial gold ore by artisanal miners has been going on for decades at Itagunmodi, Southwestern Nigeria. In order to optimize the traditional panning gravity separation method commonly used in the area, a mineral particle size analysis study is critical. This study analyzed alluvial gold ore samples collected at identified five different locations in the area with a view to determine the ore particle size distributions. 500g measured of as-received alluvial gold ore sample was introduced into the uppermost sieve of an electrical sieve shaker consisting of sieves arranged in the order of decreasing nominal apertures of 5600μm, 3350μm, 2800μm, 355μm, 250μm, 125μm and 90μm, and operated for 20 minutes. The amount of material retained on each sieve was measured and tabulated for analysis. A screen analysis graph using the Gaudin Schuman method was drawn for each of the screen tests on the alluvial samples. The study showed that the percentages of fine particle size -125+90 μm fraction were 45.00%, 36.00%, 39.60%, 43.00% and 36.80% for the selected samples. These primary ore characteristic results provide reference data for the alluvial gold ore processing method selection, process performance measurement and optimization.Keywords: alluvial gold ore, sieve shaker, particle size, Gaudin Schumann
Procedia PDF Downloads 63