Search results for: nursing interventions classification
4334 An Attempt at the Multi-Criterion Classification of Small Towns
Authors: Jerzy Banski
Abstract:
The basic aim of this study is to discuss and assess different classifications and research approaches to small towns that take their social and economic functions into account, as well as relations with surrounding areas. The subject literature typically includes three types of approaches to the classification of small towns: 1) the structural, 2) the location-related, and 3) the mixed. The structural approach allows for the grouping of towns from the point of view of the social, cultural and economic functions they discharge. The location-related approach draws on the idea of there being a continuum between the center and the periphery. A mixed classification making simultaneous use of the different approaches to research brings the most information to bear in regard to categories of the urban locality. Bearing in mind the approaches to classification, it is possible to propose a synthetic method for classifying small towns that takes account of economic structure, location and the relationship between the towns and their surroundings. In the case of economic structure, the small centers may be divided into two basic groups – those featuring a multi-branch structure and those that are specialized economically. A second element of the classification reflects the locations of urban centers. Two basic types can be identified – the small town within the range of impact of a large agglomeration, or else the town outside such areas, which is to say located peripherally. The third component of the classification arises out of small towns’ relations with their surroundings. In consequence, it is possible to indicate 8 types of small-town: from local centers enjoying good accessibility and a multi-branch economic structure to peripheral supra-local centers characterised by a specialized economic structure.Keywords: small towns, classification, functional structure, localization
Procedia PDF Downloads 1824333 Multi-Class Text Classification Using Ensembles of Classifiers
Authors: Syed Basit Ali Shah Bukhari, Yan Qiang, Saad Abdul Rauf, Syed Saqlaina Bukhari
Abstract:
Text Classification is the methodology to classify any given text into the respective category from a given set of categories. It is highly important and vital to use proper set of pre-processing , feature selection and classification techniques to achieve this purpose. In this paper we have used different ensemble techniques along with variance in feature selection parameters to see the change in overall accuracy of the result and also on some other individual class based features which include precision value of each individual category of the text. After subjecting our data through pre-processing and feature selection techniques , different individual classifiers were tested first and after that classifiers were combined to form ensembles to increase their accuracy. Later we also studied the impact of decreasing the classification categories on over all accuracy of data. Text classification is highly used in sentiment analysis on social media sites such as twitter for realizing people’s opinions about any cause or it is also used to analyze customer’s reviews about certain products or services. Opinion mining is a vital task in data mining and text categorization is a back-bone to opinion mining.Keywords: Natural Language Processing, Ensemble Classifier, Bagging Classifier, AdaBoost
Procedia PDF Downloads 2314332 'Coping with Workplace Violence' Workshop: A Commendable Addition to the Curriculum for BA in Nursing
Authors: Ilana Margalith, Adaya Meirowitz, Sigalit Cohavi
Abstract:
Violence against health professionals by patients and their families have recently become a disturbing phenomenon worldwide, exacting psychological as well as economic tolls. Health workplaces in Israel (e.g. hospitals and H.M.O clinics) provide workshops for their employees, supplying them with coping strategies. However, these workshops do not focus on nursing students, who are also subjected to this violence. Their learning environment is no longer as protective as it used to be. Furthermore, coping with violence was not part of the curriculum for Israeli nursing students. Thus, based on human aggression theories which depict the pivotal role of the professional's correct response in preventing the onset of an aggressive response or the escalation of violence, a workshop was developed for undergraduate nursing students at the Clalit Nursing Academy, Rabin Campus (Dina), Israel. The workshop aimed at reducing students' anxiety vis a vis the aggressive patient or family in addition to strengthening their ability to cope with such situations. The students practiced interpersonal skills, especially relevant to early detection of potential violence, as well as ‘a correct response’ reaction to the violence, thus developing the necessary steps to be implemented when encountering violence in the workplace. In order to assess the efficiency of the workshop, the participants filled out a questionnaire comprising knowledge and self-efficacy scales. Moreover, the replies of the 23 participants in this workshop were compared with those of 24 students who attended a standard course on interpersonal communication. Students' self-efficacy and knowledge were measured in both groups before and after the course. A statistically significant interaction was found between group (workshop/standard course) and time (before/after) as to the influence on students' self-efficacy (p=0.004) and knowledge (p=0.007). Nursing students, who participated in this ‘coping with workplace violence’ workshop, gained knowledge, confidence and a sense of self-efficacy with regard to workplace violence. Early detection of signs of imminent violence amongst patients or families and the prevention of its escalation, as well as the ability to manage the threatening situation when occurring, are acquired skills. Encouraging nursing students to learn and practice these skills may enhance their ability to cope with these unfortunate occurrences.Keywords: early detection of violence, nursing students, patient aggression, self-efficacy, workplace violence
Procedia PDF Downloads 1384331 Factors Affecting eHealth Literacy among Nursing Students in Jordan
Authors: Laila Habiballah, Ahmad Tubaishat
Abstract:
Background: with the development of information and communication technology, using the internet as a source to obtain health information is increasing. Nursing students as future health care providers should have the skills of locating, evaluating and using online health information. This will enable them to help their patients and families to make informed decisions. Aim: this study has a two-fold aim. The first is to assess the eHealth literacy among nursing students in Jordan. The second aim is to explore the factors that have an effect on the eHealth literacy. Methods: this is a descriptive cross-sectional survey that conducted in two universities in Jordan; public and private one. A number of 541 students from both universities were completed the eHEALS scale, which is an instrument designed to measure the eHealth literacy. Some additional personal and demographical variable were collected to explore its effect on eHealth literacy. Results: Students have a high perceived level of e-Health literacy (M=3.62, SD=0.58). They are aware of the available online health resources, know how to search, locate, and use these resources. But, they do not have the skills to evaluate these resources and cannot differentiate between the high and low-quality resources. The results showed as well that type of university, type of students' admission, academic level, students' skills of using the internet, and the perception of usefulness and importance of internet have an effect on the eHealth literacy. While the age, gender, GPA, and the frequency of using the internet was no significant factors. Conclusion: This study represents a baseline reference for the eHealth literacy in Jordan. Students have some skills of eHealth literacy and other skills need to be improved. Nursing educators and administrators should integrate and incorporate the skills of eHealth literacy in the curriculum.Keywords: eHealth, literacy, nursing, students, Jordan
Procedia PDF Downloads 3954330 Determination of the Bank's Customer Risk Profile: Data Mining Applications
Authors: Taner Ersoz, Filiz Ersoz, Seyma Ozbilge
Abstract:
In this study, the clients who applied to a bank branch for loan were analyzed through data mining. The study was composed of the information such as amounts of loans received by personal and SME clients working with the bank branch, installment numbers, number of delays in loan installments, payments available in other banks and number of banks to which they are in debt between 2010 and 2013. The client risk profile was examined through Classification and Regression Tree (CART) analysis, one of the decision tree classification methods. At the end of the study, 5 different types of customers have been determined on the decision tree. The classification of these types of customers has been created with the rating of those posing a risk for the bank branch and the customers have been classified according to the risk ratings.Keywords: client classification, loan suitability, risk rating, CART analysis
Procedia PDF Downloads 3384329 Multi-Objective Evolutionary Computation Based Feature Selection Applied to Behaviour Assessment of Children
Authors: F. Jiménez, R. Jódar, M. Martín, G. Sánchez, G. Sciavicco
Abstract:
Abstract—Attribute or feature selection is one of the basic strategies to improve the performances of data classification tasks, and, at the same time, to reduce the complexity of classifiers, and it is a particularly fundamental one when the number of attributes is relatively high. Its application to unsupervised classification is restricted to a limited number of experiments in the literature. Evolutionary computation has already proven itself to be a very effective choice to consistently reduce the number of attributes towards a better classification rate and a simpler semantic interpretation of the inferred classifiers. We present a feature selection wrapper model composed by a multi-objective evolutionary algorithm, the clustering method Expectation-Maximization (EM), and the classifier C4.5 for the unsupervised classification of data extracted from a psychological test named BASC-II (Behavior Assessment System for Children - II ed.) with two objectives: Maximizing the likelihood of the clustering model and maximizing the accuracy of the obtained classifier. We present a methodology to integrate feature selection for unsupervised classification, model evaluation, decision making (to choose the most satisfactory model according to a a posteriori process in a multi-objective context), and testing. We compare the performance of the classifier obtained by the multi-objective evolutionary algorithms ENORA and NSGA-II, and the best solution is then validated by the psychologists that collected the data.Keywords: evolutionary computation, feature selection, classification, clustering
Procedia PDF Downloads 3704328 Mood Recognition Using Indian Music
Authors: Vishwa Joshi
Abstract:
The study of mood recognition in the field of music has gained a lot of momentum in the recent years with machine learning and data mining techniques and many audio features contributing considerably to analyze and identify the relation of mood plus music. In this paper we consider the same idea forward and come up with making an effort to build a system for automatic recognition of mood underlying the audio song’s clips by mining their audio features and have evaluated several data classification algorithms in order to learn, train and test the model describing the moods of these audio songs and developed an open source framework. Before classification, Preprocessing and Feature Extraction phase is necessary for removing noise and gathering features respectively.Keywords: music, mood, features, classification
Procedia PDF Downloads 4954327 Discriminant Analysis as a Function of Predictive Learning to Select Evolutionary Algorithms in Intelligent Transportation System
Authors: Jorge A. Ruiz-Vanoye, Ocotlán Díaz-Parra, Alejandro Fuentes-Penna, Daniel Vélez-Díaz, Edith Olaco García
Abstract:
In this paper, we present the use of the discriminant analysis to select evolutionary algorithms that better solve instances of the vehicle routing problem with time windows. We use indicators as independent variables to obtain the classification criteria, and the best algorithm from the generic genetic algorithm (GA), random search (RS), steady-state genetic algorithm (SSGA), and sexual genetic algorithm (SXGA) as the dependent variable for the classification. The discriminant classification was trained with classic instances of the vehicle routing problem with time windows obtained from the Solomon benchmark. We obtained a classification of the discriminant analysis of 66.7%.Keywords: Intelligent Transportation Systems, data-mining techniques, evolutionary algorithms, discriminant analysis, machine learning
Procedia PDF Downloads 4724326 A Comparison between Virtual Case-Based Learning and Traditional Learning: The Effect on Undergraduate Nursing Students’ Performance during Covid-19: A Pilot Study
Authors: Aya M. Aboudesouky
Abstract:
Covid-19 has changed and affected the whole world dramatically in a new way that the entire world, even scientists, have not imagined before. The educational institutions around the world have been fighting since Covid-19 hit the world last December to keep the educational process unchanged for all students. E-learning was a must for almost all US universities during the pandemic. It was specifically more challenging to use online case-based learning instead of regular classes among nursing students who take practical education. This study aims to examine the difference in performance and satisfaction between nursing students taking traditional education and those who take virtual case-based education during their practical study. This study enrolls 40 last-year nursing undergraduates from a mid-sized university in Western Pennsylvania. The study uses a convenient sample. Students will be divided into two groups; a control group that is exposed to traditional teaching strategy and a treatment group that is exposed to a case-based teaching strategy. The module designed for this study is a total parenteral nutrition (TPN) module that will be taught for one month. The treatment group (n=20) utilizes the virtual simulation of the CBL method, while the control group (n=20) uses the traditional lecture-based teaching method. