Search results for: predictive modlleing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1015

Search results for: predictive modlleing

715 Predictive Value of Hepatitis B Core-Related Antigen (HBcrAg) during Natural History of Hepatitis B Virus Infection

Authors: Yanhua Zhao, Yu Gou, Shu Feng, Dongdong Li, Chuanmin Tao

Abstract:

The natural history of HBV infection could experience immune tolerant (IT), immune clearance (IC), HBeAg-negative inactive/quienscent carrier (ENQ), and HBeAg-negative hepatitis (ENH). As current biomarkers for discriminating these four phases have some weaknesses, additional serological indicators are needed. Hepatits B core-related antigen (HBcrAg) encoded with precore/core gene contains denatured HBeAg, HBV core antigen (HBcAg) and a 22KDa precore protein (p22cr), which was demonstrated to have a close association with natural history of hepatitis B infection, but no specific cutoff values and diagnostic parameters to evaluate the diagnostic efficacy. This study aimed to clarify the distribution of HBcrAg levels and evaluate its diagnostic performance during the natural history of infection from a Western Chinese perspective. 294 samples collected from treatment-naïve chronic hepatitis B (CHB) patients in different phases (IT=64; IC=72; ENQ=100, and ENH=58). We detected the HBcrAg values and analyzed the relationship between HBcrAg and HBV DNA. HBsAg and other clinical parameters were quantitatively tested. HBcrAg levels of four phases were 9.30 log U/mL, 8.80 log U/mL, 3.00 log U/mL, and 5.10 logU/mL, respectively (p < 0.0001). Receiver operating characteristic curve analysis demonstrated that the area under curves (AUCs) of HBcrAg and quantitative HBsAg at cutoff values of 9.25 log U/mL and 4.355 log IU/mL for distinguishing IT from IC phases were 0.704 and 0.694, with sensitivity 76.39% and 59.72%, specificity 53.13% and 79.69%, respectively. AUCs of HBcrAg and quantitative HBsAg at cutoff values of 4.15 log U/mlmL and 2.395 log IU/mlmL for discriminating between ENQ and ENH phases were 0.931 and 0.653, with sensitivity 87.93% and 84%, specificity 91.38% and 39%, respectively. Therefore, HBcrAg levels varied significantly among four natural phases of HBV infection. It had higher predictive performance than quantitative HBsAg for distinguishing between ENQ-patients and ENH-patients and similar performance with HBsAg for the discrimination between IT and IC phases, which indicated that HBcrAg could be a potential serological marker for CHB.

Keywords: chronic hepatitis B, hepatitis B core-related antigen, hepatitis B surface antigens, hepatitis B virus

Procedia PDF Downloads 418
714 Positron Emission Tomography Parameters as Predictors of Pathologic Response and Nodal Clearance in Patients with Stage IIIA NSCLC Receiving Trimodality Therapy

Authors: Andrea L. Arnett, Ann T. Packard, Yolanda I. Garces, Kenneth W. Merrell

Abstract:

Objective: Pathologic response following neoadjuvant chemoradiation (CRT) has been associated with improved overall survival (OS). Conflicting results have been reported regarding the pathologic predictive value of positron emission tomography (PET) response in patients with stage III lung cancer. The aim of this study was to evaluate the correlation between post-treatment PET response and pathologic response utilizing novel FDG-PET parameters. Methods: This retrospective study included patients with non-metastatic, stage IIIA (N2) NSCLC cancer treated with CRT followed by resection. All patients underwent PET prior to and after neoadjuvant CRT. Univariate analysis was utilized to assess correlations between PET response, nodal clearance, pCR, and near-complete pathologic response (defined as the microscopic residual disease or less). Maximal standard uptake value (SUV), standard uptake ratio (SUR) [normalized independently to the liver (SUR-L) and blood pool (SUR-BP)], metabolic tumor volume (MTV), and total lesion glycolysis (TLG) were measured pre- and post-chemoradiation. Results: A total of 44 patients were included for review. Median age was 61.9 years, and median follow-up was 2.6 years. Histologic subtypes included adenocarcinoma (72.2%) and squamous cell carcinoma (22.7%), and the majority of patients had the T2 disease (59.1%). The rate of pCR and near-complete pathologic response within the primary lesion was 28.9% and 44.4%, respectively. The average reduction in SUVmₐₓ was 9.2 units (range -1.9-32.8), and the majority of patients demonstrated some degree of favorable treatment response. SUR-BP and SUR-L showed a mean reduction of 4.7 units (range -0.1-17.3) and 3.5 units (range –1.7-12.6), respectively. Variation in PET response was not significantly associated with histologic subtype, concurrent chemotherapy type, stage, or radiation dose. No significant correlation was found between pathologic response and absolute change in MTV or TLG. Reduction in SUVmₐₓ and SUR were associated with increased rate of pathologic response (p ≤ 0.02). This correlation was not impacted by normalization of SUR to liver versus mediastinal blood pool. A threshold of > 75% decrease in SUR-L correlated with near-complete response, with a sensitivity of 57.9% and specificity of 85.7%, as well as positive and negative predictive values of 78.6% and 69.2%, respectively (diagnostic odds ratio [DOR]: 5.6, p=0.02). A threshold of >50% decrease in SUR was also significantly associated pathologic response (DOR 12.9, p=0.2), but specificity was substantially lower when utilizing this threshold value. No significant association was found between nodal PET parameters and pathologic nodal clearance. Conclusions: Our results suggest that treatment response to neoadjuvant therapy as assessed on PET imaging can be a predictor of pathologic response when evaluated via SUV and SUR. SUR parameters were associated with higher diagnostic odds ratios, suggesting improved predictive utility compared to SUVmₐₓ. MTV and TLG did not prove to be significant predictors of pathologic response but may warrant further investigation in a larger cohort of patients.

Keywords: lung cancer, positron emission tomography (PET), standard uptake ratio (SUR), standard uptake value (SUV)

Procedia PDF Downloads 234
713 Investigating the Relationship Between Alexithymia and Mobile Phone Addiction Along with the Mediating Role of Anxiety, Stress and Depression: A Path Analysis Study and Structural Model Testing

Authors: Pouriya Darabiyan, Hadis Nazari, Kourosh Zarea, Saeed Ghanbari, Zeinab Raiesifar, Morteza Khafaie, Hanna Tuvesson

Abstract:

Introduction Since the beginning of mobile phone addiction, alexithymia, depression, anxiety and stress have been stated as risk factors for Internet addiction, so this study was conducted with the aim of investigating the relationship between Alexithymia and Mobile phone addiction along with the mediating role of anxiety, stress and depression. Materials and methods In this descriptive-analytical and cross-sectional study in 2022, 412 students School of Nursing & Midwifery of Ahvaz Jundishapur University of Medical Sciences were included in the study using available sampling method. Data collection tools were: Demographic Information Questionnaire, Toronto Alexithymia Scale (TAS-20), Depression, Anxiety, Stress Scale (DASS-21) and Mobile Phone Addiction Index (MPAI). Frequency, Pearson correlation coefficient test and linear regression were used to describe and analyze the data. Also, structural equation models and path analysis method were used to investigate the direct and indirect effects as well as the total effect of each dimension of Alexithymia on Mobile phone addiction with the mediating role of stress, depression and anxiety. Statistical analysis was done by SPSS version 22 and Amos version 16 software. Results Alexithymia was a predictive factor for mobile phone addiction. Also, Alexithymia had a positive and significant effect on depression, anxiety and stress. Depression, anxiety and stress had a positive and significant effect on mobile phone addiction. Depression, anxiety and stress variables played the role of a relative mediating variable between Alexithymia and mobile phone addiction. Alexithymia through depression, anxiety and stress also has an indirect effect on Internet addiction. Conclusion Alexithymia is a predictive factor for mobile phone addiction; And the variables of depression, anxiety and stress play the role of a relative mediating variable between Alexithymia and mobile phone addiction.

Keywords: alexithymia, mobile phone, depression, anxiety, stress

Procedia PDF Downloads 99
712 Artificial Neural Network Approach for GIS-Based Soil Macro-Nutrients Mapping

Authors: Shahrzad Zolfagharnassab, Abdul Rashid Mohamed Shariff, Siti Khairunniza Bejo

Abstract:

Conventional methods for nutrient soil mapping are based on laboratory tests of samples that are obtained from surveys. The time and cost involved in gathering and analyzing soil samples are the reasons that researchers use Predictive Soil Mapping (PSM). PSM can be defined as the development of a numerical or statistical model of the relationship among environmental variables and soil properties, which is then applied to a geographic database to create a predictive map. Kriging is a group of geostatistical techniques to spatially interpolate point values at an unobserved location from observations of values at nearby locations. The main problem with using kriging as an interpolator is that it is excessively data-dependent and requires a large number of closely spaced data points. Hence, there is a need to minimize the number of data points without sacrificing the accuracy of the results. In this paper, an Artificial Neural Networks (ANN) scheme was used to predict macronutrient values at un-sampled points. ANN has become a popular tool for prediction as it eliminates certain difficulties in soil property prediction, such as non-linear relationships and non-normality. Back-propagation multilayer feed-forward network structures were used to predict nitrogen, phosphorous and potassium values in the soil of the study area. A limited number of samples were used in the training, validation and testing phases of ANN (pattern reconstruction structures) to classify soil properties and the trained network was used for prediction. The soil analysis results of samples collected from the soil survey of block C of Sawah Sempadan, Tanjung Karang rice irrigation project at Selangor of Malaysia were used. Soil maps were produced by the Kriging method using 236 samples (or values) that were a combination of actual values (obtained from real samples) and virtual values (neural network predicted values). For each macronutrient element, three types of maps were generated with 118 actual and 118 virtual values, 59 actual and 177 virtual values, and 30 actual and 206 virtual values, respectively. To evaluate the performance of the proposed method, for each macronutrient element, a base map using 236 actual samples and test maps using 118, 59 and 30 actual samples respectively produced by the Kriging method. A set of parameters was defined to measure the similarity of the maps that were generated with the proposed method, termed the sample reduction method. The results show that the maps that were generated through the sample reduction method were more accurate than the corresponding base maps produced through a smaller number of real samples. For example, nitrogen maps that were produced from 118, 59 and 30 real samples have 78%, 62%, 41% similarity, respectively with the base map (236 samples) and the sample reduction method increased similarity to 87%, 77%, 71%, respectively. Hence, this method can reduce the number of real samples and substitute ANN predictive samples to achieve the specified level of accuracy.

Keywords: artificial neural network, kriging, macro nutrient, pattern recognition, precision farming, soil mapping

Procedia PDF Downloads 70
711 Privacy Concerns and Law Enforcement Data Collection to Tackle Domestic and Sexual Violence

Authors: Francesca Radice

Abstract:

Domestic and sexual violence provokes, on average in Australia, one female death per week due to intimate violence behaviours. 83% of couples meet online, and intercepting domestic and sexual violence at this level would be beneficial. It has been observed that violent or coercive behaviour has been apparent from initial conversations on dating apps like Tinder. Child pornography, stalking, and coercive control are some criminal offences from dating apps, including women murdered after finding partners through Tinder. Police databases and predictive policing are novel approaches taken to prevent crime before harm is done. This research will investigate how police databases can be used in a privacy-preserving way to characterise users in terms of their potential for violent crime. Using the COPS database of NSW Police, we will explore how the past criminal record can be interpreted to yield a category of potential danger for each dating app user. It is up to the judgement of each subscriber on what degree of the potential danger they are prepared to enter into. Sentiment analysis is an area where research into natural language processing has made great progress over the last decade. This research will investigate how sentiment analysis can be used to interpret interchanges between dating app users to detect manipulative or coercive sentiments. These can be used to alert law enforcement if continued for a defined number of communications. One of the potential problems of this approach is the potential prejudice a categorisation can cause. Another drawback is the possibility of misinterpreting communications and involving law enforcement without reason. The approach will be thoroughly tested with cross-checks by human readers who verify both the level of danger predicted by the interpretation of the criminal record and the sentiment detected from personal messages. Even if only a few violent crimes can be prevented, the approach will have a tangible value for real people.

Keywords: sentiment analysis, data mining, predictive policing, virtual manipulation

Procedia PDF Downloads 78
710 Grid and Market Integration of Large Scale Wind Farms using Advanced Predictive Data Mining Techniques

Authors: Umit Cali

Abstract:

The integration of intermittent energy sources like wind farms into the electricity grid has become an important challenge for the utilization and control of electric power systems, because of the fluctuating behaviour of wind power generation. Wind power predictions improve the economic and technical integration of large amounts of wind energy into the existing electricity grid. Trading, balancing, grid operation, controllability and safety issues increase the importance of predicting power output from wind power operators. Therefore, wind power forecasting systems have to be integrated into the monitoring and control systems of the transmission system operator (TSO) and wind farm operators/traders. The wind forecasts are relatively precise for the time period of only a few hours, and, therefore, relevant with regard to Spot and Intraday markets. In this work predictive data mining techniques are applied to identify a statistical and neural network model or set of models that can be used to predict wind power output of large onshore and offshore wind farms. These advanced data analytic methods helps us to amalgamate the information in very large meteorological, oceanographic and SCADA data sets into useful information and manageable systems. Accurate wind power forecasts are beneficial for wind plant operators, utility operators, and utility customers. An accurate forecast allows grid operators to schedule economically efficient generation to meet the demand of electrical customers. This study is also dedicated to an in-depth consideration of issues such as the comparison of day ahead and the short-term wind power forecasting results, determination of the accuracy of the wind power prediction and the evaluation of the energy economic and technical benefits of wind power forecasting.

Keywords: renewable energy sources, wind power, forecasting, data mining, big data, artificial intelligence, energy economics, power trading, power grids

Procedia PDF Downloads 518
709 Lactate in Critically Ill Patients an Outcome Marker with Time

Authors: Sherif Sabri, Suzy Fawzi, Sanaa Abdelshafy, Ayman Nagah

Abstract:

Introduction: Static derangements in lactate homeostasis during ICU stay have become established as a clinically useful marker of increased risk of hospital and ICU mortality. Lactate indices or kinetic alteration of the anaerobic metabolism make it a potential parameter to evaluate disease severity and intervention adequacy. This is an inexpensive and simple clinical parameter that can be obtained by a minimally invasive means. Aim of work: Comparing the predictive value of dynamic indices of hyperlactatemia in the first twenty four hours of intensive care unit (ICU) admission with other static values are more commonly used. Patients and Methods: This study included 40 critically ill patients above 18 years old of both sexes with Hyperlactamia (≥ 2 m mol/L). Patients were divided into septic group (n=20) and low oxygen transport group (n=20), which include all causes of low-O2. Six lactate indices specifically relating to the first 24 hours of ICU admission were considered, three static indices and three dynamic indices. Results: There were no statistically significant differences among the two groups regarding age, most of the laboratory results including ABG and the need for mechanical ventilation. Admission lactate was significantly higher in low-oxygen transport group than the septic group [37.5±11.4 versus 30.6±7.8 P-value 0.034]. Maximum lactate was significantly higher in low-oxygen transport group than the septic group P-value (0.044). On the other hand absolute lactate (mg) was higher in septic group P-value (< 0.001). Percentage change of lactate was higher in the septic group (47.8±11.3) than the low-oxygen transport group (26.1±12.6) with highly significant P-value (< 0.001). Lastly, time weighted lactate was higher in the low-oxygen transport group (1.72±0.81) than the septic group (1.05±0.8) with significant P-value (0.012). There were statistically significant differences regarding lactate indices in survivors and non survivors, whether in septic or low-oxygen transport group. Conclusion: In critically ill patients, time weighted lactate and percent in lactate change in the first 24 hours can be an independent predictive factor in ICU mortality. Also, a rising compared to a falling blood lactate concentration over the first 24 hours can be associated with significant increase in the risk of mortality.

Keywords: critically ill patients, lactate indices, mortality in intensive care, anaerobic metabolism

Procedia PDF Downloads 241
708 Revolutionizing Accounting: Unleashing the Power of Artificial Intelligence

Authors: Sogand Barghi

Abstract:

The integration of artificial intelligence (AI) in accounting practices is reshaping the landscape of financial management. This paper explores the innovative applications of AI in the realm of accounting, emphasizing its transformative impact on efficiency, accuracy, decision-making, and financial insights. By harnessing AI's capabilities in data analysis, pattern recognition, and automation, accounting professionals can redefine their roles, elevate strategic decision-making, and unlock unparalleled value for businesses. This paper delves into AI-driven solutions such as automated data entry, fraud detection, predictive analytics, and intelligent financial reporting, highlighting their potential to revolutionize the accounting profession. Artificial intelligence has swiftly emerged as a game-changer across industries, and accounting is no exception. This paper seeks to illuminate the profound ways in which AI is reshaping accounting practices, transcending conventional boundaries, and propelling the profession toward a new era of efficiency and insight-driven decision-making. One of the most impactful applications of AI in accounting is automation. Tasks that were once labor-intensive and time-consuming, such as data entry and reconciliation, can now be streamlined through AI-driven algorithms. This not only reduces the risk of errors but also allows accountants to allocate their valuable time to more strategic and analytical tasks. AI's ability to analyze vast amounts of data in real time enables it to detect irregularities and anomalies that might go unnoticed by traditional methods. Fraud detection algorithms can continuously monitor financial transactions, flagging any suspicious patterns and thereby bolstering financial security. AI-driven predictive analytics can forecast future financial trends based on historical data and market variables. This empowers organizations to make informed decisions, optimize resource allocation, and develop proactive strategies that enhance profitability and sustainability. Traditional financial reporting often involves extensive manual effort and data manipulation. With AI, reporting becomes more intelligent and intuitive. Automated report generation not only saves time but also ensures accuracy and consistency in financial statements. While the potential benefits of AI in accounting are undeniable, there are challenges to address. Data privacy and security concerns, the need for continuous learning to keep up with evolving AI technologies, and potential biases within algorithms demand careful attention. The convergence of AI and accounting marks a pivotal juncture in the evolution of financial management. By harnessing the capabilities of AI, accounting professionals can transcend routine tasks, becoming strategic advisors and data-driven decision-makers. The applications discussed in this paper underline the transformative power of AI, setting the stage for an accounting landscape that is smarter, more efficient, and more insightful than ever before. The future of accounting is here, and it's driven by artificial intelligence.

Keywords: artificial intelligence, accounting, automation, predictive analytics, financial reporting

Procedia PDF Downloads 71
707 Indian Premier League (IPL) Score Prediction: Comparative Analysis of Machine Learning Models

Authors: Rohini Hariharan, Yazhini R, Bhamidipati Naga Shrikarti

Abstract:

In the realm of cricket, particularly within the context of the Indian Premier League (IPL), the ability to predict team scores accurately holds significant importance for both cricket enthusiasts and stakeholders alike. This paper presents a comprehensive study on IPL score prediction utilizing various machine learning algorithms, including Support Vector Machines (SVM), XGBoost, Multiple Regression, Linear Regression, K-nearest neighbors (KNN), and Random Forest. Through meticulous data preprocessing, feature engineering, and model selection, we aimed to develop a robust predictive framework capable of forecasting team scores with high precision. Our experimentation involved the analysis of historical IPL match data encompassing diverse match and player statistics. Leveraging this data, we employed state-of-the-art machine learning techniques to train and evaluate the performance of each model. Notably, Multiple Regression emerged as the top-performing algorithm, achieving an impressive accuracy of 77.19% and a precision of 54.05% (within a threshold of +/- 10 runs). This research contributes to the advancement of sports analytics by demonstrating the efficacy of machine learning in predicting IPL team scores. The findings underscore the potential of advanced predictive modeling techniques to provide valuable insights for cricket enthusiasts, team management, and betting agencies. Additionally, this study serves as a benchmark for future research endeavors aimed at enhancing the accuracy and interpretability of IPL score prediction models.

Keywords: indian premier league (IPL), cricket, score prediction, machine learning, support vector machines (SVM), xgboost, multiple regression, linear regression, k-nearest neighbors (KNN), random forest, sports analytics

Procedia PDF Downloads 53
706 Molecular Topology and TLC Retention Behaviour of s-Triazines: QSRR Study

Authors: Lidija R. Jevrić, Sanja O. Podunavac-Kuzmanović, Strahinja Z. Kovačević

Abstract:

Quantitative structure-retention relationship (QSRR) analysis was used to predict the chromatographic behavior of s-triazine derivatives by using theoretical descriptors computed from the chemical structure. Fundamental basis of the reported investigation is to relate molecular topological descriptors with chromatographic behavior of s-triazine derivatives obtained by reversed-phase (RP) thin layer chromatography (TLC) on silica gel impregnated with paraffin oil and applied ethanol-water (φ = 0.5-0.8; v/v). Retention parameter (RM0) of 14 investigated s-triazine derivatives was used as dependent variable while simple connectivity index different orders were used as independent variables. The best QSRR model for predicting RM0 value was obtained with simple third order connectivity index (3χ) in the second-degree polynomial equation. Numerical values of the correlation coefficient (r=0.915), Fisher's value (F=28.34) and root mean square error (RMSE = 0.36) indicate that model is statistically significant. In order to test the predictive power of the QSRR model leave-one-out cross-validation technique has been applied. The parameters of the internal cross-validation analysis (r2CV=0.79, r2adj=0.81, PRESS=1.89) reflect the high predictive ability of the generated model and it confirms that can be used to predict RM0 value. Multivariate classification technique, hierarchical cluster analysis (HCA), has been applied in order to group molecules according to their molecular connectivity indices. HCA is a descriptive statistical method and it is the most frequently used for important area of data processing such is classification. The HCA performed on simple molecular connectivity indices obtained from the 2D structure of investigated s-triazine compounds resulted in two main clusters in which compounds molecules were grouped according to the number of atoms in the molecule. This is in agreement with the fact that these descriptors were calculated on the basis of the number of atoms in the molecule of the investigated s-triazine derivatives.

Keywords: s-triazines, QSRR, chemometrics, chromatography, molecular descriptors

Procedia PDF Downloads 393
705 A Review Paper on Data Mining and Genetic Algorithm

Authors: Sikander Singh Cheema, Jasmeen Kaur

Abstract:

In this paper, the concept of data mining is summarized and its one of the important process i.e KDD is summarized. The data mining based on Genetic Algorithm is researched in and ways to achieve the data mining Genetic Algorithm are surveyed. This paper also conducts a formal review on the area of data mining tasks and genetic algorithm in various fields.

Keywords: data mining, KDD, genetic algorithm, descriptive mining, predictive mining

Procedia PDF Downloads 591
704 Integrations of the Instructional System Design for Students Learning Achievement Motives and Science Attitudes with Stem Educational Model on Stoichiometry Issue in Chemistry Classes with Different Genders

Authors: Tiptunya Duangsri, Panwilai Chomchid, Natchanok Jansawang

Abstract:

This research study was to investigate of education decisions must be made which a part of it should be passed on to future generations as obligatory for all members of a chemistry class for students who will prepare themselves for a special position. The descriptions of instructional design were provided and the recent criticisms are discussed. This research study to an outline of an integrative framework for the description of information and the instructional design model give structure to negotiate a semblance of conscious understanding. The aims of this study are to describe the instructional design model for comparisons between students’ genders of their effects on STEM educational learning achievement motives to their science attitudes and logical thinking abilities with a sample size of 18 students at the 11th grade level with the cluster random sampling technique in Mahawichanukul School were designed. The chemistry learning environment was administered with the STEM education method. To build up the 5-instrument lesson instructional plan issues were instructed innovations, the 30-item Logical Thinking Test (LTT) on 5 scales, namely; Inference, Recognition of Assumptions, Deduction, Interpretation and Evaluation scales was used. Students’ responses of their perceptions with the Test Of Chemistry-Related Attitude (TOCRA) were assessed of their attitude in science toward chemistry. The validity from Index Objective Congruence value (IOC) checked by five expert specialist educator in two chemistry classroom targets in STEM education, the E1/E2 process were equaled evidence of 84.05/81.42 which results based on criteria are higher than of 80/80 standard level with the IOC from the expert educators. Comparisons between students’ learning achievement motives with STEM educational model on stoichiometry issue in chemistry classes with different genders were differentiated at evidence level of .05, significantly. Associations between students’ learning achievement motives on their posttest outcomes and logical thinking abilities, the predictive efficiency (R2) values indicate that 69% and 70% of the variances in different male and female student groups of their logical thinking abilities. The predictive efficiency (R2) values indicate that 73%; and 74% of the variances in different male and female student groups of their science attitudes toward chemistry were associated. Statistically significant on students’ perceptions of their chemistry learning classroom environment and their science attitude toward chemistry when using the MCI and TOCRA, the predictive efficiency (R2) values indicated that 72% and 74% of the variances in different male and female student groups of their chemistry classroom climate, consequently. Suggestions that supporting chemistry or science teachers from science, technology, engineering and mathematics (STEM) in addressing complex teaching and learning issues related instructional design to develop, teach, and assess traditional are important strategies with a focus on STEM education instructional method.

Keywords: development, the instructional design model, students learning achievement motives, science attitudes with STEM educational model, stoichiometry issue, chemistry classes, genders

Procedia PDF Downloads 274
703 Optimal Energy Management System for Electrical Vehicles to Further Extend the Range

Authors: M. R. Rouhi, S. Shafiei, A. Taghavipour, H. Adibi-Asl, A. Doosthoseini

Abstract:

This research targets at alleviating the problem of range anxiety associated with the battery electric vehicles (BEVs) by considering mechanical and control aspects of the powertrain. In this way, all the energy consuming components and their effect on reducing the range of the BEV and battery life index are identified. On the other hand, an appropriate control strategy is designed to guarantee the performance of the BEV and the extended electric range which is evaluated by an extensive simulation procedure and a real-world driving schedule.

Keywords: battery, electric vehicles, ultra-capacitor, model predictive control

Procedia PDF Downloads 259
702 Stress Hyperglycaemia and Glycaemic Control Post Cardiac Surgery: Relaxed Targets May Be Acceptable

Authors: Nicholas Bayfield, Liam Bibo, Charley Budgeon, Robert Larbalestier, Tom Briffa

Abstract:

Introduction: Stress hyperglycaemia is common following cardiac surgery. Its optimal management is uncertain and may differ by diabetic status. This study assesses the in-hospital glycaemic management of cardiac surgery patients and associated postoperative outcomes. Methods: A retrospective cohort analysis of all patients undergoing cardiac surgery at Fiona Stanley Hospital from February 2015 to May 2019 was undertaken. Management and outcomes of hyperglycaemia following cardiac surgery were assessed. Follow-up was assessed to 1 year postoperatively. Multivariate regression modelling was utilised. Results: 1050 non-diabetic patients and 689 diabetic patients were included. In the non-diabetic cohort, patients with mild (peak blood sugar level [BSL] < 14.3), transient stress hyperglycaemia managed without insulin were not at an increased risk of wound-related morbidity (P=0.899) or mortality at 1 year (P=0.483). Insulin management was associated with wound-related readmission to hospital (P=0.004) and superficial sternal wound infection (P=0.047). Prolonged or severe stress hyperglycaemia was predictive of hospital re-admission (P=0.050) but not morbidity or mortality (P=0.546). Diabetes mellitus was an independent risk factor 1-year mortality (OR; 1.972 [1.041–3.736], P=0.037), graft harvest site wound infection (OR; 1.810 [1.134–2.889], P=0.013) and wound-related readmission (OR; 1.866 [1.076–3.236], P=0.026). In diabetics, postoperative peak BSL > 13.9mmol/L was predictive of graft harvest site infections (OR; 3.528 [1.724-7.217], P=0.001) and wound-related readmission OR; 3.462 [1.540-7.783], P=0.003) regardless of modality of management. A peak BSL of 10.0-13.9 did not increase the risk of morbidity/mortality compared to a peak BSL of < 10.0 (P=0.557). Diabetics with a peak BSL of 13.9 or less did not have significantly increased morbidity/mortality outcomes compared to non-diabetics (P=0.418). Conclusion: In non-diabetic patients, transient mild stress hyperglycaemia following cardiac surgery does not uniformly require treatment. In diabetic patients, postoperative hyperglycaemia with peak BSL exceeding 13.9mmol/L was associated with wound-related morbidity and hospital readmission following cardiac surgery.

Keywords: cardiac surgery, pulmonary embolism, pulmonary embolectomy, cardiopulmonary bypass

Procedia PDF Downloads 162
701 Perception of Predictive Confounders for the Prevalence of Hypertension among Iraqi Population: A Pilot Study

Authors: Zahraa Albasry, Hadeel D. Najim, Anmar Al-Taie

Abstract:

Background: Hypertension is considered as one of the most important causes of cardiovascular complications and one of the leading causes of worldwide mortality. Identifying the potential risk factors associated with this medical health problem plays an important role in minimizing its incidence and related complications. The objective of this study is to explore the prevalence of receptor sensitivity regarding assess and understand the perception of specific predictive confounding factors on the prevalence of hypertension (HT) among a sample of Iraqi population in Baghdad, Iraq. Materials and Methods: A randomized cross sectional study was carried out on 100 adult subjects during their visit to the outpatient clinic at a certain sector of Baghdad Province, Iraq. Demographic, clinical and health records alongside specific screening and laboratory tests of the participants were collected and analyzed to detect the potential of confounding factors on the prevalence of HT. Results: 63% of the study participants suffered from HT, most of them were female patients (P < 0.005). Patients aged between 41-50 years old significantly suffered from HT than other age groups (63.5%, P < 0.001). 88.9% of the participants were obese (P < 0.001) and 47.6% had diabetes with HT. Positive family history and sedentary lifestyle were significantly higher among all hypertensive groups (P < 0.05). High salt and fatty food intake was significantly found among patients suffered from isolated systolic hypertension (ISHT) (P < 0.05). A significant positive correlation between packed cell volume (PCV) and systolic blood pressure (SBP) (r = 0.353, P = 0.048) found among normotensive participants. Among hypertensive patients, a positive significant correlation found between triglycerides (TG) and both SBP (r = 0.484, P = 0.031) and diastolic blood pressure (DBP) (r = 0.463, P = 0.040), while low density lipoprotein-cholesterol (LDL-c) showed a positive significant correlation with DBP (r = 0.443, P = 0.021). Conclusion: The prevalence of HT among Iraqi populations is of major concern. Further consideration is required to detect the impact of potential risk factors and to minimize blood pressure (BP) elevation and reduce the risk of other cardiovascular complications later in life.

Keywords: Correlation, Hypertension, Iraq, Risk factors

Procedia PDF Downloads 128
700 Predictors of Recent Work-Related Injury in a Rapidly Developing Country: Results from a Worker Survey in Qatar

Authors: Ruben Peralta, Sam Thomas, Nazia Hirani, Ayman El-Menyar, Hassan Al-Thani, Mohammed Al-Thani, Mohammed Al-Hajjaj, Rafael Consunji

Abstract:

Moderate to severe work-related injuries [WRI's] are a leading cause of trauma admission in Qatar but information on risk factors for their incidence are lacking. This study aims to document and analyze the predictive characteristics for WRI to inform the creation of targeted interventions to improve worker safety in Qatar. This study was conducted as part of the NPRP grant # 7 - 1120 - 3 - 288, titled "A Unified Registry for Occupational Injury Prevention in Qatar”. 266 workers were interviewed using a standard questionnaire, during ‘World Day for Safety and Health at Work’, a Ministry of Public Health event, none refused interview. Nurses and doctors from the Hamad Trauma Center conducted the interviews. Questions were translated into the worker’s native language when it was deemed necessary. Standard information on epidemiologic characteristics and incidence of work-related injury were collected and compared between nationalities and those injured versus those not injured. 262 males and 4 females were interviewed. 17 [6.4%] reported a WRI in the last 24 months. More than half of the injured worked in construction [59%] followed by water supply [11.8%]. Factors significantly associated with recent injury were: Working for a company with > 500 employees and speaking Hindi. Protective characteristics included: Being from the Philippines or Sri Lanka, speaking Arabic, working in healthcare, an office or trading and company size between 100-500 employees. Years of schooling and working in Qatar were not predictive factor for WRI. The findings from this survey should guide future research that will better define worker populations at an increased risk for WRI and inform recruiters and sending countries. A focus on worker language skills, interventions in the construction industry and occupational safety in large companies is needed.

Keywords: occupational injury, prevention, safety, trauma, work related injury

Procedia PDF Downloads 323
699 Upon Further Reflection: More on the History, Tripartite Role, and Challenges of the Professoriate

Authors: Jeffrey R. Mueller

Abstract:

This paper expands on the role of the professor by detailing the origins of the profession, adding some of the unique contributions of North American Universities, as well as some of the best practice recommendations, to the unique tripartite role of the professor. It describes current challenges to the profession including the ever-controversial student rating of professors. It continues with the significance of empowerment to the role of the professor. It concludes with a predictive prescription for the future of the professoriate and the role of the university-level educational administrator toward that end.

Keywords: professoriate history, tripartite role, challenges, empowerment, shared governance, administratization

Procedia PDF Downloads 401
698 Longitudinal Profile of Antibody Response to SARS-CoV-2 in Patients with Covid-19 in a Setting from Sub–Saharan Africa: A Prospective Longitudinal Study

Authors: Teklay Gebrecherkos

Abstract:

Background: Serological testing for SARS-CoV-2 plays an important role in epidemiological studies, in aiding the diagnosis of COVID-19 and assess vaccine responses. Little is known about the dynamics of SARS-CoV-2 serology in African settings. Here, we aimed to characterize the longitudinal antibody response profile to SARS-CoV-2 in Ethiopia. Methods: In this prospective study, a total of 102 PCR-confirmed COVID-19 patients were enrolled. We obtained 802 plasma samples collected serially. SARS-CoV-2 antibodies were determined using four lateral flow immune assays (LFIAs) and an electrochemiluminescent immunoassay. We determined longitudinal antibody response to SARS-CoV-2 as well as seroconversion dynamics. Results: Serological positivity rate ranged between 12%-91%, depending on timing after symptom onset. There was no difference in the positivity rate between severe and non-severe COVID-19 cases. The specificity ranged between 90%-97%. Agreement between different assays ranged between 84%-92%. The estimated positive predictive value (PPV) for IgM or IgG in a scenario with seroprevalence at 5% varies from 33% to 58%. Nonetheless, when the population seroprevalence increases to 25% and 50%, there is a corresponding increase in the estimated PPVs. The estimated negative-predictive value (NPV) in a low seroprevalence scenario (5%) is high (>99%). However, the estimated NPV in a high seroprevalence scenario (50%) for IgM or IgG is reduced significantly from 80% to 85%. Overall, 28/102 (27.5%) seroconverted by one or more assays tested within a median time of 11 (IQR: 9–15) days post symptom onset. The median seroconversion time among symptomatic cases tended to be shorter when compared to asymptomatic patients [9 (IQR: 6–11) vs. 15 (IQR: 13–21) days; p = 0.002]. Overall, seroconversion reached 100% 5.5 weeks after the onset of symptoms. Notably, of the remaining 74 COVID-19 patients included in the cohort, 64 (62.8%) were positive for antibodies at the time of enrollment, and 10 (9.8%) patients failed to mount a detectable antibody response by any of the assays tested during follow-up. Conclusions: Longitudinal assessment of antibody response in African COVID-19 patients revealed heterogeneous responses. This underscores the need for a comprehensive evaluation of serum assays before implementation. Factors associated with failure to seroconvert need further research.

Keywords: COVID-19, antibody, rapid diagnostic tests, ethiopia

Procedia PDF Downloads 82
697 Predictive Relationship between Motivation Strategies and Musical Creativity of Secondary School Music Students

Authors: Lucy Lugo Mawang

Abstract:

Educational Psychologists have highlighted the significance of creativity in education. Likewise, a fundamental objective of music education concern the development of students’ musical creativity potential. The purpose of this study was to determine the relationship between motivation strategies and musical creativity, and establish the prediction equation of musical creativity. The study used purposive sampling and census to select 201 fourth-form music students (139 females/ 62 males), mainly from public secondary schools in Kenya. The mean age of participants was 17.24 years (SD = .78). Framed upon self- determination theory and the dichotomous model of achievement motivation, the study adopted an ex post facto research design. A self-report measure, the Achievement Goal Questionnaire-Revised (AGQ-R) was used in data collection for the independent variable. Musical creativity was based on a creative music composition task and measured by the Consensual Musical Creativity Assessment Scale (CMCAS). Data collected in two separate sessions within an interval of one month. The questionnaire was administered in the first session, lasting approximately 20 minutes. The second session was for notation of participants’ creative composition. The results indicated a positive correlation r(199) = .39, p ˂ .01 between musical creativity and intrinsic music motivation. Conversely, negative correlation r(199) = -.19, p < .01 was observed between musical creativity and extrinsic music motivation. The equation for predicting musical creativity from music motivation strategies was significant F(2, 198) = 20.8, p < .01, with R2 = .17. Motivation strategies accounted for approximately (17%) of the variance in participants’ musical creativity. Intrinsic music motivation had the highest significant predictive value (β = .38, p ˂ .01) on musical creativity. In the exploratory analysis, a significant mean difference t(118) = 4.59, p ˂ .01 in musical creativity for intrinsic and extrinsic music motivation was observed in favour of intrinsically motivated participants. Further, a significant gender difference t(93.47) = 4.31, p ˂ .01 in musical creativity was observed, with male participants scoring higher than females. However, there was no significant difference in participants’ musical creativity based on age. The study recommended that music educators should strive to enhance intrinsic music motivation among students. Specifically, schools should create conducive environments and have interventions for the development of intrinsic music motivation since it is the most facilitative motivation strategy in predicting musical creativity.

Keywords: extrinsic music motivation, intrinsic music motivation, musical creativity, music composition

Procedia PDF Downloads 154
696 Predictive Analysis of the Stock Price Market Trends with Deep Learning

Authors: Suraj Mehrotra

Abstract:

The stock market is a volatile, bustling marketplace that is a cornerstone of economics. It defines whether companies are successful or in spiral. A thorough understanding of it is important - many companies have whole divisions dedicated to analysis of both their stock and of rivaling companies. Linking the world of finance and artificial intelligence (AI), especially the stock market, has been a relatively recent development. Predicting how stocks will do considering all external factors and previous data has always been a human task. With the help of AI, however, machine learning models can help us make more complete predictions in financial trends. Taking a look at the stock market specifically, predicting the open, closing, high, and low prices for the next day is very hard to do. Machine learning makes this task a lot easier. A model that builds upon itself that takes in external factors as weights can predict trends far into the future. When used effectively, new doors can be opened up in the business and finance world, and companies can make better and more complete decisions. This paper explores the various techniques used in the prediction of stock prices, from traditional statistical methods to deep learning and neural networks based approaches, among other methods. It provides a detailed analysis of the techniques and also explores the challenges in predictive analysis. For the accuracy of the testing set, taking a look at four different models - linear regression, neural network, decision tree, and naïve Bayes - on the different stocks, Apple, Google, Tesla, Amazon, United Healthcare, Exxon Mobil, J.P. Morgan & Chase, and Johnson & Johnson, the naïve Bayes model and linear regression models worked best. For the testing set, the naïve Bayes model had the highest accuracy along with the linear regression model, followed by the neural network model and then the decision tree model. The training set had similar results except for the fact that the decision tree model was perfect with complete accuracy in its predictions, which makes sense. This means that the decision tree model likely overfitted the training set when used for the testing set.

Keywords: machine learning, testing set, artificial intelligence, stock analysis

Procedia PDF Downloads 95
695 Link Between Intensity-trajectories Of Acute Postoperative Pain And Risk Of Chronicization After Breast And Thoracopulmonary Surgery

Authors: Beloulou Mohamed Lamine, Fedili Benamar, Meliani Walid, Chaid Dalila

Abstract:

Introduction: The risk factors for the chronicization of postoperative pain are numerous and often intricately intertwined. Among these, the severity of acute postoperative pain is currently recognized as one of the most determining factors. Mastectomy and thoracotomy are described as among the most painful surgeries and the most likely to lead to chronic post-surgical pain (CPSP). Objective: To examine the aspects of acute postoperative pain potentially involved in the development of chronic pain following breast and thoracic surgery. Patients and Methods: A prospective study involving 164 patients was conducted over a six-month period. Postoperative pain (during mobilization) was assessed using a Visual Analog Scale (VAS) at various time points after surgery: Day 0, 1st, 2nd, 5th days, 1st and 6th months. Moderate to severe pain was defined as a VAS score ≥ 4. A comparative analysis (univariate analysis) of postoperative pain intensities at different evaluation phases was performed on patients with and without CPSP to identify potential associations with the risk of chronicization six months after surgery. Results: At the 6th month post-surgery, the incidence of CPSP was 43.0%. Moderate to severe acute postoperative pain (in the first five days) was observed in 64% of patients. The highest pain scores were reported among thoracic surgery patients. Comparative measures revealed a highly significant association between the presence of moderate to severe acute pain, especially lasting for ≥ 48 hours, and the occurrence of CPSP (p-value <0.0001). Likewise, the persistence of subacute pain (up to 4 to 6 weeks after surgery), especially of moderate to severe intensity, was significantly associated with the risk of chronicization at six months (p-value <0.0001). Conclusion: CPSP after breast and thoracic surgery remains a fairly common morbidity that profoundly affects the quality of life. Severe acute postoperative pain, especially if it is prolonged and/or with a slow decline in intensity, can be an important predictive factor for the risk of chronicization. Therefore, more effective and intensive management of acute postoperative pain, as well as longitudinal monitoring of its trajectory over time, should be an essential component of strategies for preventing chronic pain after surgery.

Keywords: chronic post-surgical pain, acute postoperative pain, breast and thoracic surgery, subacute postoperative pain, pain trajectory, predictive factor

Procedia PDF Downloads 73
694 Digital Transformation: Actionable Insights to Optimize the Building Performance

Authors: Jovian Cheung, Thomas Kwok, Victor Wong

Abstract:

Buildings are entwined with smart city developments. Building performance relies heavily on electrical and mechanical (E&M) systems and services accounting for about 40 percent of global energy use. By cohering the advancement of technology as well as energy and operation-efficient initiatives into the buildings, people are enabled to raise building performance and enhance the sustainability of the built environment in their daily lives. Digital transformation in the buildings is the profound development of the city to leverage the changes and opportunities of digital technologies To optimize the building performance, intelligent power quality and energy management system is developed for transforming data into actions. The system is formed by interfacing and integrating legacy metering and internet of things technologies in the building and applying big data techniques. It provides operation and energy profile and actionable insights of a building, which enables to optimize the building performance through raising people awareness on E&M services and energy consumption, predicting the operation of E&M systems, benchmarking the building performance, and prioritizing assets and energy management opportunities. The intelligent power quality and energy management system comprises four elements, namely the Integrated Building Performance Map, Building Performance Dashboard, Power Quality Analysis, and Energy Performance Analysis. It provides predictive operation sequence of E&M systems response to the built environment and building activities. The system collects the live operating conditions of E&M systems over time to identify abnormal system performance, predict failure trends and alert users before anticipating system failure. The actionable insights collected can also be used for system design enhancement in future. This paper will illustrate how intelligent power quality and energy management system provides operation and energy profile to optimize the building performance and actionable insights to revitalize an existing building into a smart building. The system is driving building performance optimization and supporting in developing Hong Kong into a suitable smart city to be admired.

Keywords: intelligent buildings, internet of things technologies, big data analytics, predictive operation and maintenance, building performance

Procedia PDF Downloads 157
693 Evaluating the Educational Intervention Based on Web and Integrative Model of Behavior Prediction to Promote Physical Activities and HS-CRP Factor among Nurses

Authors: Arsalan Ghaderi

Abstract:

Introduction: Inactivity is one of the most important risk factors for cardiovascular disease. According to the study prevalence of inactivity in Iran, about 67.5% and in the staff, and especially nurses, are similar. The inflammatory index (HS-CRP) is highly predictive of the progression of these diseases. Physical activity education is very important in preventing these diseases. One of the modern educational methods is web-based theory-based education. Methods: This is a semi-experimental interventional study which was conducted in Isfahan and Kurdistan universities of medical sciences in two stages. A cross-sectional study was done to determine the status of physical activity and its predictive factors. Then, intervention was performed, and six months later the data were retrieved. The data was collected using a demographic questionnaire, an integrative model of behavior prediction constructs, a standard physical activity questionnaire and (HS-CRP) test. Data were analyzed by SPSS software. Results: Physical activity was low in 66.6% of nurses, 25.4% were moderate and 8% severe. According to Pearson correlation matrix, the highest correlation was found between behavioral intention and skill structures (0.553**), subjective norms (0.222**) and self-efficacy (0.198**). The relationship between age and physical activity in the first study was reverse and significant. After intervention, there was a significant change in attitudes, self-efficacy, skill and behavioral intention in the intervention group. This change was significant in attitudes, self-efficacy and environmental conditions of the control group. HS-CRP index decreased significantly after intervention in both groups, but there was not a significant relationship between inflammatory index and physical activity score. The change in physical activity level was significant only in the control group. Conclusion: Despite the effect of educational intervention on attitude, self-efficacy, skill, and behavioral intention, the results showed that if factors such as environmental factors are not corrected, training and changing structures cannot lead to physical activity behavior. On the other hand, no correlation between physical activity and HS-CRP showed that this index can be influenced by other factors, and this should be considered in any intervention to reduce the HS-CRP index.

