Search results for: point region growing segmentation
12354 Image Segmentation with Deep Learning of Prostate Cancer Bone Metastases on Computed Tomography
Authors: Joseph M. Rich, Vinay A. Duddalwar, Assad A. Oberai
Abstract:
Prostate adenocarcinoma is the most common cancer in males, with osseous metastases as the commonest site of metastatic prostate carcinoma (mPC). Treatment monitoring is based on the evaluation and characterization of lesions on multiple imaging studies, including Computed Tomography (CT). Monitoring of the osseous disease burden, including follow-up of lesions and identification and characterization of new lesions, is a laborious task for radiologists. Deep learning algorithms are increasingly used to perform tasks such as identification and segmentation for osseous metastatic disease and provide accurate information regarding metastatic burden. Here, nnUNet was used to produce a model which can segment CT scan images of prostate adenocarcinoma vertebral bone metastatic lesions. nnUNet is an open-source Python package that adds optimizations to deep learning-based UNet architecture but has not been extensively combined with transfer learning techniques due to the absence of a readily available functionality of this method. The IRB-approved study data set includes imaging studies from patients with mPC who were enrolled in clinical trials at the University of Southern California (USC) Health Science Campus and Los Angeles County (LAC)/USC medical center. Manual segmentation of metastatic lesions was completed by an expert radiologist Dr. Vinay Duddalwar (20+ years in radiology and oncologic imaging), to serve as ground truths for the automated segmentation. Despite nnUNet’s success on some medical segmentation tasks, it only produced an average Dice Similarity Coefficient (DSC) of 0.31 on the USC dataset. DSC results fell in a bimodal distribution, with most scores falling either over 0.66 (reasonably accurate) or at 0 (no lesion detected). Applying more aggressive data augmentation techniques dropped the DSC to 0.15, and reducing the number of epochs reduced the DSC to below 0.1. Datasets have been identified for transfer learning, which involve balancing between size and similarity of the dataset. Identified datasets include the Pancreas data from the Medical Segmentation Decathlon, Pelvic Reference Data, and CT volumes with multiple organ segmentations (CT-ORG). Some of the challenges of producing an accurate model from the USC dataset include small dataset size (115 images), 2D data (as nnUNet generally performs better on 3D data), and the limited amount of public data capturing annotated CT images of bone lesions. Optimizations and improvements will be made by applying transfer learning and generative methods, including incorporating generative adversarial networks and diffusion models in order to augment the dataset. Performance with different libraries, including MONAI and custom architectures with Pytorch, will be compared. In the future, molecular correlations will be tracked with radiologic features for the purpose of multimodal composite biomarker identification. Once validated, these models will be incorporated into evaluation workflows to optimize radiologist evaluation. Our work demonstrates the challenges of applying automated image segmentation to small medical datasets and lays a foundation for techniques to improve performance. As machine learning models become increasingly incorporated into the workflow of radiologists, these findings will help improve the speed and accuracy of vertebral metastatic lesions detection.Keywords: deep learning, image segmentation, medicine, nnUNet, prostate carcinoma, radiomics
Procedia PDF Downloads 9612353 A Study for Area-level Mosquito Abundance Prediction by Using Supervised Machine Learning Point-level Predictor
Authors: Theoktisti Makridou, Konstantinos Tsaprailis, George Arvanitakis, Charalampos Kontoes
Abstract:
In the literature, the data-driven approaches for mosquito abundance prediction relaying on supervised machine learning models that get trained with historical in-situ measurements. The counterpart of this approach is once the model gets trained on pointlevel (specific x,y coordinates) measurements, the predictions of the model refer again to point-level. These point-level predictions reduce the applicability of those solutions once a lot of early warning and mitigation actions applications need predictions for an area level, such as a municipality, village, etc... In this study, we apply a data-driven predictive model, which relies on public-open satellite Earth Observation and geospatial data and gets trained with historical point-level in-Situ measurements of mosquito abundance. Then we propose a methodology to extract information from a point-level predictive model to a broader area-level prediction. Our methodology relies on the randomly spatial sampling of the area of interest (similar to the Poisson hardcore process), obtaining the EO and geomorphological information for each sample, doing the point-wise prediction for each sample, and aggregating the predictions to represent the average mosquito abundance of the area. We quantify the performance of the transformation from the pointlevel to the area-level predictions, and we analyze it in order to understand which parameters have a positive or negative impact on it. The goal of this study is to propose a methodology that predicts the mosquito abundance of a given area by relying on point-level prediction and to provide qualitative insights regarding the expected performance of the area-level prediction. We applied our methodology to historical data (of Culex pipiens) of two areas of interest (Veneto region of Italy and Central Macedonia of Greece). In both cases, the results were consistent. The mean mosquito abundance of a given area can be estimated with similar accuracy to the point-level predictor, sometimes even better. The density of the samples that we use to represent one area has a positive effect on the performance in contrast to the actual number of sampling points which is not informative at all regarding the performance without the size of the area. Additionally, we saw that the distance between the sampling points and the real in-situ measurements that were used for training did not strongly affect the performance.Keywords: mosquito abundance, supervised machine learning, culex pipiens, spatial sampling, west nile virus, earth observation data
Procedia PDF Downloads 14712352 The Extent of Land Use Externalities in the Fringe of Jakarta Metropolitan: An Application of Spatial Panel Dynamic Land Value Model
Authors: Rahma Fitriani, Eni Sumarminingsih, Suci Astutik
Abstract:
In a fast growing region, conversion of agricultural lands which are surrounded by some new development sites will occur sooner than expected. This phenomenon has been experienced by many regions in Indonesia, especially the fringe of Jakarta (BoDeTaBek). Being Indonesia’s capital city, rapid conversion of land in this area is an unavoidable process. The land conversion expands spatially into the fringe regions, which were initially dominated by agricultural land or conservation sites. Without proper control or growth management, this activity will invite greater costs than benefits. The current land use is the use which maximizes its value. In order to maintain land for agricultural activity or conservation, some efforts are needed to keep the land value of this activity as high as possible. In this case, the knowledge regarding the functional relationship between land value and its driving forces is necessary. In a fast growing region, development externalities are the assumed dominant driving force. Land value is the product of the past decision of its use leading to its value. It is also affected by the local characteristics and the observed surrounded land use (externalities) from the previous period. The effect of each factor on land value has dynamic and spatial virtues; an empirical spatial dynamic land value model will be more useful to capture them. The model will be useful to test and to estimate the extent of land use externalities on land value in the short run as well as in the long run. It serves as a basis to formulate an effective urban growth management’s policy. This study will apply the model to the case of land value in the fringe of Jakarta Metropolitan. The model will be used further to predict the effect of externalities on land value, in the form of prediction map. For the case of Jakarta’s fringe, there is some evidence about the significance of neighborhood urban activity – negative externalities, the previous land value and local accessibility on land value. The effects are accumulated dynamically over years, but they will fully affect the land value after six years.Keywords: growth management, land use externalities, land value, spatial panel dynamic
Procedia PDF Downloads 25612351 Climate Species Lists: A Combination of Methods for Urban Areas
Authors: Andrea Gion Saluz, Tal Hertig, Axel Heinrich, Stefan Stevanovic
Abstract:
Higher temperatures, seasonal changes in precipitation, and extreme weather events are increasingly affecting trees. To counteract the increasing challenges of urban trees, strategies are increasingly being sought to preserve existing tree populations on the one hand and to prepare for the coming years on the other. One such strategy lies in strategic climate tree species selection. The search is on for species or varieties that can cope with the new climatic conditions. Many efforts in German-speaking countries deal with this in detail, such as the tree lists of the German Conference of Garden Authorities (GALK), the project Stadtgrün 2021, or the instruments of the Climate Species Matrix by Prof. Dr. Roloff. In this context, different methods for a correct species selection are offered. One possibility is to select certain physiological attributes that indicate the climate resilience of a species. To calculate the dissimilarity of the present climate of different geographic regions in relation to the future climate of any city, a weighted (standardized) Euclidean distance (SED) for seasonal climate values is calculated for each region of the Earth. The calculation was performed in the QGIS geographic information system, using global raster datasets on monthly climate values in the 1981-2010 standard period. Data from a European forest inventory were used to identify tree species growing in the calculated analogue climate regions. The inventory used is the compilation of georeferenced point data at a 1 km grid resolution on the occurrence of tree species in 21 European countries. In this project, the results of the methodological application are shown for the city of Zurich for the year 2060. In the first step, analog climate regions based on projected climate values for the measuring station Kirche Fluntern (ZH) were searched for. In a further step, the methods mentioned above were applied to generate tree species lists for the city of Zurich. These lists were then qualitatively evaluated with respect to the suitability of the different tree species for the Zurich area to generate a cleaned and thus usable list of possible future tree species.Keywords: climate change, climate region, climate tree, urban tree
Procedia PDF Downloads 10612350 Potentials for Change in the MENA Region: A Socioeconomic Perspective
Authors: Shaira Karishma Sheriff, Zarinah Hamid
Abstract:
The Arab Spring, which commenced during the end of 2010 and accelerated during 2011, was caused primarily due to poverty, unemployment and a general recession in the Middle East and North African (MENA) region. The core motivation of this revolution could be said to be the need for political, economic and social reforms that the region desires to experience. Though GDP growth has been significant in the region, the income distribution mechanism in MENA countries has been ineffective. This results in low levels of education, substandard health care facilities, unemployment, and poverty. This paper argues that MENA countries have great potential for experiencing socioeconomic development by being less dependent on oil exports and enhancing their services sector through better education which would eventually lead to job creation. Furthermore, the region can encourage better trade and political integration by forming transparent and accountable governments. The notion of Nation-State needs to be addressed and the countries in the region need to look for ways to develop effective supra-national institutions for better political and economic integration that goes beyond geographical borders.Keywords: political reforms, social reforms, economic development, nation-state, economic integration
Procedia PDF Downloads 44112349 Some Observations on the Analysis of Four Performances of the Allemande from J.S. Bach's Partita for Solo Flute (BWV 1013) in Terms of Zipf's Law
Authors: Douglas W. Scott
Abstract:
The Allemande from J. S. Bach's Partita for solo flute (BWV 1013) presents many unique challenges for any flautist, especially in terms of segmentation analysis required to select breathing places in the first half. Without claiming to identify a 'correct' solution to this problem, this paper analyzes the section in terms of a set of techniques based around a statistical property commonly (if not ubiquitously) found in music, namely Zipf’s law. Specifically, the paper considers violations of this expected profile at various levels of analysis, an approach which has yielded interesting insights in previous studies. The investigation is then grounded by considering four actual solutions to the problem found in recordings made by different flautists, which opens up the possibility of expanding Zipfian analysis to include a consideration of inter-onset-intervals (IOIs). It is found that significant deviations from the expected Zipfian distributions can reveal and highlight stylistic choices made by different performers.Keywords: inter-onset-interval, Partita for solo flute, BWV 1013, segmentation analysis, Zipf’s law
Procedia PDF Downloads 18212348 The Routes of Human Suffering: How Point-Source and Destination-Source Mapping Can Help Victim Services Providers and Law Enforcement Agencies Effectively Combat Human Trafficking
Authors: Benjamin Thomas Greer, Grace Cotulla, Mandy Johnson
Abstract:
Human trafficking is one of the fastest growing international crimes and human rights violations in the world. The United States Department of State (State Department) approximates some 800,000 to 900,000 people are annually trafficked across sovereign borders, with approximately 14,000 to 17,500 of these people coming into the United States. Today’s slavery is conducted by unscrupulous individuals who are often connected to organized criminal enterprises and transnational gangs, extracting huge monetary sums. According to the International Labour Organization (ILO), human traffickers collect approximately $32 billion worldwide annually. Surpassed only by narcotics dealing, trafficking of humans is tied with illegal arms sales as the second largest criminal industry in the world and is the fastest growing field in the 21st century. Perpetrators of this heinous crime abound. They are not limited to single or “sole practitioners” of human trafficking, but rather, often include Transnational Criminal Organizations (TCO), domestic street gangs, labor contractors, and otherwise seemingly ordinary citizens. Monetary gain is being elevated over territorial disputes and street gangs are increasingly operating in a collaborative effort with TCOs to further disguise their criminal activity; to utilizing their vast networks, in an attempt to avoid detection. Traffickers rely on a network of clandestine routes to sell their commodities with impunity. As law enforcement agencies seek to retard the expansion of transnational criminal organization’s entry into human trafficking, it is imperative that they develop reliable trafficking mapping of known exploitative routes. In a recent report given to the Mexican Congress, The Procuraduría General de la República (PGR) disclosed, from 2008 to 2010 they had identified at least 47 unique criminal networking routes used to traffic victims and that Mexico’s estimated domestic victims number between 800,000 adults and 20,000 children annually. Designing a reliable mapping system is a crucial step to effective law enforcement response and deploying a successful victim support system. Creating this mapping analytic is exceedingly difficult. Traffickers are constantly changing the way they traffic and exploit their victims. They swiftly adapt to local environmental factors and react remarkably well to market demands, exploiting limitations in the prevailing laws. This article will highlight how human trafficking has become one of the fastest growing and most high profile human rights violations in the world today; compile current efforts to map and illustrate trafficking routes; and will demonstrate how the proprietary analytical mapping analysis of point-source and destination-source mapping can help local law enforcement, governmental agencies and victim services providers effectively respond to the type and nature of trafficking to their specific geographical locale. Trafficking transcends state and international borders. It demands an effective and consistent cooperation between local, state, and federal authorities. Each region of the world has different impact factors which create distinct challenges for law enforcement and victim services. Our mapping system lays the groundwork for a targeted anti-trafficking response.Keywords: human trafficking, mapping, routes, law enforcement intelligence
Procedia PDF Downloads 38112347 Subtitling in the Classroom: Combining Language Mediation, ICT and Audiovisual Material
Authors: Rossella Resi
Abstract:
This paper describes a project carried out in an Italian school with English learning pupils combining three didactic tools which are attested to be relevant for the success of young learner’s language curriculum: the use of technology, the intralingual and interlingual mediation (according to CEFR) and the cultural dimension. Aim of this project was to test a technological hands-on translation activity like subtitling in a formal teaching context and to exploit its potential as motivational tool for developing listening and writing, translation and cross-cultural skills among language learners. The activities proposed involved the use of professional subtitling software called Aegisub and culture-specific films. The workshop was optional so motivation was entirely based on the pleasure of engaging in the use of a realistic subtitling program and on the challenge of meeting the constraints that a real life/work situation might involve. Twelve pupils in the age between 16 and 18 have attended the afternoon workshop. The workshop was organized in three parts: (i) An introduction where the learners were opened up to the concept and constraints of subtitling and provided with few basic rules on spotting and segmentation. During this session learners had also the time to familiarize with the main software features. (ii) The second part involved three subtitling activities in plenum or in groups. In the first activity the learners experienced the technical dimensions of subtitling. They were provided with a short video segment together with its transcription to be segmented and time-spotted. The second activity involved also oral comprehension. Learners had to understand and transcribe a video segment before subtitling it. The third activity embedded a translation activity of a provided transcription including segmentation and spotting of subtitles. (iii) The workshop ended with a small final project. At this point learners were able to master a short subtitling assignment (transcription, translation, segmenting and spotting) on their own with a similar video interview. The results of these assignments were above expectations since the learners were highly motivated by the authentic and original nature of the assignment. The subtitled videos were evaluated and watched in the regular classroom together with other students who did not take part to the workshop.Keywords: ICT, L2, language learning, language mediation, subtitling
Procedia PDF Downloads 41512346 Determination of Agricultural Characteristics of Smooth Bromegrass (Bromus inermis Leyss) Lines under Konya Regional Conditions
Authors: Abdullah Özköse, Ahmet Tamkoç
Abstract:
The present study was conducted to determine the yield and yield components of smooth bromegrass lines under the environmental conditions of the Konya region during the growing seasons between 2011 and 2013. The experiment was performed in the randomized complete block design (RCBD) with four replications. It was found that the selected lines had a statistically significant effect on all the investigated traits, except for the main stem length and the number of nodes in the main stem. According to the two-year average calculated for various parameters checked in the smooth bromegrass lines, the main stem length ranged from 71.6 cm to 79.1 cm, the main stem diameter from 2.12 mm from 2.70 mm, the number of nodes in the main stem from 3.2 to 3.7, the internode length from 11.6 cm to 18.9 cm, flag leaf length from 9.7 cm to 12.7 cm, flag leaf width from 3.58 cm to 6.04 mm, herbage yield from 221.3 kg da–1 to 354.7 kg da–1 and hay yield from 100.4 kg da–1 to 190.1 kg da–1. The study concluded that the smooth bromegrass lines differ in terms of yield and yield components. Therefore, it is very crucial to select suitable varieties of smooth bromegrass to obtain optimum yield.Keywords: semiarid region, smooth bromegrass, yield, yield components
Procedia PDF Downloads 27512345 Numerical Simulation of a Point Absorber Wave Energy Converter Using OpenFOAM in Indian Scenario
Authors: Pooja Verma, Sumana Ghosh
Abstract:
There is a growing need for alternative way of power generation worldwide. The reason can be attributed to limited resources of fossil fuels, environmental pollution, increasing cost of conventional fuels, and lower efficiency of conversion of energy in existing systems. In this context, one of the potential alternatives for power generation is wave energy. However, it is difficult to estimate the amount of electrical energy generation in an irregular sea condition by experiment and or analytical methods. Therefore in this work, a numerical wave tank is developed using the computational fluid dynamics software Open FOAM. In this software a specific utility known as waves2Foam utility is being used to carry out the simulation work. The computational domain is a tank of dimension: 5m*1.5m*1m with a floating object of dimension: 0.5m*0.2m*0.2m. Regular waves are generated at the inlet of the wave tank according to Stokes second order theory. The main objective of the present study is to validate the numerical model against existing experimental data. It shows a good matching with the existing experimental data of floater displacement. Later the model is exploited to estimate energy extraction due to the movement of such a point absorber in real sea conditions. Scale down the wave properties like wave height, wave length, etc. are used as input parameters. Seasonal variations are also considered.Keywords: OpenFOAM, numerical wave tank, regular waves, floating object, point absorber
Procedia PDF Downloads 35212344 Sustainable Renovation and Restoration of the Rural — Based on the View Point of Psychology
Authors: Luo Jin China, Jin Fang
Abstract:
Countryside has been generally recognized and regarded as a characteristic symbol which presents in human memory for a long time. As a result of the change of times, because of it’s failure to meet the growing needs of the growing life and mental decline, the vast rural area began to decline. But their history feature image which accumulated by the ancient tradition provides people with the origins of existence on the spiritual level, such as "identity" and "belonging", makes people closer to the others in the spiritual and psychological aspects of a common experience about the past, thus the sense of a lack of culture caused by the losing of memory symbols is weakened. So, in the modernization process, how to repair its vitality and transform and planning it in a sustainable way has become a hot topics in architectural and urban planning. This paper aims to break the constraints of disciplines, from the perspective of interdiscipline, using the research methods of systems science to analyze and discuss the theories and methods of rural form factors, which based on the viewpoint of memory in psychology. So, we can find a right way to transform the Rural to give full play to the role of the countryside in the actual use and the shape of history spirits.Keywords: rural, sustainable renovation, restoration, psychology, memory
Procedia PDF Downloads 57312343 Density-based Denoising of Point Cloud
Authors: Faisal Zaman, Ya Ping Wong, Boon Yian Ng
Abstract:
Point cloud source data for surface reconstruction is usually contaminated with noise and outliers. To overcome this, we present a novel approach using modified kernel density estimation (KDE) technique with bilateral filtering to remove noisy points and outliers. First we present a method for estimating optimal bandwidth of multivariate KDE using particle swarm optimization technique which ensures the robust performance of density estimation. Then we use mean-shift algorithm to find the local maxima of the density estimation which gives the centroid of the clusters. Then we compute the distance of a certain point from the centroid. Points belong to outliers then removed by automatic thresholding scheme which yields an accurate and economical point surface. The experimental results show that our approach comparably robust and efficient.Keywords: point preprocessing, outlier removal, surface reconstruction, kernel density estimation
Procedia PDF Downloads 34412342 The Influence of the Regional Sectoral Structure on the Socio-Economic Development of the Arkhangelsk Region
Authors: K. G. Sorokozherdyev, E. A. Efimov
Abstract:
The socio-economic development of regions and countries is an important research issue. Today, in the face of many negative events in the global and regional economies, it is especially important to identify those areas that can serve as sources of economic growth and the basis for the well-being of the population. This study aims to identify the most important sectors of the economy of the Arkhangelsk region that can contribute to the socio-economic development of the region as a whole. For research, the Arkhangelsk region was taken as one of the typical Russian regions that do not have significant reserves of hydrocarbons nor there are located any large industrial complexes. In this regard, the question of possible origins of economic growth seems especially relevant. The basis of this study constitutes the distributed lag regression model (ADL model) developed by the authors, which is based on quarterly data on the socio-economic development of the Arkhangelsk region for the period 2004-2016. As a result, we obtained three equations reflecting the dynamics of three indicators of the socio-economic development of the region -the average wage, the regional GRP, and the birth rate. The influencing factors are the shares in GRP of such sectors as agriculture, mining, manufacturing, construction, wholesale and retail trade, hotels and restaurants, as well as the financial sector. The study showed that the greatest influence on the socio-economic development of the region is exerted by such industries as wholesale and retail trade, construction, and industrial sectors. The study can be the basis for forecasting and modeling the socio-economic development of the Arkhangelsk region in the short and medium term. It also can be helpful while analyzing the effectiveness of measures aimed at stimulating those or other industries of the region. The model can be used in developing a regional development strategy.Keywords: regional economic development, regional sectoral structure, ADL model, Arkhangelsk region
