Search results for: stepwise segmentation
258 Prevalence, Awareness and Control of Hypertension among the University of Venda Academic Staff, South Africa
Authors: Thizwilondi Madzaga, Jabu Tsakani Mabunda, Takalani Tshitangano
Abstract:
Hypertension is a global public health problem. In most cases, hypertension individuals are not aware of their condition, and they only detected it accidentally during public awareness programmes. The aim of the study was to determine the prevalence, awareness and control of hypertension among University of Venda academic staff. UNIVEN is situated in Thohoyandou, South Africa. A cross-sectional study was conducted to determine the prevalence, awareness and control of hypertension among University of Venda academic staff. Slovin’s formula was used to randomly select 179 academic staff (male=104 and female=75). WHO stepwise Questionnaire version 23.0 was used to get information on demographic information. Blood pressure was measured twice after five minutes rest using electronic blood pressure monitor. In this study, hypertension referred to self-reported to be on hypertension medication or having blood pressure equal or exceeding 140 over 90 mmHg. Statistical Package of Social Sciences version 23.0 was used to analyse data. Prevalence of hypertension was 20% and 46% prehypertension. Only 34% had a normal blood pressure. About 34% were not sure of their current blood pressure status (within 12 months). About 10% of the total respondents had been previously diagnosed with hypertension and half of them who were hypertensive were not aware that they had it. Among those who were aware that they are hypertensive, about 90% were on treatment whereas 10% had stopped taking treatment. About 13% of those who were on treatment had controlled blood pressure. There is a need for health education programmes to increase hypertension awareness.Keywords: academic staff, awareness, control, hypertension, prevalence
Procedia PDF Downloads 336257 Role of Adaptive Support Ventilation in Weaning of COPD Patients
Authors: A. Kamel Abd Elaziz Mohamed, B. Sameh Kamal el Maraghi
Abstract:
Introduction: Adaptive support ventilation (ASV) is an improved closed-loop ventilation mode that provides both pressure-controlled ventilation and PSV according to the patient’s needs. Aim of the work: To compare the short-term effects of Adaptive support ventilation (ASV), with conventional Pressure support ventilation (PSV) in weaning of intubated COPD patients. Patients and methods: Fifty patients admitted in the intensive care with acute exacerbation of COPD and needing intubation were included in the study. All patients were initially ventilated with control/assist control mode, in a stepwise manner and were receiving standard medical therapy. Patients were randomized into two groups to receive either ASV or PSV. Results: Out of fifty patients included in the study forty one patients in both studied groups were weaned successfully according to their ABG data and weaning indices. APACHE II score showed no significant difference in both groups. There were statistically significant differences between the groups in term of, duration of mechanical ventilation, weaning hours and length of ICU stay being shorter in (group 1) weaned by ASV. Re-intubation and mortality rate were higher in (group 11) weaned by conventional PSV, however the differences were not significant. Conclusion: ASV can provide automated weaning and achieve shorter weaning time for COPD patients hence leading to reduction in the total duration of MV, length of stay, and hospital costs.Keywords: COPD patients, ASV, PSV, mechanical ventilation (MV)
Procedia PDF Downloads 390256 Working From Home: On the Relationship Between Place Attachment to Work Place, Extraversion and Segmentation Preference to Burnout
Authors: Diamant Irene, Shklarnik Batya
Abstract:
In on to its widespread effects on health and economic issues, Covid-19 shook the work and employment world. Among the prominent changes during the pandemic is the work-from-home trend, complete or partial, as part of social distancing. In fact, these changes accelerated an existing tendency of work flexibility already underway before the pandemic. Technology and means of advanced communications led to a re-assessment of “place of work” as a physical space in which work takes place. Today workers can remotely carry out meetings, manage projects, work in groups, and different research studies point to the fact that this type of work has no adverse effect on productivity. However, from the worker’s perspective, despite numerous advantages associated with work from home, such as convenience, flexibility, and autonomy, various drawbacks have been identified such as loneliness, reduction of commitment, home-work boundary erosion, all risk factors relating to the quality of life and burnout. Thus, a real need has arisen in exploring differences in work-from-home experiences and understanding the relationship between psychological characteristics and the prevalence of burnout. This understanding may be of significant value to organizations considering a future hybrid work model combining in-office and remote working. Based on Hobfoll’s Theory of Conservation of Resources, we hypothesized that burnout would mainly be found among workers whose physical remoteness from the workplace threatens or hinders their ability to retain significant individual resources. In the present study, we compared fully remote and partially remote workers (hybrid work), and we examined psychological characteristics and their connection to the formation of burnout. Based on the conceptualization of Place Attachment as the cognitive-emotional bond of an individual to a meaningful place and the need to maintain closeness to it, we assumed that individuals characterized with Place Attachment to the workplace would suffer more from burnout when working from home. We also assumed that extrovert individuals, characterized by the need of social interaction at the workplace and individuals with segmentationpreference – a need for separation between different life domains, would suffer more from burnout, especially among fully remote workers relative to partially remote workers. 194 workers, of which 111 worked from home in full and 83 worked partially from home, aged 19-53, from different sectors, were tested using an online questionnaire through social media. The results of the study supported our assumptions. The repercussions of these findings are discussed, relating to future occupational experience, with an emphasis on suitable occupational adjustment according to the psychological characteristics and needs of workers.Keywords: working from home, burnout, place attachment, extraversion, segmentation preference, Covid-19
Procedia PDF Downloads 190255 Growth Model and Properties of a 3D Carbon Aerogel
Authors: J. Marx, D. Smazna, R. Adelung, B. Fiedler
Abstract:
Aerographite is a 3D interconnected carbon foam. Its tetrapodal morphology is based on the zinc oxide (ZnO) template structure, which is replicated in the chemical vapour deposition (CVD) into a hollow carbon structure. This replication process is analyzed in ex-situ studies via interrupted synthesis and the observation of the reaction progress by using scanning electron (SEM), transmission electron microscopy (TEM) and Raman spectroscopy techniques. Based on the epitaxial growth process, with a layer-by-layer growth behaviour of the wall thickness or number of layers and the catalytical graphitization of the deposited amorphous carbon into graphitic carbon by zinc, a growth model is created. The properties of aerographite, such as the electrical conductivity is dependent on the graphitization and number of layer (wall thickness). Wall thicknesses between 3 nm and 22 nm are achieved by a controlled stepwise reduction of the synthesis time on the basis of the developed growth model, and by a further thermal treatment at 1800 °C the graphitization of the presented carbon foam is modified. The variation of the wall thickness leads to an optimum defect density (ID/IG ratio) and the graphitization to an improvement in the electrical conductivity. Furthermore, a metallic conducting behaviour of untreated and 1800 °C treated aerographite can be observed. Due to these structural and defective modifications, a fundamental structural-property equation for the description of their influences on the electrical conductivity is developed.Keywords: electrical conductivity, electron microscopy (SEM/TEM), graphitization, wall thickness
Procedia PDF Downloads 155254 Video Based Automatic License Plate Recognition System
Authors: Ali Ganoun, Wesam Algablawi, Wasim BenAnaif
Abstract:
Video based traffic surveillance based on License Plate Recognition (LPR) system is an essential part for any intelligent traffic management system. The LPR system utilizes computer vision and pattern recognition technologies to obtain traffic and road information by detecting and recognizing vehicles based on their license plates. Generally, the video based LPR system is a challenging area of research due to the variety of environmental conditions. The LPR systems used in a wide range of commercial applications such as collision warning systems, finding stolen cars, controlling access to car parks and automatic congestion charge systems. This paper presents an automatic LPR system of Libyan license plate. The performance of the proposed system is evaluated with three video sequences.Keywords: license plate recognition, localization, segmentation, recognition
Procedia PDF Downloads 464253 Urban Land Cover from GF-2 Satellite Images Using Object Based and Neural Network Classifications
Authors: Lamyaa Gamal El-Deen Taha, Ashraf Sharawi
Abstract:
China launched satellite GF-2 in 2014. This study deals with comparing nearest neighbor object-based classification and neural network classification methods for classification of the fused GF-2 image. Firstly, rectification of GF-2 image was performed. Secondly, a comparison between nearest neighbor object-based classification and neural network classification for classification of fused GF-2 was performed. Thirdly, the overall accuracy of classification and kappa index were calculated. Results indicate that nearest neighbor object-based classification is better than neural network classification for urban mapping.Keywords: GF-2 images, feature extraction-rectification, nearest neighbour object based classification, segmentation algorithms, neural network classification, multilayer perceptron
Procedia PDF Downloads 389252 Multiscale Connected Component Labelling and Applications to Scientific Microscopy Image Processing
Authors: Yayun Hsu, Henry Horng-Shing Lu
Abstract:
In this paper, a new method is proposed to extending the method of connected component labeling from processing binary images to multi-scale modeling of images. By using the adaptive threshold of multi-scale attributes, this approach minimizes the possibility of missing those important components with weak intensities. In addition, the computational cost of this approach remains similar to that of the typical approach of component labeling. Then, this methodology is applied to grain boundary detection and Drosophila Brain-bow neuron segmentation. These demonstrate the feasibility of the proposed approach in the analysis of challenging microscopy images for scientific discovery.Keywords: microscopic image processing, scientific data mining, multi-scale modeling, data mining
Procedia PDF Downloads 434251 Natural Monopolies and Their Regulation in Georgia
Authors: Marina Chavleishvili
Abstract:
Introduction: Today, the study of monopolies, including natural monopolies, is topical. In real life, pure monopolies are natural monopolies. Natural monopolies are used widely and are regulated by the state. In particular, the prices and rates are regulated. The paper considers the problems associated with the operation of natural monopolies in Georgia, in particular, their microeconomic analysis, pricing mechanisms, and legal mechanisms of their operation. The analysis was carried out on the example of the power industry. The rates of natural monopolies in Georgia are controlled by the Georgian National Energy and Water Supply Regulation Commission. The paper analyzes the positive role and importance of the regulatory body and the issues of improving the legislative base that will support the efficient operation of the branch. Methodology: In order to highlight natural monopolies market tendencies, the domestic and international markets are studied. An analysis of monopolies is carried out based on the endogenous and exogenous factors that determine the condition of companies, as well as the strategies chosen by firms to increase the market share. According to the productivity-based competitiveness assessment scheme, the segmentation opportunities, business environment, resources, and geographical location of monopolist companies are revealed. Main Findings: As a result of the analysis, certain assessments and conclusions were made. Natural monopolies are quite a complex and versatile economic element, and it is important to specify and duly control their frame conditions. It is important to determine the pricing policy of natural monopolies. The rates should be transparent, should show the level of life in the country, and should correspond to the incomes. The analysis confirmed the significance of the role of the Antimonopoly Service in the efficient management of natural monopolies. The law should adapt to reality and should be applied only to regulate the market. The present-day differential electricity tariffs varying depending on the consumed electrical power need revision. The effects of the electricity price discrimination are important, segmentation in different seasons in particular. Consumers use more electricity in winter than in summer, which is associated with extra capacities and maintenance costs. If the price of electricity in winter is higher than in summer, the electricity consumption will decrease in winter. The consumers will start to consume the electricity more economically, what will allow reducing extra capacities. Conclusion: Thus, the practical realization of the views given in the paper will contribute to the efficient operation of natural monopolies. Consequently, their activity will be oriented not on the reduction but on the increase of increments of the consumers or producers. Overall, the optimal management of the given fields will allow for improving the well-being throughout the country. In the article, conclusions are made, and the recommendations are developed to deliver effective policies and regulations toward the natural monopolies in Georgia.Keywords: monopolies, natural monopolies, regulation, antimonopoly service
Procedia PDF Downloads 86250 Location Tracking of Human Using Mobile Robot and Wireless Sensor Networks
Authors: Muazzam A. Khan
Abstract:
In order to avoid dangerous environmental disasters, robots are being recognized as good entrants to step in as human rescuers. Robots has been gaining interest of many researchers in rescue matters especially which are furnished with advanced sensors. In distributed wireless robot system main objective for a rescue system is to track the location of the object continuously. This paper provides a novel idea to track and locate human in disaster area using stereo vision system and ZigBee technology. This system recursively predict and updates 3D coordinates in a robot coordinate camera system of a human which makes the system cost effective. This system is comprised of ZigBee network which has many advantages such as low power consumption, self-healing low data rates and low cost.Keywords: stereo vision, segmentation, classification, human tracking, ZigBee module
Procedia PDF Downloads 493249 The Level of Administrative Creativity and Its Obstacles From the Point of View of Workers in Youth Centers in Jordan
Authors: Basheer Ahmad Al-Alwan
Abstract:
This study aimed to assess the extent of administrative creativity and identify its barriers from the perspective of employees working in youth centers in Jordan. The sample comprised 156 individuals employed in youth centers within the Hashemite Kingdom of Jordan. Data collection involved the utilization of two measures: the administrative creativity scale and the obstacles to administrative work scale. Correlation and stepwise multiple regression analyses were conducted. The findings revealed a high level of administrative creativity, as indicated by a mean score of 3.82 and a standard deviation of 0.51. Furthermore, statistically significant gender-based differences in administrative creativity were observed, favoring males, with a mean score of 3.32 for males compared to 2.91 for females. The results also demonstrated statistically significant differences in the level of administrative creativity based on experience, with the highest mean score observed for individuals with 5 to less than 10 years of experience. Regarding the obstacles to administrative creativity, the findings revealed an average level, with a mean score of 2.86 and a standard deviation of 0.791. Based on these results, the study recommends the promotion of a culture of creativity among employees and the provision of a broader scope of authority to foster an environment conducive to administrative creativity. Additionally, it suggests offering training courses encompassing the annual plan for these centers and minimizing obstacles that hinder the creative process among employees in Jordanian youth centers.Keywords: administrative creativity, obstacles, workers in youth centers, Jordan
Procedia PDF Downloads 87248 Co-Immobilization of Palladium Nanoparticles and Polyoxometalate into the Cavities of the Mesocellular Foams: A Biomimetic Cooperative Catalytic System for Aerobic Oxidation of Alcohols under Green Conditions
Authors: Saeed Chehri, Sirvan Moradi, Amin Rostami
Abstract:
Cooperative catalyst systems have been developed as highly promising sustainable alternatives to traditional catalysts. In these catalysts, two or more catalytic centers cooperate to reduce the energy of chemical transformations. In nature, such systems are abundantly seen in metalloenzymes that use metal and an organic cofactor. We have designed a reusable cooperative catalyst oxidation system consisting of palladium nanoparticles and polyoxometalate. This biomimetic cooperative catalytic system was synthesized by the stepwise immobilization of palladium nanoparticlesandpolyoxometalateinto the same cavity of siliceous mesocellularfoams (Pd-POM@MCF)and wascharacterizedby SEM, EDX, FT-IR, TGAand ICP techniques. POM-Pd@MCF/HQexhibits high activity toward aerobic oxidation of alcohols to the corresponding carbonyl compoundsin water solvent at room temperature. The major novelties and advantages of this oxidation method are as follows: (i) this is the first report of the co-immobilization of polyoxometalateand palladium for use as a robust and highlyefficient heterogeneouscooperative oxidative nanocatalyst system for aerobic oxidation of alcohols, (ii) oxidation of alcoholswere performed using an ideal oxidant with good to high yields in a green solvent at ambient temperature and (iii) the immobilization of the oxygen-activating catalyst(polyoxometalate) and oxidizing catalyst (Pd) onto MCF provide practical cooperative catalyst the system that can be reused several times without a significant loss of activity (vi) the methodsconform to several of the guiding principles of green chemistry.Keywords: palladium nanoparticles, polyoxometalate, reusable cooperative catalytic system, biomimetic oxidation reaction
Procedia PDF Downloads 118247 Recognition of Cursive Arabic Handwritten Text Using Embedded Training Based on Hidden Markov Models (HMMs)
Authors: Rabi Mouhcine, Amrouch Mustapha, Mahani Zouhir, Mammass Driss
Abstract:
In this paper, we present a system for offline recognition cursive Arabic handwritten text based on Hidden Markov Models (HMMs). The system is analytical without explicit segmentation used embedded training to perform and enhance the character models. Extraction features preceded by baseline estimation are statistical and geometric to integrate both the peculiarities of the text and the pixel distribution characteristics in the word image. These features are modelled using hidden Markov models and trained by embedded training. The experiments on images of the benchmark IFN/ENIT database show that the proposed system improves recognition.Keywords: recognition, handwriting, Arabic text, HMMs, embedded training
Procedia PDF Downloads 354246 An Adaptive CFAR Algorithm Based on Automatic Censoring in Heterogeneous Environments
Authors: Naime Boudemagh
Abstract:
In this work, we aim to improve the detection performances of radar systems. To this end, we propose and analyze a novel censoring technique of undesirable samples, of priori unknown positions, that may be present in the environment under investigation. Therefore, we consider heterogeneous backgrounds characterized by the presence of some irregularities such that clutter edge transitions and/or interfering targets. The proposed detector, termed automatic censoring constant false alarm (AC-CFAR), operates exclusively in a Gaussian background. It is built to allow the segmentation of the environment to regions and switch automatically to the appropriate detector; namely, the cell averaging CFAR (CA-CFAR), the censored mean level CFAR (CMLD-CFAR) or the order statistic CFAR (OS-CFAR). Monte Carlo simulations show that the AC-CFAR detector performs like the CA-CFAR in a homogeneous background. Moreover, the proposed processor exhibits considerable robustness in a heterogeneous background.Keywords: CFAR, automatic censoring, heterogeneous environments, radar systems
Procedia PDF Downloads 602245 Temperature Contour Detection of Salt Ice Using Color Thermal Image Segmentation Method
Authors: Azam Fazelpour, Saeed Reza Dehghani, Vlastimil Masek, Yuri S. Muzychka
Abstract:
The study uses a novel image analysis based on thermal imaging to detect temperature contours created on salt ice surface during transient phenomena. Thermal cameras detect objects by using their emissivities and IR radiance. The ice surface temperature is not uniform during transient processes. The temperature starts to increase from the boundary of ice towards the center of that. Thermal cameras are able to report temperature changes on the ice surface at every individual moment. Various contours, which show different temperature areas, appear on the ice surface picture captured by a thermal camera. Identifying the exact boundary of these contours is valuable to facilitate ice surface temperature analysis. Image processing techniques are used to extract each contour area precisely. In this study, several pictures are recorded while the temperature is increasing throughout the ice surface. Some pictures are selected to be processed by a specific time interval. An image segmentation method is applied to images to determine the contour areas. Color thermal images are used to exploit the main information. Red, green and blue elements of color images are investigated to find the best contour boundaries. The algorithms of image enhancement and noise removal are applied to images to obtain a high contrast and clear image. A novel edge detection algorithm based on differences in the color of the pixels is established to determine contour boundaries. In this method, the edges of the contours are obtained according to properties of red, blue and green image elements. The color image elements are assessed considering their information. Useful elements proceed to process and useless elements are removed from the process to reduce the consuming time. Neighbor pixels with close intensities are assigned in one contour and differences in intensities determine boundaries. The results are then verified by conducting experimental tests. An experimental setup is performed using ice samples and a thermal camera. To observe the created ice contour by the thermal camera, the samples, which are initially at -20° C, are contacted with a warmer surface. Pictures are captured for 20 seconds. The method is applied to five images ,which are captured at the time intervals of 5 seconds. The study shows the green image element carries no useful information; therefore, the boundary detection method is applied on red and blue image elements. In this case study, the results indicate that proposed algorithm shows the boundaries more effective than other edges detection methods such as Sobel and Canny. Comparison between the contour detection in this method and temperature analysis, which states real boundaries, shows a good agreement. This color image edge detection method is applicable to other similar cases according to their image properties.Keywords: color image processing, edge detection, ice contour boundary, salt ice, thermal image
Procedia PDF Downloads 313244 Tank Barrel Surface Damage Detection Algorithm
Authors: Tomáš Dyk, Stanislav Procházka, Martin Drahanský
Abstract:
The article proposes a new algorithm for detecting damaged areas of the tank barrel based on the image of the inner surface of the tank barrel. Damage position is calculated using image processing techniques such as edge detection, discrete wavelet transformation and image segmentation for accurate contour detection. The algorithm can detect surface damage in smoothbore and even in rifled tank barrels. The algorithm also calculates the volume of the detected damage from the depth map generated, for example, from the distance measurement unit. The proposed method was tested on data obtained by a tank barrel scanning device, which generates both surface image data and depth map. The article also discusses tank barrel scanning devices and how damaged surface impacts material resistance.Keywords: barrel, barrel diagnostic, image processing, surface damage detection, tank
Procedia PDF Downloads 137243 Differentiation of Customer Types by Stereotypical Characteristics for Modular and Conventional Construction Methods
Authors: Peter Schnell, Phillip Haag
Abstract:
In the course of the structural transformation of the construction industry, the integration of industrialization and digitization has led to the development of construction methods with an increased degree of prefabrication, such as system or modular construction. Compared to conventional construction, these innovative construction methods are characterized by modified structural and procedural properties and expand the range of construction services. Faced with the supply side, it is possible to identify construction-specific customer types with different characteristics and certain preferences as far as the choice of construction method is concerned. The basis for this finding was qualitative expert interviews. By evaluating the stereotypical customer needs, a corresponding segmentation of the demand side can be made along with the basic orientation and decision behavior. This demarcation supports the target- and needs-oriented customer approach and contributes to cooperative and successful project management.Keywords: differentiation of customer types, modular construction methods, conventional construction methods, stereotypical customer types
Procedia PDF Downloads 110242 Photogrammetry and Topographic Information for Urban Growth and Change in Amman
Authors: Mahmoud M. S. Albattah
Abstract:
Urbanization results in the expansion of administrative boundaries, mainly at the periphery, ultimately leading to changes in landcover. Agricultural land, naturally vegetated land, and other land types are converted into residential areas with a high density of constructs, such as transportation systems and housing. In urban regions of rapid growth and change, urban planners need regular information on up to date ground change. Amman (the capital of Jordan) is growing at unprecedented rates, creating extensive urban landscapes. Planners interact with these changes without having a global view of their impact. The use of aerial photographs and satellite images data combined with topographic information and field survey could provide effective information to develop urban change and growth inventory which could be explored towards producing a very important signature for the built-up area changes.Keywords: highway design, satellite technologies, remote sensing, GIS, image segmentation, classification
Procedia PDF Downloads 443241 Quality of Life of Health Professionals during the COVID-19 Pandemic
Authors: Elucir Gir, Myllena Nilce de Freitas Surmano, Laelson Rochelle Milanês Sousa, Mayra Gonçalves Menegueti, Ana Cristina de Oliveira E Silva, Renata Karina Reis
Abstract:
Objective: To analyze the factors associated with the worsening of the quality of life of health professionals in the Southeast region of Brazil during the COVID-19 pandemic and its associated factors. Method: Analytical cross-sectional study carried out with health professionals from the southeastern region of Brazil. Data collection took place through an online survey with a form stored on the Survey Monkey platform. Bivariate analysis was used, and the chi-square test was adopted, followed by the multiple binary logistic regression model based on the stepwise method. Results: 3,493 health professionals participated in the study. Factors associated with worsening quality of life were: Professional Category (Nursing assistant) [OR 1.851 (95%CI 1.035-3.311) p= 0.038]; types of people who provided care (people in general) [OR 1.445 (95%CI 1.072-1.945) p=0.015]; Supply of good quality PPE by the institution where he works (no) [OR 1.595 (CI 95% 1.144-2.223) p= 0.006] and Supply of good quality PPE by the institution where he works (in part) [OR 1.563 (CI 95% 1.257-1.943) p < 0.001]. Conclusion: The factors associated with the worsening of the quality of life of health professionals during the COVID-19 pandemic were: Professional Category (Nursing assistant); types of people who provided assistance (people in general); Supply of sufficient PPE by the institution where you work (no) and Supply of good quality PPE by the institution where you work (in part). Future studies should investigate to what extent QoL can be improved based on modifiable factors.Keywords: COVID-19, quality of life, health professionals, respiratory infections
Procedia PDF Downloads 91240 Automatic Number Plate Recognition System Based on Deep Learning
Authors: T. Damak, O. Kriaa, A. Baccar, M. A. Ben Ayed, N. Masmoudi
Abstract:
In the last few years, Automatic Number Plate Recognition (ANPR) systems have become widely used in the safety, the security, and the commercial aspects. Forethought, several methods and techniques are computing to achieve the better levels in terms of accuracy and real time execution. This paper proposed a computer vision algorithm of Number Plate Localization (NPL) and Characters Segmentation (CS). In addition, it proposed an improved method in Optical Character Recognition (OCR) based on Deep Learning (DL) techniques. In order to identify the number of detected plate after NPL and CS steps, the Convolutional Neural Network (CNN) algorithm is proposed. A DL model is developed using four convolution layers, two layers of Maxpooling, and six layers of fully connected. The model was trained by number image database on the Jetson TX2 NVIDIA target. The accuracy result has achieved 95.84%.Keywords: ANPR, CS, CNN, deep learning, NPL
Procedia PDF Downloads 306239 Cells Detection and Recognition in Bone Marrow Examination with Deep Learning Method
Authors: Shiyin He, Zheng Huang
Abstract:
In this paper, deep learning methods are applied in bio-medical field to detect and count different types of cells in an automatic way instead of manual work in medical practice, specifically in bone marrow examination. The process is mainly composed of two steps, detection and recognition. Mask-Region-Convolutional Neural Networks (Mask-RCNN) was used for detection and image segmentation to extract cells and then Convolutional Neural Networks (CNN), as well as Deep Residual Network (ResNet) was used to classify. Result of cell detection network shows high efficiency to meet application requirements. For the cell recognition network, two networks are compared and the final system is fully applicable.Keywords: cell detection, cell recognition, deep learning, Mask-RCNN, ResNet
Procedia PDF Downloads 188238 Vaccination against Hepatitis B in Tunisian Health Care Workers
Authors: Asma Ammar, Nabiha Bouafia , Asma BenCheikh, Mohamed Mahjoub, Olfa Ezzi, Wadiaa Bannour, Radhia Helali, Mansour Njah
Abstract:
Background: The objective of the present study was to identify factors associated with vaccination against Hepatitis B virus (HBV) among healthcare workers (HWs) in the University Hospital Center (UHC) Farhat Hached Sousse, Tunisia. Methods: We conducted a descriptive cross-sectional study all licensed physicians (n= 206) and a representative sample of paramedical staff (n= 372) exercising at UHC Hached Sousse (Tunisia) during two months (January and February 2014). Data were collected using a self-administered and pre-tested questionnaire, which composed by 21 questions. In order to determinate factors associated with vaccination against hepatitis B among HWs, this questionnaire was based on the Health Belief Model, one of the most classical behavior theories. Logistic regression with the stepwise method of Hosmer and Lemeshow was used to identify the determinants of the use of vaccination against HBV. Results: The response rates were 79.8%. Fifty two percent believe that HBV is frequent in our healthcare units and 60.6% consider it a severe infection. The prevalence of HWs vaccination was 39%, 95% CI [34.49%; 43.5%]. In multivariate analysis, determinants of the use of vaccination against HBV among HWs were young age (p=10-4), male gender (p = 0. 006), high or very high importance accorded to health (p = 0.035), perception membership in a risk group for HBV infection (p = 0.038) and very favorable or favorable opinion about vaccination against HVB (p=10-4). Conclusion: The results of our study should be considered in any strategy for preventing VHB infection in HWs. In the mean time, coverage with standard vaccines should be improved also by supplying complete information on the risks of VHB infection and on the safety and efficacy of vaccination.Keywords: Hepatitis B virus, healthcare workers, prevalence, vaccination
Procedia PDF Downloads 350237 Supply Chain Logistics Integration in Bahrain's Construction Industry
Authors: Randolf Von N. Salindo
Abstract:
The study was conducted to measure the logistics integration capabilities of selected companies in the Bahrain construction industry using the Supply Chain 2000 framework; and, determine the extent and direction of influence of these logistics capabilities and integration competencies on the supply chain performance of the firm. A total of 50 executive respondents (from supervisor to managing director level) from 22 construction and construction supplier firms participated in the study from September to November 2014. The results reveal that respondent Bahraini construction firms have significantly lower levels of logistics capabilities, but higher levels of logistics integration competencies compared to international benchmarks. Using stepwise multiple regression analysis, eight logistics capabilities of Bahraini constructions firms were identified to be positively associated with firm performance; with comprehensive metrics as the most positively dominant influential logistics capability. Activity based and total cost methodology is found to be the most negatively dominant influential logistics capability. In terms of logistics integration competencies, the study revealed that that customer integration, internal integration, and, measurement integration are negatively associated with firm performance. There was no logistics integration competency found to be positively associated with the supply chain performance among the companies who participated in the study. The research reveals that there are areas for improvement in supply chain capabilities and logistics integration competencies of the construction firms in the Kingdom of Bahrain to improve their supply chain performance to a global level.Keywords: comprehensive metrics, customer integration, logistics integration capabilities, logistics integration competencies
