Search results for: deep feed forward neural network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8788

Search results for: deep feed forward neural network

5458 Analysis and Design of Simultaneous Dual Band Harvesting System with Enhanced Efficiency

Authors: Zina Saheb, Ezz El-Masry, Jean-François Bousquet

Abstract:

This paper presents an enhanced efficiency simultaneous dual band energy harvesting system for wireless body area network. A bulk biasing is used to enhance the efficiency of the adapted rectifier design to reduce Vth of MOSFET. The presented circuit harvests the radio frequency (RF) energy from two frequency bands: 1 GHz and 2.4 GHz. It is designed with TSMC 65-nm CMOS technology and high quality factor dual matching network to boost the input voltage. Full circuit analysis and modeling is demonstrated. The simulation results demonstrate a harvester with an efficiency of 23% at 1 GHz and 46% at 2.4 GHz at an input power as low as -30 dBm.

Keywords: energy harvester, simultaneous, dual band, CMOS, differential rectifier, voltage boosting, TSMC 65nm

Procedia PDF Downloads 404
5457 Family Cohesion, Social Networks, and Cultural Differences in Latino and Asian American Help Seeking Behaviors

Authors: Eileen Y. Wong, Katherine Jin, Anat Talmon

Abstract:

Background: Help seeking behaviors are highly contingent on socio-cultural factors such as ethnicity. Both Latino and Asian Americans underutilize mental health services compared to their White American counterparts. This difference may be related to the composite of one’s social support system, which includes family cohesion and social networks. Previous studies have found that Latino families are characterized by higher levels of family cohesion and social support, and Asian American families with greater family cohesion exhibit lower levels of help seeking behaviors. While both are broadly considered collectivist communities, within-culture variability is also significant. Therefore, this study aims to investigate the relationship between help seeking behaviors in the two cultures with levels of family cohesion and strength of social network. We also consider such relationships in light of previous traumatic events and diagnoses, particularly post-traumatic stress disorder (PTSD), to understand whether clinically diagnosed individuals differ in their strength of network and help seeking behaviors. Method: An adult sample (N = 2,990) from the National Latino and Asian American Study (NLAAS) provided data on participants’ social network, family cohesion, likelihood of seeking professional help, and DSM-IV diagnoses. T-tests compared Latino American (n = 1,576) and Asian American respondents (n = 1,414) in strength of social network, level of family cohesion, and likelihood of seeking professional help. Linear regression models were used to identify the probability of help-seeking behavior based on ethnicity, PTSD diagnosis, and strength of social network. Results: Help-seeking behavior was significantly associated with family cohesion and strength of social network. It was found that higher frequency of expressing one’s feelings with family significantly predicted lower levels of help-seeking behaviors (β = [-.072], p = .017), while higher frequency of spending free time with family significantly predicted higher levels of help-seeking behaviors (β = [.129], p = .002) in the Asian American sample. Subjective importance of family relations compared to that of one’s peers also significantly predict higher levels of help-seeking behaviors (β = [.095], p = .011) in the Asian American sample. Frequency of sharing one’s problems with relatives significantly predicted higher levels of help-seeking behaviors (β = [.113], p < .01) in the Latino American sample. A PTSD diagnosis did not have any significant moderating effect. Conclusion: Considering the underutilization of mental health services in Latino and Asian American minority groups, it is crucial to understand ways in which help seeking behavior can be encouraged. Our findings suggest that different dimensions within family cohesion and social networks have differential impacts on help-seeking behavior. Given the multifaceted nature of family cohesion and cultural relevance, the implications of our findings for theory and practice will be discussed.

Keywords: family cohesion, social networks, Asian American, Latino American, help-seeking behavior

Procedia PDF Downloads 68
5456 Classification of Contexts for Mentioning Love in Interviews with Victims of the Holocaust

Authors: Marina Yurievna Aleksandrova

Abstract:

Research of the Holocaust retains value not only for history but also for sociology and psychology. One of the most important fields of study is how people were coping during and after this traumatic event. The aim of this paper is to identify the main contexts of the topic of love and to determine which contexts are more characteristic for different groups of victims of the Holocaust (gender, nationality, age). In this research, transcripts of interviews with Holocaust victims that were collected during 1946 for the "Voices of the Holocaust" project were used as data. Main contexts were analyzed with methods of network analysis and latent semantic analysis and classified by gender, age, and nationality with random forest. The results show that love is articulated and described significantly differently for male and female informants, nationality is shown results with lower values of quality metrics, as well as the age.

Keywords: Holocaust, latent semantic analysis, network analysis, text-mining, random forest

Procedia PDF Downloads 180
5455 Synchronization of Bus Frames during Universal Serial Bus Transfer

Authors: Petr Šimek

Abstract:

This work deals with the problem of synchronization of bus frames during transmission using USB (Universal Serial Bus). The principles for synchronization between USB and the non-deterministic CAN (Controller Area Network) bus will be described here. Furthermore, the work deals with ensuring the time sequence of communication frames when receiving from multiple communication bus channels. The structure of a general object for storing frames from different types of communication buses, such as CAN and LIN (Local Interconnect Network), will be described here. Finally, an evaluation of the communication throughput of bus frames for USB High speed will be performed. The creation of this architecture was based on the analysis of the communication of control units with a large number of communication buses. For the design of the architecture, a test HW with a USB-HS interface was used, which received previously known messages, which were compared with the received result. The result of this investigation is the block architecture of the control program for test HW ensuring correct data transmission via the USB bus.

Keywords: analysis, CAN, interface, LIN, synchronization, USB

Procedia PDF Downloads 63
5454 Detect Critical Thinking Skill in Written Text Analysis. The Use of Artificial Intelligence in Text Analysis vs Chat/Gpt

Authors: Lucilla Crosta, Anthony Edwards

Abstract:

Companies and the market place nowadays struggle to find employees with adequate skills in relation to anticipated growth of their businesses. At least half of workers will need to undertake some form of up-skilling process in the next five years in order to remain aligned with the requests of the market . In order to meet these challenges, there is a clear need to explore the potential uses of AI (artificial Intelligence) based tools in assessing transversal skills (critical thinking, communication and soft skills of different types in general) of workers and adult students while empowering them to develop those same skills in a reliable trustworthy way. Companies seek workers with key transversal skills that can make a difference between workers now and in the future. However, critical thinking seems to be the one of the most imprtant skill, bringing unexplored ideas and company growth in business contexts. What employers have been reporting since years now, is that this skill is lacking in the majority of workers and adult students, and this is particularly visible trough their writing. This paper investigates how critical thinking and communication skills are currently developed in Higher Education environments through use of AI tools at postgraduate levels. It analyses the use of a branch of AI namely Machine Learning and Big Data and of Neural Network Analysis. It also examines the potential effect the acquisition of these skills through AI tools and what kind of effects this has on employability This paper will draw information from researchers and studies both at national (Italy & UK) and international level in Higher Education. The issues associated with the development and use of one specific AI tool Edulai, will be examined in details. Finally comparisons will be also made between these tools and the more recent phenomenon of Chat GPT and forthcomings and drawbacks will be analysed.

Keywords: critical thinking, artificial intelligence, higher education, soft skills, chat GPT

Procedia PDF Downloads 110
5453 Wireless Information Transfer Management and Case Study of a Fire Alarm System in a Residential Building

Authors: Mohsen Azarmjoo, Mehdi Mehdizadeh Koupaei, Maryam Mehdizadeh Koupaei, Asghar Mahdlouei Azar

Abstract:

The increasing prevalence of wireless networks in our daily lives has made them indispensable. The aim of this research is to investigate the management of information transfer in wireless networks and the integration of renewable solar energy resources in a residential building. The focus is on the transmission of electricity and information through wireless networks, as well as the utilization of sensors and wireless fire alarm systems. The research employs a descriptive approach to examine the transmission of electricity and information on a wireless network with electric and optical telephone lines. It also investigates the transmission of signals from sensors and wireless fire alarm systems via radio waves. The methodology includes a detailed analysis of security, comfort conditions, and costs related to the utilization of wireless networks and renewable solar energy resources. The study reveals that it is feasible to transmit electricity on a network cable using two pairs of network cables without the need for separate power cabling. Additionally, the integration of renewable solar energy systems in residential buildings can reduce dependence on traditional energy carriers. The use of sensors and wireless remote information processing can enhance the safety and efficiency of energy usage in buildings and the surrounding spaces.

Keywords: renewable energy, intelligentization, wireless sensors, fire alarm system

Procedia PDF Downloads 54
5452 Cryptography and Cryptosystem a Panacea to Security Risk in Wireless Networking

Authors: Modesta E. Ezema, Chikwendu V. Alabekee, Victoria N. Ishiwu, Ifeyinwa NwosuArize, Chinedu I. Nwoye

Abstract:

The advent of wireless networking in computing technology cannot be overemphasized, it opened up easy accessibility to information resources, networking made easier and brought internet accessibility to our doorsteps, but despite all these, some mishap came in with it that is causing mayhem in today ‘s overall information security. The cyber criminals will always compromise the integrity of a message that is not encrypted or that is encrypted with a weak algorithm.In other to correct the mayhem, this study focuses on cryptosystem and cryptography. This ensures end to end crypt messaging. The study of various cryptographic algorithms, as well as the techniques and applications of the cryptography for efficiency, were all considered in the work., present and future applications of cryptography were dealt with as well as Quantum Cryptography was exposed as the current and the future area in the development of cryptography. An empirical study was conducted to collect data from network users.

Keywords: algorithm, cryptography, cryptosystem, network

Procedia PDF Downloads 349
5451 A Cooperative Signaling Scheme for Global Navigation Satellite Systems

Authors: Keunhong Chae, Seokho Yoon

Abstract:

Recently, the global navigation satellite system (GNSS) such as Galileo and GPS is employing more satellites to provide a higher degree of accuracy for the location service, thus calling for a more efficient signaling scheme among the satellites used in the overall GNSS network. In that the network throughput is improved, the spatial diversity can be one of the efficient signaling schemes; however, it requires multiple antenna that could cause a significant increase in the complexity of the GNSS. Thus, a diversity scheme called the cooperative signaling was proposed, where the virtual multiple-input multiple-output (MIMO) signaling is realized with using only a single antenna in the transmit satellite of interest and with modeling the neighboring satellites as relay nodes. The main drawback of the cooperative signaling is that the relay nodes receive the transmitted signal at different time instants, i.e., they operate in an asynchronous way, and thus, the overall performance of the GNSS network could degrade severely. To tackle the problem, several modified cooperative signaling schemes were proposed; however, all of them are difficult to implement due to a signal decoding at the relay nodes. Although the implementation at the relay nodes could be simpler to some degree by employing the time-reversal and conjugation operations instead of the signal decoding, it would be more efficient if we could implement the operations of the relay nodes at the source node having more resources than the relay nodes. So, in this paper, we propose a novel cooperative signaling scheme, where the data signals are combined in a unique way at the source node, thus obviating the need of the complex operations such as signal decoding, time-reversal and conjugation at the relay nodes. The numerical results confirm that the proposed scheme provides the same performance in the cooperative diversity and the bit error rate (BER) as the conventional scheme, while reducing the complexity at the relay nodes significantly. Acknowledgment: This work was supported by the National GNSS Research Center program of Defense Acquisition Program Administration and Agency for Defense Development.

Keywords: global navigation satellite network, cooperative signaling, data combining, nodes

Procedia PDF Downloads 280
5450 The Iraqi Fibre-to-the-Home Networks, Problems, Challenges, and Solutions along with Less Expense

Authors: Hasanein Hasan, Mohammed Al-Taie, Basil Shanshool, Khalaf Abd-Ali

Abstract:

This approach aims to deal with establishing and operating Iraqi Fibre-To-The-Home (FTTH) projects. The problems they suffer from are organized sabotage, vandalism, accidental damage and poor planning. It provides practical solutions that deal with the aforementioned problems. These solutions consist of both technical and financial clarifications that ensure the achievement of the FTTH network’s stability for the purpose of equipping citizens, private sector companies, and governmental institutions with services, data transmission, the Internet, and other services. They aim to solve problems and obstacles accompanying the operation and maintenance of FTTH projects implemented by the Informatics and Telecommunications Public Company (ITPC)/ Iraqi Ministry of Communications (MoC). This approach takes the FTTH network of AlMaalif-AlMuaslat districts/ Baghdad-Iraq as a case study.

Keywords: CCTV, FTTH, ITPC, MoC, NVR, PTZ

Procedia PDF Downloads 82
5449 Investigation of Different Machine Learning Algorithms in Large-Scale Land Cover Mapping within the Google Earth Engine

Authors: Amin Naboureh, Ainong Li, Jinhu Bian, Guangbin Lei, Hamid Ebrahimy

Abstract:

Large-scale land cover mapping has become a new challenge in land change and remote sensing field because of involving a big volume of data. Moreover, selecting the right classification method, especially when there are different types of landscapes in the study area is quite difficult. This paper is an attempt to compare the performance of different machine learning (ML) algorithms for generating a land cover map of the China-Central Asia–West Asia Corridor that is considered as one of the main parts of the Belt and Road Initiative project (BRI). The cloud-based Google Earth Engine (GEE) platform was used for generating a land cover map for the study area from Landsat-8 images (2017) by applying three frequently used ML algorithms including random forest (RF), support vector machine (SVM), and artificial neural network (ANN). The selected ML algorithms (RF, SVM, and ANN) were trained and tested using reference data obtained from MODIS yearly land cover product and very high-resolution satellite images. The finding of the study illustrated that among three frequently used ML algorithms, RF with 91% overall accuracy had the best result in producing a land cover map for the China-Central Asia–West Asia Corridor whereas ANN showed the worst result with 85% overall accuracy. The great performance of the GEE in applying different ML algorithms and handling huge volume of remotely sensed data in the present study showed that it could also help the researchers to generate reliable long-term land cover change maps. The finding of this research has great importance for decision-makers and BRI’s authorities in strategic land use planning.

Keywords: land cover, google earth engine, machine learning, remote sensing

Procedia PDF Downloads 113
5448 Semantic Network Analysis of the Saudi Women Driving Decree

Authors: Dania Aljouhi

Abstract:

September 26th, 2017, is a historic date for all women in Saudi Arabia. On that day, Saudi Arabia announced the decree on allowing Saudi women to drive. With the advent of vision 2030 and its goal to empower women and increase their participation in Saudi society, we see how Saudis’ Twitter users deliberate the 2017 decree from different social, cultural, religious, economic and political factors. This topic bridges social media 'Twitter,' gender and social-cultural studies to offer insights into how Saudis’ tweets reflect a broader discourse on Saudi women in the age of social media. The present study aims to explore the meanings and themes that emerge by Saudis’ Twitter users in response to the 2017 royal decree on women driving. The sample used in the current study involves (n= 1000) tweets that were collected from Sep 2017 to March 2019 to account for the Saudis’ tweets before and after implementing the decree. The paper uses semantic and thematic network analysis methods to examine the Saudis’ Twitter discourse on the women driving issue. The paper argues that Twitter as a platform has mediated the discourse of women driving among the Saudi community and facilitated social changes. Finally, framing theory (Goffman, 1974) and Networked framing (Meraz & Papacharissi 2013) are both used to explain the tweets on the decree of allowing Saudi women to drive based on # Saudi women-driving-cars.

Keywords: Saudi Arabia, women, Twitter, semantic network analysis, framing

Procedia PDF Downloads 155
5447 Development of a Novel Clinical Screening Tool, Using the BSGE Pain Questionnaire, Clinical Examination and Ultrasound to Predict the Severity of Endometriosis Prior to Laparoscopic Surgery

Authors: Marlin Mubarak

Abstract:

Background: Endometriosis is a complex disabling disease affecting young females in the reproductive period mainly. The aim of this project is to generate a diagnostic model to predict severity and stage of endometriosis prior to Laparoscopic surgery. This will help to improve the pre-operative diagnostic accuracy of stage 3 & 4 endometriosis and as a result, refer relevant women to a specialist centre for complex Laparoscopic surgery. The model is based on the British Society of Gynaecological Endoscopy (BSGE) pain questionnaire, clinical examination and ultrasound scan. Design: This is a prospective, observational, study, in which women completed the BSGE pain questionnaire, a BSGE requirement. Also, as part of the routine preoperative assessment patient had a routine ultrasound scan and when recto-vaginal and deep infiltrating endometriosis was suspected an MRI was performed. Setting: Luton & Dunstable University Hospital. Patients: Symptomatic women (n = 56) scheduled for laparoscopy due to pelvic pain. The age ranged between 17 – 52 years of age (mean 33.8 years, SD 8.7 years). Interventions: None outside the recognised and established endometriosis centre protocol set up by BSGE. Main Outcome Measure(s): Sensitivity and specificity of endometriosis diagnosis predicted by symptoms based on BSGE pain questionnaire, clinical examinations and imaging. Findings: The prevalence of diagnosed endometriosis was calculated to be 76.8% and the prevalence of advanced stage was 55.4%. Deep infiltrating endometriosis in various locations was diagnosed in 32/56 women (57.1%) and some had DIE involving several locations. Logistic regression analysis was performed on 36 clinical variables to create a simple clinical prediction model. After creating the scoring system using variables with P < 0.05, the model was applied to the whole dataset. The sensitivity was 83.87% and specificity 96%. The positive likelihood ratio was 20.97 and the negative likelihood ratio was 0.17, indicating that the model has a good predictive value and could be useful in predicting advanced stage endometriosis. Conclusions: This is a hypothesis-generating project with one operator, but future proposed research would provide validation of the model and establish its usefulness in the general setting. Predictive tools based on such model could help organise the appropriate investigation in clinical practice, reduce risks associated with surgery and improve outcome. It could be of value for future research to standardise the assessment of women presenting with pelvic pain. The model needs further testing in a general setting to assess if the initial results are reproducible.

Keywords: deep endometriosis, endometriosis, minimally invasive, MRI, ultrasound.

Procedia PDF Downloads 353
5446 Exploration of Slow-Traffic System Strategies for New Urban Areas Under the Integration of Industry and City - Taking Qianfeng District of Guang’an City as an Example

Authors: Qikai Guan

Abstract:

With the deepening of China's urbanization process, the development of urban industry has entered a new period, due to the gradual compounding and diversification of urban industrial functions, urban planning has shifted from the previous single industrial space arrangement and functional design to focusing on the upgrading of the urban structure, and on the diversified needs of people. As an important part of urban activity space, ‘slow moving space’ is of great significance in alleviating urban traffic congestion, optimizing residents' travel experience and improving urban ecological space. Therefore, this paper takes the slow-moving transportation system under the perspective of industry-city integration as the starting point, through sorting out the development needs of the city in the process of industry-city integration, analyzing the characteristics of the site base, sorting out a series of compatibility between the layout of the new industrial zone and the urban slow-moving system, and integrating the design concepts. At the same time, through the analysis and summarization of domestic and international experience, the construction ideas are proposed. Finally, the following aspects of planning strategy optimization are proposed: industrial layout, urban vitality, ecological pattern, regional characteristics and landscape image. In terms of specific design, on the one hand, it builds a regional slow-moving network, puts forward a diversified design strategy for the industry-oriented and multi-functional composite central area, realizes the coexistence of pedestrian-oriented and multiple transportation modes, basically covers the public facilities, and enhances the vitality of the city. On the other hand, it improves the landscape ecosystem, creates a healthy, diversified and livable superline landscape system, helps the construction of the ‘green core’ of the central city, and improves the travel experience of the residents.

Keywords: industry-city integration, slow-moving system, public space, functional integration

Procedia PDF Downloads 9
5445 Electric Vehicle Fleet Operators in the Energy Market - Feasibility and Effects on the Electricity Grid

Authors: Benjamin Blat Belmonte, Stephan Rinderknecht

Abstract:

The transition to electric vehicles (EVs) stands at the forefront of innovative strategies designed to address environmental concerns and reduce fossil fuel dependency. As the number of EVs on the roads increases, so too does the potential for their integration into energy markets. This research dives deep into the transformative possibilities of using electric vehicle fleets, specifically electric bus fleets, not just as consumers but as active participants in the energy market. This paper investigates the feasibility and grid effects of electric vehicle fleet operators in the energy market. Our objective centers around a comprehensive exploration of the sector coupling domain, with an emphasis on the economic potential in both electricity and balancing markets. Methodologically, our approach combines data mining techniques with thorough pre-processing, pulling from a rich repository of electricity and balancing market data. Our findings are grounded in the actual operational realities of the bus fleet operator in Darmstadt, Germany. We employ a Mixed Integer Linear Programming (MILP) approach, with the bulk of the computations being processed on the High-Performance Computing (HPC) platform ‘Lichtenbergcluster’. Our findings underscore the compelling economic potential of EV fleets in the energy market. With electric buses becoming more prevalent, the considerable size of these fleets, paired with their substantial battery capacity, opens up new horizons for energy market participation. Notably, our research reveals that economic viability is not the sole advantage. Participating actively in the energy market also translates into pronounced positive effects on grid stabilization. Essentially, EV fleet operators can serve a dual purpose: facilitating transport while simultaneously playing an instrumental role in enhancing grid reliability and resilience. This research highlights the symbiotic relationship between the growth of EV fleets and the stabilization of the energy grid. Such systems could lead to both commercial and ecological advantages, reinforcing the value of electric bus fleets in the broader landscape of sustainable energy solutions. In conclusion, the electrification of transport offers more than just a means to reduce local greenhouse gas emissions. By positioning electric vehicle fleet operators as active participants in the energy market, there lies a powerful opportunity to drive forward the energy transition. This study serves as a testament to the synergistic potential of EV fleets in bolstering both economic viability and grid stabilization, signaling a promising trajectory for future sector coupling endeavors.

Keywords: electric vehicle fleet, sector coupling, optimization, electricity market, balancing market

Procedia PDF Downloads 74
5444 Navigating Government Finance Statistics: Effortless Retrieval and Comparative Analysis through Data Science and Machine Learning

Authors: Kwaku Damoah

Abstract:

This paper presents a methodology and software application (App) designed to empower users in accessing, retrieving, and comparatively exploring data within the hierarchical network framework of the Government Finance Statistics (GFS) system. It explores the ease of navigating the GFS system and identifies the gaps filled by the new methodology and App. The GFS, embodies a complex Hierarchical Network Classification (HNC) structure, encapsulating institutional units, revenues, expenses, assets, liabilities, and economic activities. Navigating this structure demands specialized knowledge, experience, and skill, posing a significant challenge for effective analytics and fiscal policy decision-making. Many professionals encounter difficulties deciphering these classifications, hindering confident utilization of the system. This accessibility barrier obstructs a vast number of professionals, students, policymakers, and the public from leveraging the abundant data and information within the GFS. Leveraging R programming language, Data Science Analytics and Machine Learning, an efficient methodology enabling users to access, navigate, and conduct exploratory comparisons was developed. The machine learning Fiscal Analytics App (FLOWZZ) democratizes access to advanced analytics through its user-friendly interface, breaking down expertise barriers.

Keywords: data science, data wrangling, drilldown analytics, government finance statistics, hierarchical network classification, machine learning, web application.

Procedia PDF Downloads 70
5443 SISSLE in Consensus-Based Ripple: Some Improvements in Speed, Security, Last Mile Connectivity and Ease of Use

Authors: Mayank Mundhra, Chester Rebeiro

Abstract:

Cryptocurrencies are rapidly finding wide application in areas such as Real Time Gross Settlements and Payments Systems. Ripple is a cryptocurrency that has gained prominence with banks and payment providers. It solves the Byzantine General’s Problem with its Ripple Protocol Consensus Algorithm (RPCA), where each server maintains a list of servers, called Unique Node List (UNL) that represents the network for the server, and will not collectively defraud it. The server believes that the network has come to a consensus when members of the UNL come to a consensus on a transaction. In this paper we improve Ripple to achieve better speed, security, last mile connectivity and ease of use. We implement guidelines and automated systems for building and maintaining UNLs for resilience, robustness, improved security, and efficient information propagation. We enhance the system so as to ensure that each server receives information from across the whole network rather than just from the UNL members. We also introduce the paradigm of UNL overlap as a function of information propagation and the trust a server assigns to its own UNL. Our design not only reduces vulnerabilities such as eclipse attacks, but also makes it easier to identify malicious behaviour and entities attempting to fraudulently Double Spend or stall the system. We provide experimental evidence of the benefits of our approach over the current Ripple scheme. We observe ≥ 4.97x and 98.22x in speedup and success rate for information propagation respectively, and ≥ 3.16x and 51.70x in speedup and success rate in consensus.

Keywords: Ripple, Kelips, unique node list, consensus, information propagation

Procedia PDF Downloads 145
5442 Nonlinear Finite Element Modeling of Deep Beam Resting on Linear and Nonlinear Random Soil

Authors: M. Seguini, D. Nedjar

Abstract:

An accuracy nonlinear analysis of a deep beam resting on elastic perfectly plastic soil is carried out in this study. In fact, a nonlinear finite element modeling for large deflection and moderate rotation of Euler-Bernoulli beam resting on linear and nonlinear random soil is investigated. The geometric nonlinear analysis of the beam is based on the theory of von Kàrmàn, where the Newton-Raphson incremental iteration method is implemented in a Matlab code to solve the nonlinear equation of the soil-beam interaction system. However, two analyses (deterministic and probabilistic) are proposed to verify the accuracy and the efficiency of the proposed model where the theory of the local average based on the Monte Carlo approach is used to analyze the effect of the spatial variability of the soil properties on the nonlinear beam response. The effect of six main parameters are investigated: the external load, the length of a beam, the coefficient of subgrade reaction of the soil, the Young’s modulus of the beam, the coefficient of variation and the correlation length of the soil’s coefficient of subgrade reaction. A comparison between the beam resting on linear and nonlinear soil models is presented for different beam’s length and external load. Numerical results have been obtained for the combination of the geometric nonlinearity of beam and material nonlinearity of random soil. This comparison highlighted the need of including the material nonlinearity and spatial variability of the soil in the geometric nonlinear analysis, when the beam undergoes large deflections.

Keywords: finite element method, geometric nonlinearity, material nonlinearity, soil-structure interaction, spatial variability

Procedia PDF Downloads 414
5441 Design of a Standard Weather Data Acquisition Device for the Federal University of Technology, Akure Nigeria

Authors: Isaac Kayode Ogunlade

Abstract:

Data acquisition (DAQ) is the process by which physical phenomena from the real world are transformed into an electrical signal(s) that are measured and converted into a digital format for processing, analysis, and storage by a computer. The DAQ is designed using PIC18F4550 microcontroller, communicating with Personal Computer (PC) through USB (Universal Serial Bus). The research deployed initial knowledge of data acquisition system and embedded system to develop a weather data acquisition device using LM35 sensor to measure weather parameters and the use of Artificial Intelligence(Artificial Neural Network - ANN)and statistical approach(Autoregressive Integrated Moving Average – ARIMA) to predict precipitation (rainfall). The device is placed by a standard device in the Department of Meteorology, Federal University of Technology, Akure (FUTA) to know the performance evaluation of the device. Both devices (standard and designed) were subjected to 180 days with the same atmospheric condition for data mining (temperature, relative humidity, and pressure). The acquired data is trained in MATLAB R2012b environment using ANN, and ARIMAto predict precipitation (rainfall). Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Correction Square (R2), and Mean Percentage Error (MPE) was deplored as standardize evaluation to know the performance of the models in the prediction of precipitation. The results from the working of the developed device show that the device has an efficiency of 96% and is also compatible with Personal Computer (PC) and laptops. The simulation result for acquired data shows that ANN models precipitation (rainfall) prediction for two months (May and June 2017) revealed a disparity error of 1.59%; while ARIMA is 2.63%, respectively. The device will be useful in research, practical laboratories, and industrial environments.