Procedia PDF Downloads 10012341 Tracing the Courtyard Typology from the Past: Highlighting a Need for Conservation in Case of Historic Settlement in Historic Town of Gwalior
Authors: Shivani Dolas, A. Richa Mishra
Abstract:
The existence of Courtyards in India can be traced back to ‘Indus valley civilization’ and various layers of history bearing implications like socio-cultural, traditional, religious, climatic, etc., moreover serving as a breathing space in case of historical core areas. Over time, with the overlay of various historic layers within the historic urban cores and the present high density populace, the cores are getting congested day by day. In this case, courtyards may emerge out as an efficient medium to provide quality of life through livable spaces. Presently, with the growing population of the historic town of Gwalior, town in Madhya Pradesh holds remarkable essence of courtyards with its multiple concepts over time. Its scale and function varies from an imposing grand appearance in palatial form, up to functional practices as residential. Its privilege can also be drawn in urban forms, in sharing single space by multiple dwellings and in temples which can be sketched specifically in the region. Moreover, the effectiveness of courtyards has proven balance and control of micro-climate in such composite climate region. The research paper aims to underline the concept of courtyards in case of a mixed use neighborhood, Naya bazar, in Lashkar area of Gwalior, which developed during 19th century, highlighting the need of its preservation. The paper also elaborates its various implications on user-space relationship as in the present context, and growing congestion in the area, user and space relationship is seen lost. The noticeable change in the behavioral context in buildings and users can be noticed with the downfall of courtyards, isolating users with land. Also, a concern has been expressed on negligence of courtyard planning in future development, suggesting recommendations on preserving the courtyard typology as heritage.Keywords: courtyards, Gwalior, historic settlement, heritage
Procedia PDF Downloads 15012340 Observatory of Sustainability of the Algarve Region for Tourism: Proposal for Environmental and Sociocultural Indicators
Authors: Miguel José Oliveira, Fátima Farinha, Elisa M. J. da Silva, Rui Lança, Manuel Duarte Pinheiro, Cátia Miguel
Abstract:
The Observatory of Sustainability of the Algarve Region for Tourism (OBSERVE) will be a valuable tool to assess the sustainability of this region. The OBSERVE tool is designed to provide data and maintain an up-to-date, consistent set of indicators defined to describe the region on the environmental, sociocultural, economic and institutional domains. This ongoing two-year project has the active participation of the Algarve’s stakeholders, since they were consulted and asked to participate in the discussion for the indicators proposal. The environmental and sociocultural indicators chosen must indicate the characteristics of the region and should be in alignment with other global systems used to monitor the sustainability. This paper presents a review of sustainability indicators systems that support the first proposal for the environmental and sociocultural indicators. Others constraints are discussed, namely the existing data and the data available in digital platforms in a format suitable for automatic importation to the platform of OBSERVE. It is intended that OBSERVE will be a valuable tool to assess the sustainability of the region of Algarve.Keywords: Algarve, development, environmental indicators, observatory, sociocultural indicators, sustainability, tourism
Procedia PDF Downloads 17512339 Study of Current the Rice Straw Potential for a Small Power Plant Capacity in the Central Region of Thailand
Authors: Sansanee Sansiribhan, Orrawan Rewthong, Anusorn Rattanathanaophat, Sarun Saensiriphan
Abstract:
The objective of this work was to study potential of rice straw for power plant in the central region of Thailand. Provincial power plant capacity was studied. The results showed that provinces central region had potential for small power plants with a capacity of over 10 MW in 13 provinces, 1-10 MW in 6 provinces and less than 1 MW in 3 provinces.Keywords: rice straw, power plant, central region, Thailand
Procedia PDF Downloads 32612338 On-The-Fly Cross Sections Generation in Neutron Transport with Wide Energy Region
Authors: Rui Chen, Shu-min Zhou, Xiong-jie Zhang, Ren-bo Wang, Fan Huang, Bin Tang
Abstract:
During the temperature changes in reactor core, the nuclide cross section in reactor can vary with temperature, which eventually causes the changes of reactivity. To simulate the interaction between incident neutron and various materials at different temperatures on the nose, it is necessary to generate all the relevant reaction temperature-dependent cross section. Traditionally, the real time cross section generation method is used to avoid storing huge data but contains severe problems of low efficiency and adaptability for narrow energy region. Focused on the research on multi-temperature cross sections generation in real time during in neutron transport, this paper investigated the on-the-fly cross section generation method for resolved resonance region, thermal region and unresolved resonance region, and proposed the real time multi-temperature cross sections generation method based on double-exponential formula for resolved resonance region, as well as the Neville interpolation for thermal and unresolved resonance region. To prove the correctness and validity of multi-temperature cross sections generation based on wide energy region of incident neutron, the proposed method was applied in critical safety benchmark tests, which showed the capability for application in reactor multi-physical coupling simulation.Keywords: cross section, neutron transport, numerical simulation, on-the-fly
Procedia PDF Downloads 19612337 The Impact of Artificial Intelligence on Agricultural Machines and Plant Nutrition
Authors: Kirolos Gerges Yakoub Gerges
Abstract:
Self-sustaining agricultural machines act in stochastic surroundings and therefore, should be capable of perceive the surroundings in real time. This notion can be done using image sensors blended with superior device learning, mainly Deep mastering. Deep convolutional neural networks excel in labeling and perceiving colour pix and since the fee of RGB-cameras is low, the hardware cost of accurate notion relies upon heavily on memory and computation power. This paper investigates the opportunity of designing lightweight convolutional neural networks for semantic segmentation (pixel clever class) with reduced hardware requirements, to allow for embedded usage in self-reliant agricultural machines. The usage of compression techniques, a lightweight convolutional neural community is designed to carry out actual-time semantic segmentation on an embedded platform. The community is skilled on two big datasets, ImageNet and Pascal Context, to apprehend as much as four hundred man or woman instructions. The 400 training are remapped into agricultural superclasses (e.g. human, animal, sky, road, area, shelterbelt and impediment) and the capacity to provide correct actual-time perception of agricultural environment is studied. The network is carried out to the case of self-sufficient grass mowing the usage of the NVIDIA Tegra X1 embedded platform. Feeding case-unique pics to the community consequences in a fully segmented map of the superclasses within the picture. As the network remains being designed and optimized, handiest a qualitative analysis of the technique is entire on the abstract submission deadline. intending this cut-off date, the finalized layout is quantitatively evaluated on 20 annotated grass mowing pictures. Light-weight convolutional neural networks for semantic segmentation can be implemented on an embedded platform and show aggressive performance on the subject of accuracy and speed. It’s miles viable to offer value-efficient perceptive capabilities related to semantic segmentation for autonomous agricultural machines.Keywords: centrifuge pump, hydraulic energy, agricultural applications, irrigationaxial flux machines, axial flux applications, coreless machines, PM machinesautonomous agricultural machines, deep learning, safety, visual perception
Procedia PDF Downloads 2612336 Generative Adversarial Network for Bidirectional Mappings between Retinal Fundus Images and Vessel Segmented Images
Authors: Haoqi Gao, Koichi Ogawara
Abstract:
Retinal vascular segmentation of color fundus is the basis of ophthalmic computer-aided diagnosis and large-scale disease screening systems. Early screening of fundus diseases has great value for clinical medical diagnosis. The traditional methods depend on the experience of the doctor, which is time-consuming, labor-intensive, and inefficient. Furthermore, medical images are scarce and fraught with legal concerns regarding patient privacy. In this paper, we propose a new Generative Adversarial Network based on CycleGAN for retinal fundus images. This method can generate not only synthetic fundus images but also generate corresponding segmentation masks, which has certain application value and challenge in computer vision and computer graphics. In the results, we evaluate our proposed method from both quantitative and qualitative. For generated segmented images, our method achieves dice coefficient of 0.81 and PR of 0.89 on DRIVE dataset. For generated synthetic fundus images, we use ”Toy Experiment” to verify the state-of-the-art performance of our method.Keywords: retinal vascular segmentations, generative ad-versarial network, cyclegan, fundus images
Procedia PDF Downloads 14412335 Optimizing the Capacity of a Convolutional Neural Network for Image Segmentation and Pattern Recognition
Authors: Yalong Jiang, Zheru Chi
Abstract:
In this paper, we study the factors which determine the capacity of a Convolutional Neural Network (CNN) model and propose the ways to evaluate and adjust the capacity of a CNN model for best matching to a specific pattern recognition task. Firstly, a scheme is proposed to adjust the number of independent functional units within a CNN model to make it be better fitted to a task. Secondly, the number of independent functional units in the capsule network is adjusted to fit it to the training dataset. Thirdly, a method based on Bayesian GAN is proposed to enrich the variances in the current dataset to increase its complexity. Experimental results on the PASCAL VOC 2010 Person Part dataset and the MNIST dataset show that, in both conventional CNN models and capsule networks, the number of independent functional units is an important factor that determines the capacity of a network model. By adjusting the number of functional units, the capacity of a model can better match the complexity of a dataset.Keywords: CNN, convolutional neural network, capsule network, capacity optimization, character recognition, data augmentation, semantic segmentation
Procedia PDF Downloads 15312334 Axisymmetric Nonlinear Analysis of Point Supported Shallow Spherical Shells
Authors: M. Altekin, R. F. Yükseler
Abstract:
Geometrically nonlinear axisymmetric bending of a shallow spherical shell with a point support at the apex under linearly varying axisymmetric load was investigated numerically. The edge of the shell was assumed to be simply supported or clamped. The solution was obtained by the finite difference and the Newton-Raphson methods. The thickness of the shell was considered to be uniform and the material was assumed to be homogeneous and isotropic. Sensitivity analysis was made for two geometrical parameters. The accuracy of the algorithm was checked by comparing the deflection with the solution of point supported circular plates and good agreement was obtained.Keywords: Bending, Nonlinear, Plate, Point support, Shell.
Procedia PDF Downloads 26412333 Burden of Communicable and Non-Communicable Disease in India: A Regional Analysis
Authors: Ajit Kumar Yadav, Priyanka Yadav, F. Ram
Abstract:
In present study is an effort to analyse the burden of diseases in the state. Disability Adjusted Life Years (DALY) is estimated non-communicable diseases. Multi-rounds (52nd, 60th and 71st round) of the National Sample Surveys (NSSO), conducted in 1995-96, 2004 and 2014 respectively, and Million Deaths Study (MDS) of 2001-03, 2006 and 2013-14 datasets are used. Descriptive and multivariate analyses are carried out to identify the determinants of different types of self-reported morbidity and DALY. The prevalence was higher for population aged 60 and above, among females, illiterates, and rich across the time period and for all the selected morbidities. The results were found to be significant at P<0.001. The estimation of DALY revealed that, the burden of communicable diseases was higher during infancy, noticeably among males than females in 2002. However, females aged 1-5 years were more vulnerable to report communicable diseases than the corresponding males. The age distribution of DALY indicates that individuals aged below 5 years and above 60 year were more susceptible to ill health. The growing incidence of non-communicable diseases especially among the older generations put additional burden on the health system in the state. The state has to grapple with the unsettled preventable infectious diseases in one hand and growing non-communicable in other hand.Keywords: disease burden, non-communicable, communicable, India and region
Procedia PDF Downloads 25112332 Keypoint Detection Method Based on Multi-Scale Feature Fusion of Attention Mechanism
Authors: Xiaoxiao Li, Shuangcheng Jia, Qian Li
Abstract:
Keypoint detection has always been a challenge in the field of image recognition. This paper proposes a novelty keypoint detection method which is called Multi-Scale Feature Fusion Convolutional Network with Attention (MFFCNA). We verified that the multi-scale features with the attention mechanism module have better feature expression capability. The feature fusion between different scales makes the information that the network model can express more abundant, and the network is easier to converge. On our self-made street sign corner dataset, we validate the MFFCNA model with an accuracy of 97.8% and a recall of 81%, which are 5 and 8 percentage points higher than the HRNet network, respectively. On the COCO dataset, the AP is 71.9%, and the AR is 75.3%, which are 3 points and 2 points higher than HRNet, respectively. Extensive experiments show that our method has a remarkable improvement in the keypoint recognition tasks, and the recognition effect is better than the existing methods. Moreover, our method can be applied not only to keypoint detection but also to image classification and semantic segmentation with good generality.Keywords: keypoint detection, feature fusion, attention, semantic segmentation
Procedia PDF Downloads 11912331 Changes of Acute-phase Reactants in Systemic Sclerosis During Long-term Rituximab Therapy
Authors: Liudmila Garzanova, Lidia Ananyeva, Olga Koneva, Olga Ovsyannikova, Oxana Desinova, Mayya Starovoytova, Rushana Shayahmetova, Anna Khelkovskaya-Sergeeva
Abstract:
Objectives. C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR) are associated with severe course, increased morbidity and mortality in systemic sclerosis (SSc). The aim of our study was to assess changes in CRP and ESR in SSc patients during long-term RTX therapy. Methods. This study included 113 patients with SSc. Mean age was 48.1±13 years, female-85%. The mean disease duration was 6±5 years. The diffuse cutaneous subset of the disease had 55% of patients. All pts had interstitial lung disease (ILD). All patients received prednisolone at a mean dose of 11.6±4.8 mg/day, and 53 of them - were immunosuppressants at inclusion. Patients received RTX due to the ineffectiveness of previous therapy for ILD. The parameters were evaluated over the periods: at baseline (point 0), 13±2.3 month (point 1, n=113), 42±14 month (point 2, n=80) and 79±6.5 month (point 3, n=25) after initiation of RTX therapy. Cumulative mean dose of RTX at point 1 = 1.7±0.6g, at point 2 = 3±1.5g, and at point 3 = 3.8±2.4g. The results are presented in the form of mean values, delta(Δ)-difference between the baseline parameter and follow-up point. Results. There was an improvement in studied parameters on RTX therapy. There was a significant decrease of ESR, CRP and activity index (EScSG-AI) at all observation points (p=0.001). In point 1: ΔCRP was 6.7 mg/l, ΔESR = 7.4 mm/h, ΔActivity index (EScSG-AI) = 1.7. In point 2: ΔCRP was 8.7 mg/l, ΔESR = 7.5 mm/h, ΔActivity index (EScSG-AI) = 1.9. In point 3: ΔCRP was 16.1 mg/l, ΔESR = 11 mm/h, ΔActivity index (EScSG-AI) = 2.1. Conclusion. There was a significant decrease in CRP and ESR during long-term RTX therapy, which correlated with a decrease in the disease activity index. RTX is an effective treatment option for SSc with an elevation of acute-phase reactants.Keywords: C-reactive protein, interstitial lung disease, systemic sclerosis, rituximab
Procedia PDF Downloads 2612330 Spatial Analysis the Suitability Area for Jatropha curcas L. as an Alternative to Biodiesel in Central Kalimantan, Indonesia
Authors: Rizki Oktariza, Sri Fauza Pratiwi, Hilza Ikhsanti
Abstract:
Human depends on fossil fuels as the bigger sources of considerable energy in all sectors. Based on that cases, we are needed alternative energy to supplies needed for fuel, one of them by using energy fuel from the biodiesel. The raw materials that can be used for producing the biodiesel energy are Jatropha curcas L. In Indonesia, the availability of land for the development of the Jatropha curcas L which has very appropriate Indonesia reached 14.2 million hectares, with an area of suitable in Kalimantan around 10 million hectares. In Central Kalimantan, as one of the provinces of Kalimantan, has considerable potential planting Jatropha curcas L because of the physical condition and have a largest of the agricultural land. To support the potential of Jatropha curcas L in Central Kalimantan, spatial analysis is needed to find out the appropriate areas for Jatropha curcas L growing land. The suitability of region is influenced by several variables i.e., rainfall, the slope of the land, the surface temperature and the altitude of a region. The compliance of criteria are divided into four criteria: high suitable (S1), moderately suitable (S2), marginally suitable (S3), not suitable (N). The suitability of the region is based on these variables and made an overlay analysis of these variables by using Geographic Information System. Based on this overlay analysis will results a map of the suitability area for planting Jatropha curcas L, which is distribution criteria is high suitable (S1) of 213,245 ha, moderately suitable (S2) of 14,389,353 ha, marginally suitable (S3) 360,357 ha, not suitable (N) 0.020 ha.Keywords: geographic information system, Jatropha curcas L., overlay, the suitable area
Procedia PDF Downloads 17612329 Understanding the Semantic Network of Tourism Studies in Taiwan by Using Bibliometrics Analysis
Authors: Chun-Min Lin, Yuh-Jen Wu, Ching-Ting Chung
Abstract:
The formulation of tourism policies requires objective academic research and evidence as support, especially research from local academia. Taiwan is a small island, and its economic growth relies heavily on tourism revenue. Taiwanese government has been devoting to the promotion of the tourism industry over the past few decades. Scientific research outcomes by Taiwanese scholars may and will help lay the foundations for drafting future tourism policy by the government. In this study, a total of 120 full journal articles published between 2008 and 2016 from the Journal of Tourism and Leisure Studies (JTSL) were examined to explore the scientific research trend of tourism study in Taiwan. JTSL is one of the most important Taiwanese journals in the tourism discipline which focuses on tourism-related issues and uses traditional Chinese as the study language. The method of co-word analysis from bibliometrics approaches was employed for semantic analysis in this study. When analyzing Chinese words and phrases, word segmentation analysis is a crucial step. It must be carried out initially and precisely in order to obtain meaningful word or word chunks for further frequency calculation. A word segmentation system basing on N-gram algorithm was developed in this study to conduct semantic analysis, and 100 groups of meaningful phrases with the highest recurrent rates were located. Subsequently, co-word analysis was employed for semantic classification. The results showed that the themes of tourism research in Taiwan in recent years cover the scope of tourism education, environmental protection, hotel management, information technology, and senior tourism. The results can give insight on the related issues and serve as a reference for tourism-related policy making and follow-up research.Keywords: bibliometrics, co-word analysis, word segmentation, tourism research, policy