Keywords: HS-CRP, integrative model of behavior prediction, physical activity, nurses, web-based education

Procedia PDF Downloads 114
692 Adolescent-Parent Relationship as the Most Important Factor in Preventing Mood Disorders in Adolescents: An Application of Artificial Intelligence to Social Studies

Authors: Elżbieta Turska

Abstract:

Introduction: One of the most difficult times in a person’s life is adolescence. The experiences in this period may shape the future life of this person to a large extent. This is the reason why many young people experience sadness, dejection, hopelessness, sense of worthlessness, as well as losing interest in various activities and social relationships, all of which are often classified as mood disorders. As many as 15-40% adolescents experience depressed moods and for most of them they resolve and are not carried into adulthood. However, (5-6%) of those affected by mood disorders develop the depressive syndrome and as many as (1-3%) develop full-blown clinical depression. Materials: A large questionnaire was given to 2508 students, aged 13–16 years old, and one of its parts was the Burns checklist, i.e. the standard test for identifying depressed mood. The questionnaire asked about many aspects of the student’s life, it included a total of 53 questions, most of which had subquestions. It is important to note that the data suffered from many problems, the most important of which were missing data and collinearity. Aim: In order to identify the correlates of mood disorders we built predictive models which were then trained and validated. Our aim was not to be able to predict which students suffer from mood disorders but rather to explore the factors influencing mood disorders. Methods: The problems with data described above practically excluded using all classical statistical methods. For this reason, we attempted to use the following Artificial Intelligence (AI) methods: classification trees with surrogate variables, random forests and xgboost. All analyses were carried out with the use of the mlr package for the R programming language. Resuts: The predictive model built by classification trees algorithm outperformed the other algorithms by a large margin. As a result, we were able to rank the variables (questions and subquestions from the questionnaire) from the most to least influential as far as protection against mood disorder is concerned. Thirteen out of twenty most important variables reflect the relationships with parents. This seems to be a really significant result both from the cognitive point of view and also from the practical point of view, i.e. as far as interventions to correct mood disorders are concerned.

Keywords: mood disorders, adolescents, family, artificial intelligence

Procedia PDF Downloads 101
691 Improved Computational Efficiency of Machine Learning Algorithm Based on Evaluation Metrics to Control the Spread of Coronavirus in the UK

Authors: Swathi Ganesan, Nalinda Somasiri, Rebecca Jeyavadhanam, Gayathri Karthick

Abstract:

The COVID-19 crisis presents a substantial and critical hazard to worldwide health. Since the occurrence of the disease in late January 2020 in the UK, the number of infected people confirmed to acquire the illness has increased tremendously across the country, and the number of individuals affected is undoubtedly considerably high. The purpose of this research is to figure out a predictive machine learning archetypal that could forecast COVID-19 cases within the UK. This study concentrates on the statistical data collected from 31st January 2020 to 31st March 2021 in the United Kingdom. Information on total COVID cases registered, new cases encountered on a daily basis, total death registered, and patients’ death per day due to Coronavirus is collected from World Health Organisation (WHO). Data preprocessing is carried out to identify any missing values, outliers, or anomalies in the dataset. The data is split into 8:2 ratio for training and testing purposes to forecast future new COVID cases. Support Vector Machines (SVM), Random Forests, and linear regression algorithms are chosen to study the model performance in the prediction of new COVID-19 cases. From the evaluation metrics such as r-squared value and mean squared error, the statistical performance of the model in predicting the new COVID cases is evaluated. Random Forest outperformed the other two Machine Learning algorithms with a training accuracy of 99.47% and testing accuracy of 98.26% when n=30. The mean square error obtained for Random Forest is 4.05e11, which is lesser compared to the other predictive models used for this study. From the experimental analysis Random Forest algorithm can perform more effectively and efficiently in predicting the new COVID cases, which could help the health sector to take relevant control measures for the spread of the virus.

Keywords: COVID-19, machine learning, supervised learning, unsupervised learning, linear regression, support vector machine, random forest

Procedia PDF Downloads 121
690 Experience Marketing and Behavioral Intentions: An Exploratory Study Applied to Middle-Aged and Senior Pickleball Participated in Taiwan

Authors: Yi Yau, Chia-Huei Hsiao

Abstract:

The elderly society is already a problem of globalization, and Taiwan will enter a super-aged society in 2025. Therefore, how to improve the health of the elderly and reduce the government's social burden is an important issue at present. Exercise is the best medical care, and it is also a healthy activity for people to live a healthy life. Facing the super-aged society in the future, it is necessary to attract them to participate in sports voluntarily through sports promotion so that they can live healthy and independent lives and continue to participate in society to enhance the well-being of the elderly. Experiential marketing and sports participation are closely related. In the past, it was mainly aimed at consumer behavior at the commercial level. At present, there are not many study objects focusing on participant behavior and middle-aged and elderly people. Therefore, this study takes the news emerged sport-Pickleball that has been loved by silver-haired people in recent years as the research sport. It uses questionnaire surveys and intentional sampling methods. The purpose of the group is to understand the middle-aged and elderly people’s experience and behavior patterns of Pickleball, explore the relationship between experiential marketing and participants' intentional behaviors, and predict which aspects of experiential marketing will affect their intentional behaviors. The findings showed that experience marketing is highly positively correlated with behavioral intentions, and experience marketing has a positive predictive power for behavioral intentions. Among them, "ACT" and "SENSE" are predictive variables that effectively predict behavioral intentions. This study proves the feasibility of pickleball for middle-aged and senior sports. It is recommended that in the future curriculum planning, try to simplify the exercise steps, increase the chances of contact with the sphere, and enhance the sensory experience to enhance the sense of success during exercise, and then generate exercise motivation, and ultimately change the exercise mode or habits and promote health.

Keywords: newly emerged sports, middle age and elderly, health promotion, ACT, SENSE

Procedia PDF Downloads 156
689 Simon Says: What Should I Study?

Authors: Fonteyne Lot

Abstract:

SIMON (Study capacities and Interest Monitor is a freely accessible online self-assessment tool that allows secondary education pupils to evaluate their interests and capacities in order to choose a post-secondary major that maximally suits their potential. The tool consists of two broad domains that correspond with two general questions pupils ask: 'What study fields interest me?' and 'Am I capable to succeed in this field of study?'. The first question is addressed by a RIASEC-type interest inventory that links personal interests to post-secondary majors. Pupils are provided with a personal profile and an overview of majors with their degree of congruence. The output is dynamic: respondents can manipulate their score and they can compare their results to the profile of all fields of study. That way they are stimulated to explore the broad range of majors. To answer whether pupils are capable of succeeding in a preferred major, a battery of tests is provided. This battery comprises a range of factors that are predictive of academic success. Traditional predictors such as (educational) background and cognitive variables (mathematical and verbal skills) are included. Moreover, non-cognitive predictors of academic success (such as 'motivation', 'test anxiety', 'academic self-efficacy' and 'study skills') are assessed. These non-cognitive factors are generally not included in admission decisions although research shows they are incrementally predictive of success and are less discriminating. These tests inform pupils on potential causes of success and failure. More important, pupils receive their personal chances of success per major. These differential probabilities are validated through the underlying research on academic success of students. For example, the research has shown that we can identify 22 % of the failing students in psychology and educational sciences. In this group, our prediction is 95% accurate. SIMON leads more students to a suitable major which in turn alleviates student success and retention. Apart from these benefits, the instrument grants insight into risk factors of academic failure. It also supports and fosters the development of evidence-based remedial interventions and therefore gives way to a more efficient use of means.

Keywords: academic success, online self-assessment, student retention, vocational choice

Procedia PDF Downloads 404
688 Monitoring Large-Coverage Forest Canopy Height by Integrating LiDAR and Sentinel-2 Images

Authors: Xiaobo Liu, Rakesh Mishra, Yun Zhang

Abstract:

Continuous monitoring of forest canopy height with large coverage is essential for obtaining forest carbon stocks and emissions, quantifying biomass estimation, analyzing vegetation coverage, and determining biodiversity. LiDAR can be used to collect accurate woody vegetation structure such as canopy height. However, LiDAR’s coverage is usually limited because of its high cost and limited maneuverability, which constrains its use for dynamic and large area forest canopy monitoring. On the other hand, optical satellite images, like Sentinel-2, have the ability to cover large forest areas with a high repeat rate, but they do not have height information. Hence, exploring the solution of integrating LiDAR data and Sentinel-2 images to enlarge the coverage of forest canopy height prediction and increase the prediction repeat rate has been an active research topic in the environmental remote sensing community. In this study, we explore the potential of training a Random Forest Regression (RFR) model and a Convolutional Neural Network (CNN) model, respectively, to develop two predictive models for predicting and validating the forest canopy height of the Acadia Forest in New Brunswick, Canada, with a 10m ground sampling distance (GSD), for the year 2018 and 2021. Two 10m airborne LiDAR-derived canopy height models, one for 2018 and one for 2021, are used as ground truth to train and validate the RFR and CNN predictive models. To evaluate the prediction performance of the trained RFR and CNN models, two new predicted canopy height maps (CHMs), one for 2018 and one for 2021, are generated using the trained RFR and CNN models and 10m Sentinel-2 images of 2018 and 2021, respectively. The two 10m predicted CHMs from Sentinel-2 images are then compared with the two 10m airborne LiDAR-derived canopy height models for accuracy assessment. The validation results show that the mean absolute error (MAE) for year 2018 of the RFR model is 2.93m, CNN model is 1.71m; while the MAE for year 2021 of the RFR model is 3.35m, and the CNN model is 3.78m. These demonstrate the feasibility of using the RFR and CNN models developed in this research for predicting large-coverage forest canopy height at 10m spatial resolution and a high revisit rate.

Keywords: remote sensing, forest canopy height, LiDAR, Sentinel-2, artificial intelligence, random forest regression, convolutional neural network

Procedia PDF Downloads 92
687 Early Impact Prediction and Key Factors Study of Artificial Intelligence Patents: A Method Based on LightGBM and Interpretable Machine Learning

Authors: Xingyu Gao, Qiang Wu

Abstract:

Patents play a crucial role in protecting innovation and intellectual property. Early prediction of the impact of artificial intelligence (AI) patents helps researchers and companies allocate resources and make better decisions. Understanding the key factors that influence patent impact can assist researchers in gaining a better understanding of the evolution of AI technology and innovation trends. Therefore, identifying highly impactful patents early and providing support for them holds immeasurable value in accelerating technological progress, reducing research and development costs, and mitigating market positioning risks. Despite the extensive research on AI patents, accurately predicting their early impact remains a challenge. Traditional methods often consider only single factors or simple combinations, failing to comprehensively and accurately reflect the actual impact of patents. This paper utilized the artificial intelligence patent database from the United States Patent and Trademark Office and the Len.org patent retrieval platform to obtain specific information on 35,708 AI patents. Using six machine learning models, namely Multiple Linear Regression, Random Forest Regression, XGBoost Regression, LightGBM Regression, Support Vector Machine Regression, and K-Nearest Neighbors Regression, and using early indicators of patents as features, the paper comprehensively predicted the impact of patents from three aspects: technical, social, and economic. These aspects include the technical leadership of patents, the number of citations they receive, and their shared value. The SHAP (Shapley Additive exPlanations) metric was used to explain the predictions of the best model, quantifying the contribution of each feature to the model's predictions. The experimental results on the AI patent dataset indicate that, for all three target variables, LightGBM regression shows the best predictive performance. Specifically, patent novelty has the greatest impact on predicting the technical impact of patents and has a positive effect. Additionally, the number of owners, the number of backward citations, and the number of independent claims are all crucial and have a positive influence on predicting technical impact. In predicting the social impact of patents, the number of applicants is considered the most critical input variable, but it has a negative impact on social impact. At the same time, the number of independent claims, the number of owners, and the number of backward citations are also important predictive factors, and they have a positive effect on social impact. For predicting the economic impact of patents, the number of independent claims is considered the most important factor and has a positive impact on economic impact. The number of owners, the number of sibling countries or regions, and the size of the extended patent family also have a positive influence on economic impact. The study primarily relies on data from the United States Patent and Trademark Office for artificial intelligence patents. Future research could consider more comprehensive data sources, including artificial intelligence patent data, from a global perspective. While the study takes into account various factors, there may still be other important features not considered. In the future, factors such as patent implementation and market applications may be considered as they could have an impact on the influence of patents.

Keywords: patent influence, interpretable machine learning, predictive models, SHAP

Procedia PDF Downloads 50
686 Clinical Value of 18F-FDG-PET Compared with CT Scan in the Detection of Nodal and Distant Metastasis in Urothelial Carcinoma or Bladder Cancer

Authors: Mohammed Al-Zubaidi, Katherine Ong, Pravin Viswambaram, Steve McCombie, Oliver Oey, Jeremy Ong, Richard Gauci, Ronny Low, Dickon Hayne

Abstract:

Objective: Lymph node involvement along with distant metastasis in a patient with invasive bladder cancer determines the disease survival, therefeor, it is an essential determinant of the therapeutic management and outcome. This retrospective study aims to determine the accuracy of FDG PET scan in detecting lymphatic involvement and distant metastatic urothelial cancer compared to conventional CT staging. Method: A retrospective review of 76 patients with UC or BC who underwent surgery or confirmatory biopsy that was staged with both CT and 18F-FDG-PET (up to 8 weeks apart) between 2015 and 2020. Fifty-sevenpatients (75%) had formal pelvic LN dissection or biopsy of suspicious metastasis. 18F-FDG-PET reports for positive sites were qualitative depending on SUV Max. On the other hand, enlarged LN by RECIST criteria 1.1 (>10 mm) and other qualitative findings suggesting metastasis were considered positive in CT scan. Histopathological findings from surgical specimens or image-guided biopsies were considered the gold standard in comparison to imaging reports. 18F-FDG-avid or enlarged pelvic LNs with surgically proven nodal metastasis were considered true positives. Performance characteristics of 18F-FDG-PET and CT, including sensitivity, specificity, positive predictive value (PPV), and negative predictive value (PPV), were calculated. Results: Pelvic LN involvement was confirmed histologically in 10/57 (17.5%) patients. Sensitivity, specificity, PPV and NPV of CT for detecting pelvic LN metastases were 41.17% (95% CI:18-67%), 100% (95% CI:90-100%) 100% (95% CI:59-100%) and 78.26% (95% CI:64-89%) respectively. Sensitivity, specificity, PPV and NPV of 18F-FDG-PET for detecting pelvic LN metastases were 62.5% (95% CI:35-85%), 83.78% (95% CI:68-94%), 62.5% (95% CI:35-85%), and 83.78% (95% CI:68-94%) respectively. Pre-operative staging with 18F-FDG-PET identified the distant metastatic disease in 9/76 (11.8%) patients who were occult on CT. This retrospective study suggested that 18F-FDG-PET may be more sensitive than CT for detecting pelvic LN metastases. 7/76 (9.2%) patients avoided cystectomy due to 18F-FDG-PET diagnosed metastases that were not reported on CT. Conclusion: 18F-FDG-PET is more sensitive than CT for pelvic LN metastases, which can be used as the standard modality of bladder cancer staging, as it may change the treatment by detecting lymph node metastasis that was occult in CT. Further research involving randomised controlled trials comparing the diagnostic yield of 18F-FDG-PET and CT in detecting nodal and distant metastasis in UC or BC is warranted to confirm our findings.

Keywords: FDG PET, CT scan, urothelial cancer, bladder cancer

Procedia PDF Downloads 121