Keywords: data acquisition system, design device, weather development, predict precipitation and (FUTA) standard device

Procedia PDF Downloads 92
5440 GIS-Based Identification of Overloaded Distribution Transformers and Calculation of Technical Electric Power Losses

Authors: Awais Ahmed, Javed Iqbal

Abstract:

Pakistan has been for many years facing extreme challenges in energy deficit due to the shortage of power generation compared to increasing demand. A part of this energy deficit is also contributed by the power lost in transmission and distribution network. Unfortunately, distribution companies are not equipped with modern technologies and methods to identify and eliminate these losses. According to estimate, total energy lost in early 2000 was between 20 to 26 percent. To address this issue the present research study was designed with the objectives of developing a standalone GIS application for distribution companies having the capability of loss calculation as well as identification of overloaded transformers. For this purpose, Hilal Road feeder in Faisalabad Electric Supply Company (FESCO) was selected as study area. An extensive GPS survey was conducted to identify each consumer, linking it to the secondary pole of the transformer, geo-referencing equipment and documenting conductor sizes. To identify overloaded transformer, accumulative kWH reading of consumer on transformer was compared with threshold kWH. Technical losses of 11kV and 220V lines were calculated using the data from substation and resistance of the network calculated from the geo-database. To automate the process a standalone GIS application was developed using ArcObjects with engineering analysis capabilities. The application uses GIS database developed for 11kV and 220V lines to display and query spatial data and present results in the form of graphs. The result shows that about 14% of the technical loss on both high tension (HT) and low tension (LT) network while about 4 out of 15 general duty transformers were found overloaded. The study shows that GIS can be a very effective tool for distribution companies in management and planning of their distribution network.

Keywords: geographical information system, GIS, power distribution, distribution transformers, technical losses, GPS, SDSS, spatial decision support system

Procedia PDF Downloads 376
5439 Implementation of the Interlock Protocol to Enhance Security in Unmanned Aerial Vehicles

Authors: Vikram Prabhu, Mohammad Shikh Bahaei

Abstract:

This paper depicts the implementation of a new infallible technique to protect an Unmanned Aerial Vehicle from cyber-attacks. An Unmanned Aerial Vehicle (UAV) could be vulnerable to cyber-attacks because of jammers or eavesdroppers over the network which pose as a threat to the security of the UAV. In the field of network security, there are quite a few protocols which can be used to establish a secure connection between UAVs and their Operators. In this paper, we discuss how the Interlock Protocol could be implemented to foil the Man-in-the-Middle Attack. In this case, Wireshark has been used as the sniffer (man-in-the-middle). This paper also shows a comparison between the Interlock Protocol and the TCP Protocols using cryptcat and netcat and at the same time highlights why the Interlock Protocol is the most efficient security protocol to prevent eavesdropping over the communication channel.

Keywords: interlock protocol, Diffie-Hellman algorithm, unmanned aerial vehicles, control station, man-in-the-middle attack, Wireshark

Procedia PDF Downloads 301
5438 Feature Based Unsupervised Intrusion Detection

Authors: Deeman Yousif Mahmood, Mohammed Abdullah Hussein

Abstract:

The goal of a network-based intrusion detection system is to classify activities of network traffics into two major categories: normal and attack (intrusive) activities. Nowadays, data mining and machine learning plays an important role in many sciences; including intrusion detection system (IDS) using both supervised and unsupervised techniques. However, one of the essential steps of data mining is feature selection that helps in improving the efficiency, performance and prediction rate of proposed approach. This paper applies unsupervised K-means clustering algorithm with information gain (IG) for feature selection and reduction to build a network intrusion detection system. For our experimental analysis, we have used the new NSL-KDD dataset, which is a modified dataset for KDDCup 1999 intrusion detection benchmark dataset. With a split of 60.0% for the training set and the remainder for the testing set, a 2 class classifications have been implemented (Normal, Attack). Weka framework which is a java based open source software consists of a collection of machine learning algorithms for data mining tasks has been used in the testing process. The experimental results show that the proposed approach is very accurate with low false positive rate and high true positive rate and it takes less learning time in comparison with using the full features of the dataset with the same algorithm.

Keywords: information gain (IG), intrusion detection system (IDS), k-means clustering, Weka

Procedia PDF Downloads 296
5437 Multi Agent System Architecture Oriented Prometheus Methodology Design for Reverse Logistics

Authors: F. Lhafiane, A. Elbyed, M. Bouchoum

Abstract:

The design of Reverse logistics Network has attracted growing attention with the stringent pressures from both environmental awareness and business sustainability. Reverse logistical activities include return, remanufacture, disassemble and dispose of products can be quite complex to manage. In addition, demand can be difficult to predict, and decision making is one of the challenges tasks. This complexity has amplified the need to develop an integrated architecture for product return as an enterprise system. The main purpose of this paper is to design Multi agent system (MAS) architecture using the Prometheus methodology to efficiently manage reverse logistics processes. The proposed MAS architecture includes five types of agents: Gate keeping Agent, Collection Agent, Sorting Agent, Processing Agent and Disposal Agent which act respectively during the five steps of reverse logistics Network.

