Search results for: NDT methods
11982 Microchip-Integrated Computational Models for Studying Gait and Motor Control Deficits in Autism
Authors: Noah Odion, Honest Jimu, Blessing Atinuke Afuape
Abstract:
Introduction: Motor control and gait abnormalities are commonly observed in individuals with autism spectrum disorder (ASD), affecting their mobility and coordination. Understanding the underlying neurological and biomechanical factors is essential for designing effective interventions. This study focuses on developing microchip-integrated wearable devices to capture real-time movement data from individuals with autism. By applying computational models to the collected data, we aim to analyze motor control patterns and gait abnormalities, bridging a crucial knowledge gap in autism-related motor dysfunction. Methods: We designed microchip-enabled wearable devices capable of capturing precise kinematic data, including joint angles, acceleration, and velocity during movement. A cross-sectional study was conducted on individuals with ASD and a control group to collect comparative data. Computational modelling was applied using machine learning algorithms to analyse motor control patterns, focusing on gait variability, balance, and coordination. Finite element models were also used to simulate muscle and joint dynamics. The study employed descriptive and analytical methods to interpret the motor data. Results: The wearable devices effectively captured detailed movement data, revealing significant gait variability in the ASD group. For example, gait cycle time was 25% longer, and stride length was reduced by 15% compared to the control group. Motor control analysis showed a 30% reduction in balance stability in individuals with autism. Computational models successfully predicted movement irregularities and helped identify motor control deficits, particularly in the lower limbs. Conclusions: The integration of microchip-based wearable devices with computational models offers a powerful tool for diagnosing and treating motor control deficits in autism. These results have significant implications for patient care, providing objective data to guide personalized therapeutic interventions. The findings also contribute to the broader field of neuroscience by improving our understanding of the motor dysfunctions associated with ASD and other neurodevelopmental disorders.Keywords: motor control, gait abnormalities, autism, wearable devices, microchips, computational modeling, kinematic analysis, neurodevelopmental disorders
Procedia PDF Downloads 2411981 Analyzing Natural and Social Resources for the Planning of Complex Development Based on Ecotourism: A Case Study from Hungary and Slovakia
Authors: Barnabás Körmöndi
Abstract:
The recent crises have affected societies worldwide, resulting in the irresponsible exploitation of natural resources and the unattainability of sustainability. Regions that are economically underdeveloped, such as the Bodrogköz in Eastern Hungary and Slovakia, experience these issues more severely. The aim of this study is to analyze the natural and social resources of the Bodrogköz area for the planning of complex development based on ecotourism. The objective is to develop ecotourism opportunities in this least developed area of the borderland of Hungary and Slovakia. The study utilizes desk research, deep interviews, focus group meetings, and remote sensing methods. Desk research is aimed at providing a comprehensive understanding of the area, while deep interviews and focus group meetings were conducted to understand the stakeholders' perspectives on the potential for ecotourism. Remote sensing methods were used to better understand changes in the natural environment. The study identified the potential for ecotourism development in the Bodrogköz area due to its near-natural habitats along its bordering rivers and rich cultural heritage. The analysis revealed that ecotourism could promote the region's sustainable development, which is essential for its economic growth. Additionally, the study identified the possible threats to the natural environment during ecotourism development and suggested strategies to mitigate these threats. This study highlights the significance of ecotourism in promoting sustainable development in underdeveloped areas such as the Bodrogköz. It provides a basis for future research on ecotourism development and sustainable planning in similar regions. The analysis is based on the data collected through desk research, deep interviews, focus group meetings, and remote sensing. The assessment was conducted through content analysis, which allowed for the identification of themes and patterns in the data. The study addressed the question of how to develop ecotourism in the least developed area of the borderland of Hungary and Slovakia and promote sustainable development in the region. In conclusion, the study highlights the potential for ecotourism development in Bodrogköz and identifies the natural and social resources that contribute to its development. The study emphasizes the need for sustainable development to promote economic growth and mitigate any environmental threats. The findings can inform the development of future strategic plans for ecotourism, promoting sustainable development in underdeveloped regions.Keywords: ecotourism, natural resources, remote sensing, social development
Procedia PDF Downloads 6411980 Detection of Mustard Traces in Food by an Official Food Safety Laboratory
Authors: Clara Tramuta, Lucia Decastelli, Elisa Barcucci, Sandra Fragassi, Samantha Lupi, Enrico Arletti, Melissa Bizzarri, Daniela Manila Bianchi
Abstract:
Introdution: Food allergies occurs, in the Western World, 2% of adults and up to 8% of children. The protection of allergic consumers is guaranted, in Eurrope, by Regulation (EU) No 1169/2011 of the European Parliament which governs the consumer's right to information and identifies 14 food allergens to be mandatory indicated on the label. Among these, mustard is a popular spice added to enhance the flavour and taste of foods. It is frequently present as an ingredient in spice blends, marinades, salad dressings, sausages, and other products. Hypersensitivity to mustard is a public health problem since the ingestion of even low amounts can trigger severe allergic reactions. In order to protect the allergic consumer, high performance methods are required for the detection of allergenic ingredients. Food safety laboratories rely on validated methods that detect hidden allergens in food to ensure the safety and health of allergic consumers. Here we present the test results for the validation and accreditation of a Real time PCR assay (RT-PCR: SPECIALfinder MC Mustard, Generon), for the detection of mustard traces in food. Materials and Methods. The method was tested on five classes of food matrices: bakery and pastry products (chocolate cookies), meats (ragù), ready-to-eat (mixed salad), dairy products (yogurt), grains, and milling products (rice and barley flour). Blank samples were spiked starting with the mustard samples (Sinapis Alba), lyophilized and stored at -18 °C, at a concentration of 1000 ppm. Serial dilutions were then prepared to a final