Procedia PDF Downloads 22912328 Factors Impacting Shopping Behavior for Luxury Fashion Brands: A Case of National Capital Region in India
Authors: Manoj Kumar, Preeti Goel
Abstract:
National Capital Region of India is one of the most populous urban agglomerations in the world. This region has residents from all the parts of India, and their shopping behaviors are quite different. The region also has the substantial population of people from other countries. Due to high purchasing power of a large number of people, NCR is one the major markets for luxury fashion brands. Marketers of luxury fashion brands keep on adding innovative features to their products to attract the buyers. This research is an attempt to understand the major factors which impact the brand selection for these brands and other buying decisions like purchasing time and location. The research is based on primary data collected from potential buyers of luxury fashion brands and the people involved in the marketing of these brands in various roles. The research has tried to identify the relative strength of various factors on the shopping behavior for these brands.Keywords: luxury brands, fashion, shopping, National Capital Region (NCR)
Procedia PDF Downloads 40812327 DMBR-Net: Deep Multiple-Resolution Bilateral Networks for Real-Time and Accurate Semantic Segmentation
Authors: Pengfei Meng, Shuangcheng Jia, Qian Li
Abstract:
We proposed a real-time high-precision semantic segmentation network based on a multi-resolution feature fusion module, the auxiliary feature extracting module, upsampling module, and atrous spatial pyramid pooling (ASPP) module. We designed a feature fusion structure, which is integrated with sufficient features of different resolutions. We also studied the effect of side-branch structure on the network and made discoveries. Based on the discoveries about the side-branch of the network structure, we used a side-branch auxiliary feature extraction layer in the network to improve the effectiveness of the network. We also designed upsampling module, which has better results than the original upsampling module. In addition, we also re-considered the locations and number of atrous spatial pyramid pooling (ASPP) modules and modified the network structure according to the experimental results to further improve the effectiveness of the network. The network presented in this paper takes the backbone network of Bisenetv2 as a basic network, based on which we constructed a network structure on which we made improvements. We named this network deep multiple-resolution bilateral networks for real-time, referred to as DMBR-Net. After experimental testing, our proposed DMBR-Net network achieved 81.2% mIoU at 119FPS on the Cityscapes validation dataset, 80.7% mIoU at 109FPS on the CamVid test dataset, 29.9% mIoU at 78FPS on the COCOStuff test dataset. Compared with all lightweight real-time semantic segmentation networks, our network achieves the highest accuracy at an appropriate speed.Keywords: multi-resolution feature fusion, atrous convolutional, bilateral networks, pyramid pooling
Procedia PDF Downloads 14912326 Mathematical Modeling for the Break-Even Point Problem in a Non-homogeneous System
Authors: Filipe Cardoso de Oliveira, Lino Marcos da Silva, Ademar Nogueira do Nascimento, Cristiano Hora de Oliveira Fontes
Abstract:
This article presents a mathematical formulation for the production Break-Even Point problem in a non-homogeneous system. The optimization problem aims to obtain the composition of the best product mix in a non-homogeneous industrial plant, with the lowest cost until the breakeven point is reached. The problem constraints represent real limitations of a generic non-homogeneous industrial plant for n different products. The proposed model is able to solve the equilibrium point problem simultaneously for all products, unlike the existing approaches that propose a resolution in a sequential way, considering each product in isolation and providing a sub-optimal solution to the problem. The results indicate that the product mix found through the proposed model has economical advantages over the traditional approach used.Keywords: branch and bound, break-even point, non-homogeneous production system, integer linear programming, management accounting
Procedia PDF Downloads 21112325 Parametric Urbanism: A Climate Responsive Urban Form for the MENA Region
Authors: Norhan El Dallal
Abstract:
The MENA region is a challenging, rapid urbanizing region, with a special profile; culturally, socially, economically and environmentally. Despite the diversity between different countries of the MENA region they all share similar urban challenges where extensive interventions are crucial. A climate sensitive region as the MENA region requires special attention for development, adaptation and mitigation. Integrating climatic and environmental parameters into the planning process to create a responsive urban form is the aim of this research in which “Parametric Urbanism” as a trend serves as a tool to reach a more sustainable urban morphology. An attempt to parameterize the relation between the climate and the urban form in a detailed manner is the main objective of the thesis. The aim is relating the different passive approaches suitable for the MENA region with the design guidelines of each and every part of the planning phase. Various conceptual scenarios for the network pattern and block subdivision generation based on computational models are the next steps after the parameterization. These theoretical models could be applied on different climatic zones of the dense communities of the MENA region to achieve an energy efficient neighborhood or city with respect to the urban form, morphology, and urban planning pattern. A final criticism of the theoretical model is to be conducted showing the feasibility of the proposed solutions economically. Finally some push and pull policies are to be proposed to help integrate these solutions into the planning process.Keywords: parametric urbanism, climate responsive, urban form, urban and regional studies
Procedia PDF Downloads 480