Keywords: reverse logistics, multi agent system, prometheus methodology

Procedia PDF Downloads 471
5436 Response of Diaphragmatic Excursion to Inspiratory Muscle Trainer Post Thoracotomy

Authors: H. M. Haytham, E. A. Azza, E.S. Mohamed, E. G. Nesreen

Abstract:

Thoracotomy is a great surgery that has serious pulmonary complications, so purpose of this study was to determine the response of diaphragmatic excursion to inspiratory muscle trainer post thoracotomy. Thirty patients of both sexes (16 men and 14 women) with age ranged from 20 to 40 years old had done thoracotomy participated in this study. The practical work was done in cardiothoracic department, Kasr-El-Aini hospital at faculty of medicine for individuals 3 days Post operatively. Patients were assigned into two groups: group A (study group) included 15 patients (8 men and 7 women) who received inspiratory muscle training by using inspiratory muscle trainer for 20 minutes and routine chest physiotherapy (deep breathing, cough and early ambulation) twice daily, 3 days per week for one month. Group B (control group) included 15 patients (8 men and 7 women) who received the routine chest physiotherapy only (deep breathing, cough and early ambulation) twice daily, 3 days per week for one month. Ultrasonography was used to evaluate the changes in diaphragmatic excursion before and after training program. Statistical analysis revealed a significant increase in diaphragmatic excursion in the study group (59.52%) more than control group (18.66%) after using inspiratory muscle trainer post operatively in patients post thoracotomy. It was concluded that the inspiratory muscle training device increases diaphragmatic excursion in patients post thoracotomy through improving inspiratory muscle strength and improving mechanics of breathing and using of inspiratory muscle trainer as a method of physical therapy rehabilitation to reduce post-operative pulmonary complications post thoracotomy.

Keywords: diaphragmatic excursion, inspiratory muscle trainer, ultrasonography, thoracotomy

Procedia PDF Downloads 319
5435 Case Analysis of Bamboo Based Social Enterprises in India-Improving Profitability and Sustainability

Authors: Priyal Motwani

Abstract:

The current market for bamboo products in India is about Rs. 21000 crores and is highly unorganised and fragmented. In this study, we have closely analysed the structure and functions of a major bamboo craft based organisation in Kerela, India and elaborated about its value chain, product mix, pricing strategy and supply chain, collaborations and competitive landscape. We have identified six major bottlenecks that are prevalent in such organisations, based on the Indian context, in relation to their product mix, asset management, and supply chain- corresponding waste management and retail network. The study has identified that the target customers for the bamboo based products and alternative revenue streams (eco-tourism, microenterprises, training), by carrying out secondary and primary research (5000 sample space), that can boost the existing revenue by 150%. We have then recommended an optimum product mix-covering premium, medium and low valued processing, for medium sized bamboo based organisations, in accordance with their capacity to maximize their revenue potential. After studying such organisations and their counter parts, the study has established an optimum retail network, considering B2B, B2C physical and online retail, to maximize their sales to their target groups. On the basis of the results obtained from the analysis of the future and present trends, our study gives recommendations to improve the revenue potential of bamboo based organisation in India and promote sustainability.

Keywords: bamboo, bottlenecks, optimization, product mix, retail network, value chain

Procedia PDF Downloads 217
5434 Defining the Term of Strategy within Military Point of View

Authors: Ismail Menderes Sema, Murat Sözen, M. K. Barış

Abstract:

The strategy is about winning or preventing your enemy from winning. The origin of the term comes from the military. After utilizing the strategy for limited military purposes in early ages, soldiers and statesmen used the term together to achieve the goals of states. In ancient times, those people who made strategy and implemented it was the same. With the industrial revolution, the strategy changed like everything and the term “grand strategy” came forward. Today, from business to economy, management to philosophy there is a broad using of the term strategy. Economic strategy, business strategy, trade strategy, irrigation strategy, and even recruitment strategy are used by professionals. The purpose of this study is to analyze the evolution of the strategy and clarify actually what is about.

Keywords: strategy, military, art, grand strategy, strategist

Procedia PDF Downloads 454
5433 An Application of Fuzzy Analytical Network Process to Select a New Production Base: An AEC Perspective

Authors: Walailak Atthirawong

Abstract:

By the end of 2015, the Association of Southeast Asian Nations (ASEAN) countries proclaim to transform into the next stage of an economic era by having a single market and production base called ASEAN Economic Community (AEC). One objective of the AEC is to establish ASEAN as a single market and one production base making ASEAN highly competitive economic region and competitive with new mechanisms. As a result, it will open more opportunities to enterprises in both trade and investment, which offering a competitive market of US$ 2.6 trillion and over 622 million people. Location decision plays a key role in achieving corporate competitiveness. Hence, it may be necessary for enterprises to redesign their supply chains via enlarging a new production base which has low labor cost, high labor skill and numerous of labor available. This strategy will help companies especially for apparel industry in order to maintain a competitive position in the global market. Therefore, in this paper a generic model for location selection decision for Thai apparel industry using Fuzzy Analytical Network Process (FANP) is proposed. Myanmar, Vietnam and Cambodia are referred for alternative location decision from interviewing expert persons in this industry who have planned to enlarge their businesses in AEC countries. The contribution of this paper lies in proposing an approach model that is more practical and trustworthy to top management in making a decision on location selection.