concentration of 0.5 ppm, using the DNA extracted by ION Force FAST (Generon) from the blank samples. The Real Time PCR reaction was performed by RT-PCR SPECIALfinder MC Mustard (Generon), using CFX96 System (BioRad). Results. Real Time PCR showed a limit of detection (LOD) of 0.5 ppm in grains and milling products, ready-to-eat, meats, bakery, pastry products, and dairy products (range Ct 25-34). To determine the exclusivity parameter of the method, the ragù matrix was contaminated with Prunus dulcis (almonds), peanut (Arachis hypogaea), Glycine max (soy), Apium graveolens (celery), Allium cepa (onion), Pisum sativum (peas), Daucus carota (carrots), and Theobroma cacao (cocoa) and no cross-reactions were observed. Discussion. In terms of sensitivity, the Real Time PCR confirmed, even in complex matrix, a LOD of 0.5 ppm in five classes of food matrices tested; these values are compatible with the current regulatory situation that does not consider, at international level, to establish a quantitative criterion for the allergen considered in this study. The Real Time PCR SPECIALfinder kit for the detection of mustard proved to be easy to use and particularly appreciated for the rapid response times considering that the amplification and detection phase has a duration of less than 50 minutes. Method accuracy was rated satisfactory for sensitivity (100%) and specificity (100%) and was fully validated and accreditated. It was found adequate for the needs of the laboratory as it met the purpose for which it was applied. This study was funded in part within a project of the Italian Ministry of Health (IZS PLV 02/19 RC).Keywords: allergens, food, mustard, real time PCR
Procedia PDF Downloads 16711979 Automatic and High Precise Modeling for System Optimization
Authors: Stephanie Chen, Mitja Echim, Christof Büskens
Abstract:
To describe and propagate the behavior of a system mathematical models are formulated. Parameter identification is used to adapt the coefficients of the underlying laws of science. For complex systems this approach can be incomplete and hence imprecise and moreover too slow to be computed efficiently. Therefore, these models might be not applicable for the numerical optimization of real systems, since these techniques require numerous evaluations of the models. Moreover not all quantities necessary for the identification might be available and hence the system must be adapted manually. Therefore, an approach is described that generates models that overcome the before mentioned limitations by not focusing on physical laws, but on measured (sensor) data of real systems. The approach is more general since it generates models for every system detached from the scientific background. Additionally, this approach can be used in a more general sense, since it is able to automatically identify correlations in the data. The method can be classified as a multivariate data regression analysis. In contrast to many other data regression methods this variant is also able to identify correlations of products of variables and not only of single variables. This enables a far more precise and better representation of causal correlations. The basis and the explanation of this method come from an analytical background: the series expansion. Another advantage of this technique is the possibility of real-time adaptation of the generated models during operation. Herewith system changes due to aging, wear or perturbations from the environment can be taken into account, which is indispensable for realistic scenarios. Since these data driven models can be evaluated very efficiently and with high precision, they can be used in mathematical optimization algorithms that minimize a cost function, e.g. time, energy consumption, operational costs or a mixture of them, subject to additional constraints. The proposed method has successfully been tested in several complex applications and with strong industrial requirements. The generated models were able to simulate the given systems with an error in precision less than one percent. Moreover the automatic identification of the correlations was able to discover so far unknown relationships. To summarize the above mentioned approach is able to efficiently compute high precise and real-time-adaptive data-based models in different fields of industry. Combined with an effective mathematical optimization algorithm like WORHP (We Optimize Really Huge Problems) several complex systems can now be represented by a high precision model to be optimized within the user wishes. The proposed methods will be illustrated with different examples.Keywords: adaptive modeling, automatic identification of correlations, data based modeling, optimization
Procedia PDF Downloads 40911978 Application of Sub-health Diagnosis and Reasoning Method for Avionics
Authors: Weiran An, Junyou Shi
Abstract:
Health management has become one of the design goals in the research and development of new generation avionics systems, and is an important complement and development for the testability and fault diagnosis technology. Currently, the research and application for avionics system health dividing and diagnosis technology is still at the starting stage, lack of related technologies and methods reserve. In this paper, based on the health three-state dividing of avionics products, state lateral transfer coupling modeling and diagnosis reasoning method considering sub-health are researched. With the study of typical case application, the feasibility and correctness of the method and the software are verified.Keywords: sub-health, diagnosis reasoning, three-valued coupled logic, extended dependency model, avionics
Procedia PDF Downloads 33311977 An Iterative Family for Solution of System of Nonlinear Equations
Authors: Sonia Sonia
Abstract:
This paper presents a family of iterative scheme for solving nonlinear systems of equations which have wide application in sciences and engineering. The proposed iterative family is based upon some parameters which generates many different iterative schemes. This family is completely derivative free and uses first of divided difference operator. Moreover some numerical experiments are performed and compared with existing methods. Analysis of convergence shows that the presented family has fourth-order of convergence. The dynamical behaviour of proposed family and local convergence have also been discussed. The numerical performance and convergence region comparison demonstrates that proposed family is efficient.Keywords: convergence, divided difference operator, nonlinear system, Newton's method
Procedia PDF Downloads 23411976 Design and Construction of Temperature and Humidity Control Channel for a Bacteriological Incubator
Authors: Carlos R. Duharte Rodríguez, Ibrain Ceballo Acosta, Carmen B. Busoch Morlán, Angel Regueiro Gómez, Annet Martinez Hernández
Abstract:
This work shows the designing and characterization of a prototype of laboratory incubator as support of research in Microbiology, in particular during studies of bacterial growth in biological samples, with the help of optic methods (Turbidimetry) and electrometric measurements of bioimpedance. It shows the results of simulation and experimentation of the design proposed for the canals of measurement of the variables: temperature and humidity, with a high linearity from the adequate selection of sensors and analogue components of every channel, controlled with help of a microcontroller AT89C51 (ATMEL) with adequate benefits for this type of application.Keywords: microbiology, bacterial growth, incubation station, microorganisms
Procedia PDF Downloads 40011975 Enhancing the Dynamic Performance of Grid-Tied Inverters Using Manta Ray Foraging Algorithm
Authors: H. E. Keshta, A. A. Ali
Abstract:
Three phase grid-tied inverters are widely employed in micro-grids (MGs) as interphase between DC and AC systems. These inverters are usually controlled through standard decoupled d–q vector control strategy based on proportional integral (PI) controllers. Recently, advanced meta-heuristic optimization techniques have been used instead of deterministic methods to obtain optimum PI controller parameters. This paper provides a comparative study between the performance of the global Porcellio Scaber algorithm (GPSA) based PI controller and Manta Ray foraging optimization (MRFO) based PI controller.Keywords: micro-grids, optimization techniques, grid-tied inverter control, PI controller
Procedia PDF Downloads 13211974 A Study of Emotional Intelligence and Adjustment of Senior Secondary School Students in District Karnal, Haryana, India
Authors: Rooma Rani
Abstract:
The education is really important for the improvement of physical and mental well-being of the school students. It is used to express inner potential, acquire knowledge, develop skills, shape habits, attitudes, values, belief, etc. along with providing strengths and resilience to people to changing situations and allowing them to develop all those capacities which will enable individual to control surrounding environment. Education has a significant effect on the behavior of individuals which helps us in the new situations of everyday life. Educating the child is directing the child’s capacities, attitudes interest, urges, and needs into the most desirable channels. We are the part of 21st century and now a day emotional intelligence is considered more important than intelligence in the success of a person. Success depends on several intelligences and on the control of emotions too. Emotional Intelligence, like general intelligence is the product of one’s heredity and its interaction with his environmental forces. There are certain methods evolved in modern researches. Keeping in view the nature and purpose of the study, the descriptive survey method is preferred. This method is one of the important methods in education research because it describes the current position of the phenomenon under study. The term descriptive survey is generally used for the type of research which proposes to condition of practices of the present time. In the present study, a systematically random sampling method was used to select a representative sample. 50 students were selected from 2 schools. Out of 50 students, 25 were boys and 25 were girls. In the study, a) it has been found a significant difference in the level of adjustment between male and female students; b) it has been found a non-significant difference in the level of emotional intelligence between male and female students; c) it has been found a non-significant relationship between adjustment and emotional intelligence among male students; d) it has been found a significant relationship between adjustment and emotional intelligence among male students. The results of the study indicated that amongst the students those who possess high scores on emotional intelligence tests are high in level of adjustment. Measures should be adopted to improve and sustain the emotional intelligence level of students throughout their studies. Adolescent students are prone to many problems like physical, social and psychological. They need a congenial home atmosphere so that they grow into full-fledged citizens of our country. After understanding these, it helps in the development of personality which leads to a better learning situation and better thinking capacities, in turn, enhances adjustment and achievement along with a better perception of self.Keywords: adjustment, education, emotional intelligence, students
Procedia PDF Downloads 13111973 Visual Search Based Indoor Localization in Low Light via RGB-D Camera
Authors: Yali Zheng, Peipei Luo, Shinan Chen, Jiasheng Hao, Hong Cheng
Abstract:
Most of traditional visual indoor navigation algorithms and methods only consider the localization in ordinary daytime, while we focus on the indoor re-localization in low light in the paper. As RGB images are degraded in low light, less discriminative infrared and depth image pairs are taken, as the input, by RGB-D cameras, the most similar candidates, as the output, are searched from databases which is built in the bag-of-word framework. Epipolar constraints can be used to relocalize the query infrared and depth image sequence. We evaluate our method in two datasets captured by Kinect2. The results demonstrate very promising re-localization results for indoor navigation system in low light environments.Keywords: indoor navigation, low light, RGB-D camera, vision based
Procedia PDF Downloads 46111972 A Simplified Model of the Control System with PFM
Authors: Bekmurza H. Aitchanov, Sholpan K. Aitchanova, Olimzhon A. Baimuratov, Aitkul N. Aldibekova
Abstract:
This work considers the automated control system (ACS) of milk quality during its magnetic field processing. For achieving high level of quality control methods were applied transformation of complex nonlinear systems in a linearized system with a less complex structure. Presented ACS is adjustable by seven parameters: mass fraction of fat, mass fraction of dry skim milk residues (DSMR), density, mass fraction of added water, temperature, mass fraction of protein, acidity.Keywords: fluids magnetization, nuclear magnetic resonance, automated control system, dynamic pulse-frequency modulator, PFM, nonlinear systems, structural model
Procedia PDF Downloads 37511971 Lexico-Semantic and Contextual Analysis of the Concept of Joy in Modern English Fiction
Authors: Zarine Avetisyan
Abstract:
Concepts are part and parcel of everyday text and talk. Their ubiquity predetermines the topicality of the given research which aims at the semantic decomposition of concepts in general and the concept of joy in particular, as well as the study of lexico-semantic variants as means of realization of a certain concept in different “semantic settings”, namely in a certain context. To achieve the stated aim, the given research departs from the methods of componential and contextual analysis, studying lexico-semantic variants /LSVs/ of the concept of joy and the semantic signs embedded in those LSVs, such as the semantic sign of intensity, supporting emotions, etc. in the context of Modern English fiction.Keywords: concept, context, lexico-semantic variant, semantic sign
Procedia PDF Downloads 35411970 Using the Family Justice System to Respond to ISIS Returnees: The UK Experience
Authors: Fatima Ahdash
Abstract:
Over the last 6-7 years, the UK has resorted to using the family courts and the family justice system more generally as a way of dealing with children and young people either traveling to or returning from ISIS territories in the Middle East. This is an important innovation in counter-terrorism laws and practices in the UK: never before have the family courts been used for the purpose of preventing and countering terrorism anywhere in the world. This paper will examine this innovation; it will explore how, why, and the implications of the interaction between family law and counter-terrorism, particularly on the human rights of the parents and children involved. It will question whether the use of the family courts provides a more useful, and perhaps human rights compliant, method of tackling terrorism and extremism when compared to other more Draconian legal and administrative methods.Keywords: counter-terrorism, family justice, law, human rights
Procedia PDF Downloads 21211969 Phytochemical Investigation of Berries of the Embelia schimperi Plant
Authors: Tariku Nefo Duke
Abstract:
Embelia is a genus of climbing shrubs in the family Myrsinaceae. Embelia schimperi is as important in traditional medicine as the other species in the genus. The plant has been much known as a local medicine for the treatment of tapeworms. In this project, extraction, phytochemical screening tests, isolation, and characterization of berries of the Embelia schimperi plant have been conducted. The chemical investigations of methanol and ethyl acetate (1:1) ratio extracts of the berries lead to the isolation of three new compounds. The compounds were identified to be alkaloids coded as AD, AN, and AG. Structural elucidations of the isolated compounds were accomplished using spectroscopic methods (IR, UV, ¹H NMR, ¹³C NMR, DEPT and 2D NMR, HPLC, and LC-MS). The alkaloid coded as (AN) has a wide MIC range of 6.31-25.46 mg/mL against all tested bacteria strains.Keywords: Embelia schimper, HPLC, alkaloids, 2D NMR, MIC
Procedia PDF Downloads 9811968 Predicting Costs in Construction Projects with Machine Learning: A Detailed Study Based on Activity-Level Data
Authors: Soheila Sadeghi
Abstract:
Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.Keywords: cost prediction, machine learning, project management, random forest, neural networks
Procedia PDF Downloads 5411967 A Discussion on Urban Planning Methods after Globalization within the Context of Anticipatory Systems
Authors: Ceylan Sozer, Ece Ceylan Baba
Abstract:
The reforms and changes that began with industrialization in cities and continued with globalization in 1980’s, created many changes in urban environments. City centers which are desolated due to industrialization, began to get crowded with globalization and became the heart of technology, commerce and social activities. While the immediate and intense alterations are planned around rigorous visions in developed countries, several urban areas where the processes were underestimated and not taken precaution faced with irrevocable situations. When the effects of the globalization in the cities are examined, it is seen that there are some anticipatory system plans in the cities about the future problems. Several cities such as New York, London and Tokyo have planned to resolve probable future problems in a systematic scheme to decrease possible side effects during globalization. The decisions in urban planning and their applications are the main points in terms of sustainability and livability in such mega-cities. This article examines the effects of globalization on urban planning through 3 mega cities and the applications. When the applications of urban plannings of the three mega-cities are investigated, it is seen that the city plans are generated under light of past experiences and predictions of a certain future. In urban planning, past and present experiences of a city should have been examined and then future projections could be predicted together with current world dynamics by a systematic way. In this study, methods used in urban planning will be discussed and ‘Anticipatory System’ model will be explained and relations with global-urban planning will be discussed. The concept of ‘anticipation’ is a phenomenon that means creating foresights and predictions about the future by combining past, present and future within an action plan. The main distinctive feature that separates anticipatory systems from other systems is the combination of past, present and future and concluding with an act. Urban plans that consist of various parameters and interactions together are identified as ‘live’ and they have systematic integrities. Urban planning with an anticipatory system might be alive and can foresight some ‘side effects’ in design processes. After globalization, cities became more complex and should be designed within an anticipatory system model. These cities can be more livable and can have sustainable urban conditions for today and future.In this study, urban planning of Istanbul city is going to be analyzed with comparisons of New York, Tokyo and London city plans in terms of anticipatory system models. The lack of a system in İstanbul and its side effects will be discussed. When past and present actions in urban planning are approached through an anticipatory system, it can give more accurate and sustainable results in the future.Keywords: globalization, urban planning, anticipatory system, New York, London, Tokyo, Istanbul
Procedia PDF Downloads 14311966 A CFD Analysis of Flow through a High-Pressure Natural Gas Pipeline with an Undeformed and Deformed Orifice Plate
Authors: R. Kiš, M. Malcho, M. Janovcová
Abstract:
This work aims to present a numerical analysis of the natural gas which flows through a high-pressure pipeline and an orifice plate, through the use of CFD methods. The paper contains CFD calculations for the flow of natural gas in a pipe with different geometry used for the orifice plates. One of them has a standard geometry and a shape without any deformation and the other is deformed by the action of the pressure differential. It shows the behaviour of natural gas in a pipeline using the velocity profiles and pressure fields of the gas in both models with their differences. The entire research is based on the elimination of any inaccuracy which should appear in the flow of the natural gas measured in the high-pressure pipelines of the gas industry and which is currently not given in the relevant standard.Keywords: orifice plate, high-pressure pipeline, natural gas, CFD analysis
Procedia PDF Downloads 38311965 Developing a Sustainable System to Deliver Early Intervention for Emotional Health through Australian Schools
Authors: Rebecca-Lee Kuhnert, Ron Rapee
Abstract:
Up to 15% of Australian youth will experience an emotional disorder, yet relatively few get the help they need. Schools provide an ideal environment through which we can identify young people who are struggling and provide them with appropriate help. Universal mental health screening is a method by which all young people in school can be quickly assessed for emotional disorders, after which identified youth can be linked to appropriate health services. Despite the obvious logic of this process, universal mental health screening has received little scientific evaluation and even less application in Australian schools. This study will develop methods for Australian education systems to help identify young people (aged 9-17 years old) who are struggling with existing and emerging emotional disorders. Prior to testing, a series of focus groups will be run to get feedback and input from young people, parents, teachers, and mental health professionals. They will be asked about their thoughts on school-based screening methods and and how to best help students at risk of emotional distress. Schools (n=91) across New South Wales, Australia will be randomised to do either immediate screening (in May 2021) or delayed screening (in February 2022). Students in immediate screening schools will complete a long online mental health screener consisting of standard emotional health questionnaires. Ultimately, this large set of items will be reduced to a small number of items to form the final brief screener. Students who score in the “at-risk” range on any measure of emotional health problems will be identified to schools and offered pathways to relevant help according to the most accepted and approved processes identified by the focus groups. Nine months later, the same process will occur among delayed screening schools. At this same time, students in the immediate screening schools will complete screening for a second time. This will allow a direct comparison of the emotional health and help-seeking between youth whose schools had engaged in the screening and pathways to care process (immediate) and those whose schools had not engaged in the process (delayed). It is hypothesised that there will be a significant increase in students who receive help from mental health support services after screening, compared with baseline. It is also predicted that all students will show significantly less emotional distress after screening and access to pathways of care. This study will be an important contribution to Australian youth mental health prevention and early intervention by determining whether school screening leads to a greater number of young people with emotional disorders getting the help that they need and improving their mental health outcomes.Keywords: children and young people, early intervention, mental health, mental health screening, prevention, school-based mental health
Procedia PDF Downloads 9611964 Sequential Mixed Methods Study to Examine the Potentiality of Blackboard-Based Collaborative Writing as a Solution Tool for Saudi Undergraduate EFL Students’ Writing Difficulties
Authors: Norah Alosayl
Abstract:
English is considered the most important foreign language in the Kingdom of Saudi Arabia (KSA) because of the usefulness of English as a global language compared to Arabic. As students’ desire to improve their English language skills has grown, English writing has been identified as the most difficult problem for Saudi students in their language learning. Although the English language in Saudi Arabia is taught beginning in the seventh grade, many students have problems at the university level, especially in writing, due to a gap between what is taught in secondary and high schools and university expectations- pupils generally study English at school, based on one book with few exercises in vocabulary and grammar exercises, and there are no specific writing lessons. Moreover, from personal teaching experience at King Saud bin Abdulaziz University, students face real problems with their writing. This paper revolves around the blackboard-based collaborative writing to help the undergraduate Saudi EFL students, in their first year enrolled in two sections of ENGL 101 in the first semester of 2021 at King Saud bin Abdulaziz University, practice the most difficult skill they found in their writing through a small group. Therefore, a sequential mixed methods design will be suited. The first phase of the study aims to highlight the most difficult skill experienced by students from an official writing exam that is evaluated by their teachers through an official rubric used in King Saud bin Abdulaziz University. In the second phase, this study will intend to investigate the benefits of social interaction on the process of learning writing. Students will be provided with five collaborative writing tasks via discussion feature on Blackboard to practice a skill that they found difficult in writing. the tasks will be formed based on social constructivist theory and pedagogic frameworks. The interaction will take place between peers and their teachers. The frequencies of students’ participation and the quality of their interaction will be observed through manual counting, screenshotting. This will help the researcher understand how students actively work on the task through the amount of their participation and will also distinguish the type of interaction (on task, about task, or off-task). Semi-structured interviews will be conducted with students to understand their perceptions about the blackboard-based collaborative writing tasks, and questionnaires will be distributed to identify students’ attitudes with the tasks.Keywords: writing difficulties, blackboard-based collaborative writing, process of learning writing, interaction, participations
Procedia PDF Downloads 19111963 Sustainable Nanoengineering of Copper Oxide: Harnessing Its Antimicrobial and Anticancer Capabilities
Authors: Yemane Tadesse Gebreslassie, Fisseha Guesh Gebremeskel
Abstract:
Nanotechnology has made remarkable advancements in recent years, revolutionizing various scientific fields, industries, and research institutions through the utilization of metal and metal oxide nanoparticles. Among these nanoparticles, copper oxide nanoparticles (CuO NPs) have garnered significant attention due to their versatile properties and wide-range applications, particularly, as effective antimicrobial and anticancer agents. CuO NPs can be synthesized using different methods, including physical, chemical, and biological approaches. However, conventional chemical and physical approaches are expensive, resource-intensive, and involve the use of hazardous chemicals, which can pose risks to human health and the environment. In contrast, biological synthesis provides a sustainable and cost-effective alternative by eliminating chemical pollutants and allowing for the production of CuO NPs of tailored sizes and shapes. This comprehensive review focused on the green synthesis of CuO NPs using various biological resources, such as plants, microorganisms, and other biological derivatives. Current knowledge and recent trends in green synthesis methods for CuO NPs are discussed, with a specific emphasis on their biomedical applications, particularly in combating cancer and microbial infections. This review highlights the significant potential of CuO NPs in addressing these diseases. By capitalizing on the advantages of biological synthesis, such as environmental safety and the ability to customize nanoparticle characteristics, CuO NPs have emerged as promising therapeutic agents for a wide range of conditions. This review presents compelling findings, demonstrating the remarkable achievements of biologically synthesized CuO NPs as therapeutic agents. Their unique properties and mechanisms enable effective combating against cancer cells and various harmful microbial infections. CuO NPs exhibit potent anticancer activity through diverse mechanisms, including induction of apoptosis, inhibition of angiogenesis, and modulation of signaling pathways. Additionally, their antimicrobial activity manifests through various mechanisms, such as disrupting microbial membranes, generating reactive oxygen species, and interfering with microbial enzymes. This review offers valuable insights into the substantial potential of biologically synthesized CuO NPs as an alternative approach for future therapeutic interventions against cancer and microbial infections.Keywords: copper oxide nanoparticles, green synthesis, nanotechnology, microbial infection
Procedia PDF Downloads 6411962 Energy Usage in Isolated Areas of Honduras
Authors: Bryan Jefry Sabillon, Arlex Molina Cedillo
Abstract:
Currently, the raise in the demand of electrical energy as a consequence of the development of technology and population growth, as well as some projections made by ‘La Agencia Internacional de la Energía’ (AIE) and research institutes, reveal alarming data about the expected raise of it in the next few decades. Because of this, something should be made to raise the awareness of the rational and efficient usage of this resource. Because of the global concern of providing electrical energy to isolated areas, projects consisting of energy generation using renewable resources are commonly carried out. On a socioeconomically and cultural point of view, it can be foreseen a positive impact that would result for the society to have this resource. This article is focused on the great potential that Honduras shows, as a country that is looking forward to produce renewable energy due to the crisis that it’s living nowadays. Because of this, we present a detailed research that exhibits the main necessities that the rural communities are facing today, to allay the negative aspects due to the scarcity of electrical energy. We also discuss which should be the type of electrical generation method to be used, according to the disposition, geography, climate, and of course the accessibility of each area. Honduras is actually in the process of developing new methods for the generation of energy; therefore, it is of our concern to talk about renewable energy, the exploitation of which is a global trend. Right now the countries’ main energetic generation methods are: hydrological, thermic, wind, biomass and photovoltaic (this is one of the main sources of clean electrical generation). The use of these resources was possible partially due to the studies made by the organizations that focus on electrical energy and its demand, such as ‘La Cooperación Alemana’ (GIZ), ‘La Secretaria de Energía y Recursos Naturales’ (SERNA), and ‘El Banco Centroamericano de Integración Económica’ (BCIE), which eased the complete guide that is to be used in the protocol to be followed to carry out the three stages of this type of projects: 1) Licences and Permitions, 2) Fincancial Aspects and 3) The inscription for the Protocol in Kyoto. This article pretends to take the reader through the necessary information (according to the difficult accessibility that each zone might present), about the best option of electrical generation in zones that are totally isolated from the net, pretending to use renewable resources to generate electrical energy. We finally conclude that the usage of hybrid systems of generation of energy for small remote communities brings about a positive impact, not only because of the fact of providing electrical energy but also because of the improvements in education, health, sustainable agriculture and livestock, and of course the advances in the generation of energy which is the main concern of this whole article.Keywords: energy, isolated, renewable, accessibility
Procedia PDF Downloads 22911961 The Usage of Bridge Estimator for Hegy Seasonal Unit Root Tests
Authors: Huseyin Guler, Cigdem Kosar
Abstract:
The aim of this study is to propose Bridge estimator for seasonal unit root tests. Seasonality is an important factor for many economic time series. Some variables may contain seasonal patterns and forecasts that ignore important seasonal patterns have a high variance. Therefore, it is very important to eliminate seasonality for seasonal macroeconomic data. There are some methods to eliminate the impacts of seasonality in time series. One of them is filtering the data. However, this method leads to undesired consequences in unit root tests, especially if the data is generated by a stochastic seasonal process. Another method to eliminate seasonality is using seasonal dummy variables. Some seasonal patterns may result from stationary seasonal processes, which are modelled using seasonal dummies but if there is a varying and changing seasonal pattern over time, so the seasonal process is non-stationary, deterministic seasonal dummies are inadequate to capture the seasonal process. It is not suitable to use seasonal dummies for modeling such seasonally nonstationary series. Instead of that, it is necessary to take seasonal difference if there are seasonal unit roots in the series. Different alternative methods are proposed in the literature to test seasonal unit roots, such as Dickey, Hazsa, Fuller (DHF) and Hylleberg, Engle, Granger, Yoo (HEGY) tests. HEGY test can be also used to test the seasonal unit root in different frequencies (monthly, quarterly, and semiannual). Another issue in unit root tests is the lag selection. Lagged dependent variables are added to the model in seasonal unit root tests as in the unit root tests to overcome the autocorrelation problem. In this case, it is necessary to choose the lag length and determine any deterministic components (i.e., a constant and trend) first, and then use the proper model to test for seasonal unit roots. However, this two-step procedure might lead size distortions and lack of power in seasonal unit root tests. Recent studies show that Bridge estimators are good in selecting optimal lag length while differentiating nonstationary versus stationary models for nonseasonal data. The advantage of this estimator is the elimination of the two-step nature of conventional unit root tests and this leads a gain in size and power. In this paper, the Bridge estimator is proposed to test seasonal unit roots in a HEGY model. A Monte-Carlo experiment is done to determine the efficiency of this approach and compare the size and power of this method with HEGY test. Since Bridge estimator performs well in model selection, our approach may lead to some gain in terms of size and power over HEGY test.Keywords: bridge estimators, HEGY test, model selection, seasonal unit root
Procedia PDF Downloads 34011960 Bayesian Reliability of Weibull Regression with Type-I Censored Data
Authors: Al Omari Moahmmed Ahmed
Abstract:
In the Bayesian, we developed an approach by using non-informative prior with covariate and obtained by using Gauss quadrature method to estimate the parameters of the covariate and reliability function of the Weibull regression distribution with Type-I censored data. The maximum likelihood seen that the estimators obtained are not available in closed forms, although they can be solved it by using Newton-Raphson methods. The comparison criteria are the MSE and the performance of these estimates are assessed using simulation considering various sample size, several specific values of shape parameter. The results show that Bayesian with non-informative prior is better than Maximum Likelihood Estimator.Keywords: non-informative prior, Bayesian method, type-I censoring, Gauss quardature
Procedia PDF Downloads 50311959 A Fundamental Study for Real-Time Safety Evaluation System of Landing Pier Using FBG Sensor
Authors: Heungsu Lee, Youngseok Kim, Jonghwa Yi, Chul Park
Abstract:
A landing pier is subjected to safety assessment by visual inspection and design data, but it is difficult to check the damage in real-time. In this study, real - time damage detection and safety evaluation methods were studied. As a result of structural analysis of the arbitrary landing pier structure, the inflection point of deformation and moment occurred at 10%, 50%, and 90% of pile length. The critical value of Fiber Bragg Grating (FBG) sensor was set according to the safety factor, and the FBG sensor application method for real - time safety evaluation was derived.Keywords: FBG sensor, harbor structure, maintenance, safety evaluation system
Procedia PDF Downloads 21811958 Application of Vector Representation for Revealing the Richness of Meaning of Facial Expressions
Authors: Carmel Sofer, Dan Vilenchik, Ron Dotsch, Galia Avidan
Abstract:
Studies investigating emotional facial expressions typically reveal consensus among observes regarding the meaning of basic expressions, whose number ranges between 6 to 15 emotional states. Given this limited number of discrete expressions, how is it that the human vocabulary of emotional states is so rich? The present study argues that perceivers use sequences of these discrete expressions as the basis for a much richer vocabulary of emotional states. Such mechanisms, in which a relatively small number of basic components is expanded to a much larger number of possible combinations of meanings, exist in other human communications modalities, such as spoken language and music. In these modalities, letters and notes, which serve as basic components of spoken language and music respectively, are temporally linked, resulting in the richness of expressions. In the current study, in each trial participants were presented with sequences of two images containing facial expression in different combinations sampled out of the eight static basic expressions (total 64; 8X8). In each trial, using single word participants were required to judge the 'state of mind' portrayed by the person whose face was presented. Utilizing word embedding methods (Global Vectors for Word Representation), employed in the field of Natural Language Processing, and relying on machine learning computational methods, it was found that the perceived meanings of the sequences of facial expressions were a weighted average of the single expressions comprising them, resulting in 22 new emotional states, in addition to the eight, classic basic expressions. An interaction between the first and the second expression in each sequence indicated that every single facial expression modulated the effect of the other facial expression thus leading to a different interpretation ascribed to the sequence as a whole. These findings suggest that the vocabulary of emotional states conveyed by facial expressions is not restricted to the (small) number of discrete facial expressions. Rather, the vocabulary is rich, as it results from combinations of these expressions. In addition, present research suggests that using word embedding in social perception studies, can be a powerful, accurate and efficient tool, to capture explicit and implicit perceptions and intentions. Acknowledgment: The study was supported by a grant from the Ministry of Defense in Israel to GA and CS. CS is also supported by the ABC initiative in Ben-Gurion University of the Negev.Keywords: Glove, face perception, facial expression perception. , facial expression production, machine learning, word embedding, word2vec
Procedia PDF Downloads 17611957 A Machine Learning Approach for Efficient Resource Management in Construction Projects
Authors: Soheila Sadeghi
Abstract:
Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.Keywords: resource allocation, machine learning, optimization, data-driven decision-making, project management
Procedia PDF Downloads 3911956 Comparative Characteristics of Bacteriocins from Endemic Lactic Acid Bacteria
Authors: K. Karapetyan, F. Tkhruni, A. Aghajanyan, T. S. Balabekyan, L. Arstamyan
Abstract:
Introduction: Globalization of the food supply has created the conditions favorable for the emergence and spread of food-borne and especially dangerous pathogens (EDP) in developing countries. The fresh-cut fruit and vegetable industry is searching for alternatives to replace chemical treatments with biopreservative approaches that ensure the safety of the processed foods product. Antimicrobial compounds of lactic acid bacteria (LAB) possess bactericidal or bacteriostatic activity against intestinal pathogens, spoilage organisms and food-borne pathogens such as Listeria monocytogenes, Staphylococcus aureus and Salmonella. Endemic strains of LAB were isolated. The strains, showing broad spectrum of antimicrobial activity against food spoiling microorganisms, were selected. The genotyping by 16S rRNA sequencing, GS-PCR, RAPD PCR methods showed that they were presented by Lactobacillus rhamnosus109, L.plantarum 65, L.plantarum 66 and Enterococcus faecium 64 species. LAB are deposited in "Microbial Depository Center" (MDC) SPC "Armbiotechnology". Methods: LAB strains were isolated from different dairy products from rural households from the highland regions of Armenia. Serially diluted samples were spread on MRS (Merck, Germany) and hydrolyzed milk agar (1,2 % w/v). Single colonies from each LAB were individually inoculated in liquid MRS medium and incubated at 37oC for 24 hours. Culture broth with biomass was centrifuged at 10,000 g during 20 min for obtaining of cell free culture broth (CFC). The antimicrobial substances from CFC broth were purified by the combination of adsorption-desorption and ion-exchange chromatography methods. Separation of bacteriocins was performed using a HPLC method on "Avex ODS" C18 column. Mass analysis of peptides recorded on the device API 4000 in the electron ionization mode. The spot-on-lawn method on the test culture plated in the solid medium was applied. The antimicrobial activity is expressed in arbitrary units (AU/ml). Results. Purification of CFC broth of LAB allowed to obtain partially purified antimicrobial preparations which contains bacteriocins with broad spectrum of antimicrobial activity. Investigation of their main biochemical properties shown, that inhibitory activity of preparations is partially reduced after treatment with proteinase K, trypsin, pepsin, suggesting a proteinaceous nature of bacteriocin-like substances containing in CFC broth. Preparations preserved their activity after heat treatment (50-121 oC, 20 min) and were stable in the pH range 3–8. The results of SDS PAAG electrophoresis show that L.plantarum 66 and Ent.faecium 64 strains have one bacteriocin (BCN) with maximal antimicrobial activity with approximate molecular weight 2.0-3.0 kDa. From L.rhamnosus 109 two BCNs were obtained. Mass spectral analysis indicates that these bacteriocins have peptide bonds and molecular weight of BCN 1 and BCN 2 are approximately 1.5 kDa and 700 Da. Discussion: Thus, our experimental data shown, that isolated endemic strains of LAB are able to produce bacteriocins with high and different inhibitory activity against broad spectrum of microorganisms of different taxonomic group, such as Salmonella sp., Esherichia coli, Bacillus sp., L.monocytogenes, Proteus mirabilis, Staph. aureus, Ps. aeruginosa. Obtained results proved the perspectives for use of endemic strains in the preservation of foodstuffs. Acknowledgments: This work was realized with financial support of the Project Global Initiatives for Preliferation Prevention (GIPP) T2- 298, ISTC A-1866.Keywords: antimicrobial activity, bacteriocins, endemic strains, food safety
Procedia PDF Downloads 56111955 Efficient Estimation of Maximum Theoretical Productivity from Batch Cultures via Dynamic Optimization of Flux Balance Models
Authors: Peter C. St. John, Michael F. Crowley, Yannick J. Bomble
Abstract:
Production of chemicals from engineered organisms in a batch culture typically involves a trade-off between productivity, yield, and titer. However, strategies for strain design typically involve designing mutations to achieve the highest yield possible while maintaining growth viability. Such approaches tend to follow the principle of designing static networks with minimum metabolic functionality to achieve desired yields. While these methods are computationally tractable, optimum productivity is likely achieved by a dynamic strategy, in which intracellular fluxes change their distribution over time. One can use multi-stage fermentations to increase either productivity or yield. Such strategies would range from simple manipulations (aerobic growth phase, anaerobic production phase), to more complex genetic toggle switches. Additionally, some computational methods can also be developed to aid in optimizing two-stage fermentation systems. One can assume an initial control strategy (i.e., a single reaction target) in maximizing productivity - but it is unclear how close this productivity would come to a global optimum. The calculation of maximum theoretical yield in metabolic engineering can help guide strain and pathway selection for static strain design efforts. Here, we present a method for the calculation of a maximum theoretical productivity of a batch culture system. This method follows the traditional assumptions of dynamic flux balance analysis: that internal metabolite fluxes are governed by a pseudo-steady state and external metabolite fluxes are represented by dynamic system including Michealis-Menten or hill-type regulation. The productivity optimization is achieved via dynamic programming, and accounts explicitly for an arbitrary number of fermentation stages and flux variable changes. We have applied our method to succinate production in two common microbial hosts: E. coli and A. succinogenes. The method can be further extended to calculate the complete productivity versus yield Pareto surface. Our results demonstrate that nearly optimal yields and productivities can indeed be achieved with only two discrete flux stages.Keywords: A. succinogenes, E. coli, metabolic engineering, metabolite fluxes, multi-stage fermentations, succinate
Procedia PDF Downloads 21511954 A Mixed Finite Element Formulation for Functionally Graded Micro-Beam Resting on Two-Parameter Elastic Foundation
Authors: Cagri Mollamahmutoglu, Aykut Levent, Ali Mercan
Abstract:
Micro-beams are one of the most common components of Nano-Electromechanical Systems (NEMS) and Micro Electromechanical Systems (MEMS). For this reason, static bending, buckling, and free vibration analysis of micro-beams have been the subject of many studies. In addition, micro-beams restrained with elastic type foundations have been of particular interest. In the analysis of microstructures, closed-form solutions are proposed when available, but most of the time solutions are based on numerical methods due to the complex nature of the resulting differential equations. Thus, a robust and efficient solution method has great importance. In this study, a mixed finite element formulation is obtained for a functionally graded Timoshenko micro-beam resting on two-parameter elastic foundation. In the formulation modified couple stress theory is utilized for the micro-scale effects. The equation of motion and boundary conditions are derived according to Hamilton’s principle. A functional, derived through a scientific procedure based on Gateaux Differential, is proposed for the bending and buckling analysis which is equivalent to the governing equations and boundary conditions. Most important advantage of the formulation is that the mixed finite element formulation allows usage of C₀ type continuous shape functions. Thus shear-locking is avoided in a built-in manner. Also, element matrices are sparsely populated and can be easily calculated with closed-form integration. In this framework results concerning the effects of micro-scale length parameter, power-law parameter, aspect ratio and coefficients of partially or fully continuous elastic foundation over the static bending, buckling, and free vibration response of FG-micro-beam under various boundary conditions are presented and compared with existing literature. Performance characteristics of the presented formulation were evaluated concerning other numerical methods such as generalized differential quadrature method (GDQM). It is found that with less computational burden similar convergence characteristics were obtained. Moreover, formulation also includes a direct calculation of the micro-scale related contributions to the structural response as well.Keywords: micro-beam, functionally graded materials, two-paramater elastic foundation, mixed finite element method
Procedia PDF Downloads 16211953 Top-K Shortest Distance as a Similarity Measure
Authors: Andrey Lebedev, Ilya Dmitrenok, JooYoung Lee, Leonard Johard
Abstract:
Top-k shortest path routing problem is an extension of finding the shortest path in a given network. Shortest path is one of the most essential measures as it reveals the relations between two nodes in a network. However, in many real world networks, whose diameters are small, top-k shortest path is more interesting as it contains more information about the network topology. Many variations to compute top-k shortest paths have been studied. In this paper, we apply an efficient top-k shortest distance routing algorithm to the link prediction problem and test its efficacy. We compare the results with other base line and state-of-the-art methods as well as with the shortest path. Then, we also propose a top-k distance based graph matching algorithm.Keywords: graph matching, link prediction, shortest path, similarity
Procedia PDF Downloads 358