Procedia PDF Downloads 641236 Suspended Sediment Sources Fingerprinting in Ashebeka River Catchment, Assela, Central Ethiopia
Authors: Getachew Mekaa, Bezatu Mengisteb, Tena Alamirewc
Abstract:
Ashebeka River is the main source of drinking water supply for Assela City and its surrounding inhabitants. Apart from seasonal water reliability disruption, the cost of treating water downstream of the river has been increasing over time due to increased pollutants and suspended sediments. Therefore, this research aimed to identify geo-location and prioritize suspended sediment sources in the Ashebeka River catchment using sediment fingerprinting. We collected 58 composite soil samples and a river water sample for suspended sediment samples from the outlet, which were then filtered using Whatman filter paper. The samples were quantified for geochemical tracers with multi-element capability, and inductively coupled plasma-optical emission spectrometry (ICP-OES). Tracers with significant p-value and that passed the Kruskal-Wallis (KW) test were analyzed for stepwise discriminant function analysis (DFA). The DFA results revealed tracers with good discrimination were subsequently used for the mixed model analysis. The relative significant sediment source contributions from sub-catchments (km2): 3, 4, 1, and 2 were estimated as 49.31% (8), 26.71% (5), 23.65% (5.6), and 0.33% (28.4) respectively. The findings of this study will help the water utilities to prioritize areas of intervention, and the approach used could be followed for catchment prioritization in water safety plan development. Moreover, the findings of this research shed light on the integration of sediment fingerprinting into water safety plans to ensure the reliability of drinking water supplies.Keywords: disruption of drinking water reliability, ashebeka river catchment, sediment fingerprinting, sediment source contribution, mixed model
Procedia PDF Downloads 24235 Klippel Feil Syndrome: A Case Report and Review of Literature
Authors: Rim Frikha, Nouha Bouayed Abdelmoula, Afifa Sellami, Salima Daoud, Tarek Rebai
Abstract:
Klippel-Feil Syndrome (KFS) is characterized by congenital vertebral fusion of the cervical spine resulting from faulty segmentation along the embryo's developing axis. A wide spectrum of associated anomalies may be present. This heterogeneity has complicated elucidation of the genetic etiology and management of the syndrome. We report a case of an isolated Klippel-Feil Syndrome with C5-C6 fusion on the cervical spine. It‘s the rarest form of congenital fused cervical vertebrae which is predisposed to the risk of spinal cord injury and neurologic problems. The aim of this paper was to review clinical heterogeneity; radiographic abnormalities and genetic etiology in Klippel-Feil Syndrome. We insist in comprehensive evaluation and delineation of diagnostic and prognostic classes.Keywords: Klippel–Feil anomaly, genetic, clinical heterogeneity, radiographic abnormalities
Procedia PDF Downloads 484234 A Novel Method for Silence Removal in Sounds Produced by Percussive Instruments
Authors: B. Kishore Kumar, Rakesh Pogula, T. Kishore Kumar
Abstract:
The steepness of an audio signal which is produced by the musical instruments, specifically percussive instruments is the perception of how high tone or low tone which can be considered as a frequency closely related to the fundamental frequency. This paper presents a novel method for silence removal and segmentation of music signals produced by the percussive instruments and the performance of proposed method is studied with the help of MATLAB simulations. This method is based on two simple features, namely the signal energy and the spectral centroid. As long as the feature sequences are extracted, a simple thresholding criterion is applied in order to remove the silence areas in the sound signal. The simulations were carried on various instruments like drum, flute and guitar and results of the proposed method were analyzed.Keywords: percussive instruments, spectral energy, spectral centroid, silence removal
Procedia PDF Downloads 411233 The Effect of Multi-Stakeholder Extension Services towards Crop Choice and Farmer's Income, the Case of the Arc High Value Crop Programme
Authors: Joseph Sello Kau, Elias Mashayamombe, Brian Washington Madinkana, Cynthia Ngwane
Abstract:
This paper presents the results for the statistical (stepwise linear regression and multiple regression) analyses, carried out on a number of crops in order to evaluate how the decision for crop choice affect the level of farm income generated by the farmers participating in the High Value Crop production (referred to as the HVC). The goal of the HVC is to encourage farmers cultivate fruit crops. The farmers received planting material from different extension agencies, together with other complementary packages such as fertilizer, garden tools, water tanks etc. During the surveys, it was discovered that a significant number of farmers were cultivating traditional crops even when their plot sizes were small. Traditional crops are competing for resources with high value crops. The results of the analyses show that farmers cultivating fruit crops, maize and potatoes were generating high income than those cultivating spinach and cabbage. High farm income is associated with plot size, access to social grants and gender. Choice for a crop is influenced by the availability of planting material and the market potential for the crop. Extension agencies providing the planting materials stand a good chance of having farmers follow their directives. As a recommendation, for the farmers to cultivate more of the HVCs, the ARC must intensify provision of fruit trees.Keywords: farm income, nature of extension services, type of crops cultivated, fruit crops, cabbage, maize, potato and spinach
Procedia PDF Downloads 323232 A Human Centered Design of an Exoskeleton Using Multibody Simulation
Authors: Sebastian Kölbl, Thomas Reitmaier, Mathias Hartmann
Abstract:
Trial and error approaches to adapt wearable support structures to human physiology are time consuming and elaborate. However, during preliminary design, the focus lies on understanding the interaction between exoskeleton and the human body in terms of forces and moments, namely body mechanics. For the study at hand, a multi-body simulation approach has been enhanced to evaluate actual forces and moments in a human dummy model with and without a digital mock-up of an active exoskeleton. Therefore, different motion data have been gathered and processed to perform a musculosceletal analysis. The motion data are ground reaction forces, electromyography data (EMG) and human motion data recorded with a marker-based motion capture system. Based on the experimental data, the response of the human dummy model has been calibrated. Subsequently, the scalable human dummy model, in conjunction with the motion data, is connected with the exoskeleton structure. The results of the human-machine interaction (HMI) simulation platform are in particular resulting contact forces and human joint forces to compare with admissible values with regard to the human physiology. Furthermore, it provides feedback for the sizing of the exoskeleton structure in terms of resulting interface forces (stress justification) and the effect of its compliance. A stepwise approach for the setup and validation of the modeling strategy is presented and the potential for a more time and cost-effective development of wearable support structures is outlined.Keywords: assistive devices, ergonomic design, inverse dynamics, inverse kinematics, multibody simulation
Procedia PDF Downloads 162231 Non-Linear Assessment of Chromatographic Lipophilicity of Selected Steroid Derivatives
Authors: Milica Karadžić, Lidija Jevrić, Sanja Podunavac-Kuzmanović, Strahinja Kovačević, Anamarija Mandić, Aleksandar Oklješa, Andrea Nikolić, Marija Sakač, Katarina Penov Gaši
Abstract:
Using chemometric approach, the relationships between the chromatographic lipophilicity and in silico molecular descriptors for twenty-nine selected steroid derivatives were studied. The chromatographic lipophilicity was predicted using artificial neural networks (ANNs) method. The most important in silico molecular descriptors were selected applying stepwise selection (SS) paired with partial least squares (PLS) method. Molecular descriptors with satisfactory variable importance in projection (VIP) values were selected for ANN modeling. The usefulness of generated models was confirmed by detailed statistical validation. High agreement between experimental and predicted values indicated that obtained models have good quality and high predictive ability. Global sensitivity analysis (GSA) confirmed the importance of each molecular descriptor used as an input variable. High-quality networks indicate a strong non-linear relationship between chromatographic lipophilicity and used in silico molecular descriptors. Applying selected molecular descriptors and generated ANNs the good prediction of chromatographic lipophilicity of the studied steroid derivatives can be obtained. This article is based upon work from COST Actions (CM1306 and CA15222), supported by COST (European Cooperation and Science and Technology).Keywords: artificial neural networks, chemometrics, global sensitivity analysis, liquid chromatography, steroids
Procedia PDF Downloads 345230 Facial Emotion Recognition with Convolutional Neural Network Based Architecture
Authors: Koray U. Erbas
Abstract:
Neural networks are appealing for many applications since they are able to learn complex non-linear relationships between input and output data. As the number of neurons and layers in a neural network increase, it is possible to represent more complex relationships with automatically extracted features. Nowadays Deep Neural Networks (DNNs) are widely used in Computer Vision problems such as; classification, object detection, segmentation image editing etc. In this work, Facial Emotion Recognition task is performed by proposed Convolutional Neural Network (CNN)-based DNN architecture using FER2013 Dataset. Moreover, the effects of different hyperparameters (activation function, kernel size, initializer, batch size and network size) are investigated and ablation study results for Pooling Layer, Dropout and Batch Normalization are presented.Keywords: convolutional neural network, deep learning, deep learning based FER, facial emotion recognition
Procedia PDF Downloads 273229 Adaptive Few-Shot Deep Metric Learning
Authors: Wentian Shi, Daming Shi, Maysam Orouskhani, Feng Tian
Abstract:
Whereas currently the most prevalent deep learning methods require a large amount of data for training, few-shot learning tries to learn a model from limited data without extensive retraining. In this paper, we present a loss function based on triplet loss for solving few-shot problem using metric based learning. Instead of setting the margin distance in triplet loss as a constant number empirically, we propose an adaptive margin distance strategy to obtain the appropriate margin distance automatically. We implement the strategy in the deep siamese network for deep metric embedding, by utilizing an optimization approach by penalizing the worst case and rewarding the best. Our experiments on image recognition and co-segmentation model demonstrate that using our proposed triplet loss with adaptive margin distance can significantly improve the performance.Keywords: few-shot learning, triplet network, adaptive margin, deep learning
Procedia PDF Downloads 169