Keywords: apparel industry, ASEAN Economic Community (AEC), Fuzzy Analytical Network Process (FANP), location decision

Procedia PDF Downloads 236
5432 Comparative Analysis of Hybrid and Non-hybrid Cooled 185 KW High-Speed Permanent Magnet Synchronous Machine for Air Suspension Blower

Authors: Usman Abubakar, Xiaoyuan Wang, Sayyed Haleem Shah, Sadiq Ur Rahman, Rabiu Saleh Zakariyya

Abstract:

High-speed Permanent magnet synchronous machine (HSPMSM) uses in different industrial applications like blowers, compressors as a result of its superb performance. Nevertheless, the over-temperature rise of both winding and PM is one of their substantial problem for a high-power HSPMSM, which affects its lifespan and performance. According to the literature, HSPMSM with a Hybrid cooling configuration has a much lower temperature rise than non-hybrid cooling. This paper presents the design 185kW, 26K rpm with two different cooling configurations, i.e., hybrid cooling configuration (forced air and housing spiral water jacket) and non-hybrid (forced air cooling assisted with winding’s potting material and sleeve’s material) to enhance the heat dissipation of winding and PM respectively. Firstly, the machine’s electromagnetic design is conducted by the finite element method to accurately account for machine losses. Then machine’s cooling configurations are introduced, and their effectiveness is validated by lumped parameter thermal network (LPTN). Investigation shows that using potting, sleeve materials to assist non-hybrid cooling configuration makes the machine’s winding and PM temperature closer to hybrid cooling configuration. Therefore, the machine with non-hybrid cooling is prototyped and tested due to its simplicity, lower energy consumption and can still maintain the lifespan and performance of the HSPMSM.

Keywords: airflow network, axial ventilation, high-speed PMSM, thermal network

Procedia PDF Downloads 231
5431 Reconfigurable Ubiquitous Computing Infrastructure for Load Balancing

Authors: Khaled Sellami, Lynda Sellami, Pierre F. Tiako

Abstract:

Ubiquitous computing helps make data and services available to users anytime and anywhere. This makes the cooperation of devices a crucial need. In return, such cooperation causes an overload of the devices and/or networks, resulting in network malfunction and suspension of its activities. Our goal in this paper is to propose an approach of devices reconfiguration in order to help to reduce the energy consumption in ubiquitous environments. The idea is that when high-energy consumption is detected, we proceed to a change in component distribution on the devices to reduce and/or balance the energy consumption. We also investigate the possibility to detect high-energy consumption of devices/network based on devices abilities. As a result, our idea realizes a reconfiguration of devices aimed at reducing the consumption of energy and/or load balancing in ubiquitous environments.

Keywords: ubiquitous computing, load balancing, device energy consumption, reconfiguration

Procedia PDF Downloads 275
5430 Fault Tolerant (n,k)-star Power Network Topology for Multi-Agent Communication in Automated Power Distribution Systems

Authors: Ning Gong, Michael Korostelev, Qiangguo Ren, Li Bai, Saroj K. Biswas, Frank Ferrese

Abstract:

This paper investigates the joint effect of the interconnected (n,k)-star network topology and Multi-Agent automated control on restoration and reconfiguration of power systems. With the increasing trend in development in Multi-Agent control technologies applied to power system reconfiguration in presence of faulty components or nodes. Fault tolerance is becoming an important challenge in the design processes of the distributed power system topology. Since the reconfiguration of a power system is performed by agent communication, the (n,k)-star interconnected network topology is studied and modeled in this paper to optimize the process of power reconfiguration. In this paper, we discuss the recently proposed (n,k)-star topology and examine its properties and advantages as compared to the traditional multi-bus power topologies. We design and simulate the topology model for distributed power system test cases. A related lemma based on the fault tolerance and conditional diagnosability properties is presented and proved both theoretically and practically. The conclusion is reached that (n,k)-star topology model has measurable advantages compared to standard bus power systems while exhibiting fault tolerance properties in power restoration, as well as showing efficiency when applied to power system route discovery.

Keywords: (n, k)-star topology, fault tolerance, conditional diagnosability, multi-agent system, automated power system

Procedia PDF Downloads 512
5429 Fault Tolerant (n, k)-Star Power Network Topology for Multi-Agent Communication in Automated Power Distribution Systems

Authors: Ning Gong, Michael Korostelev, Qiangguo Ren, Li Bai, Saroj Biswas, Frank Ferrese

Abstract:

This paper investigates the joint effect of the interconnected (n,k)-star network topology and Multi-Agent automated control on restoration and reconfiguration of power systems. With the increasing trend in development in Multi-Agent control technologies applied to power system reconfiguration in presence of faulty components or nodes. Fault tolerance is becoming an important challenge in the design processes of the distributed power system topology. Since the reconfiguration of a power system is performed by agent communication, the (n,k)-star interconnected network topology is studied and modeled in this paper to optimize the process of power reconfiguration. In this paper, we discuss the recently proposed (n,k)-star topology and examine its properties and advantages as compared to the traditional multi-bus power topologies. We design and simulate the topology model for distributed power system test cases. A related lemma based on the fault tolerance and conditional diagnosability properties is presented and proved both theoretically and practically. The conclusion is reached that (n,k)-star topology model has measurable advantages compared to standard bus power systems while exhibiting fault tolerance properties in power restoration, as well as showing efficiency when applied to power system route discovery.

Keywords: (n, k)-star topology, fault tolerance, conditional diagnosability, multi-agent system, automated power system

Procedia PDF Downloads 465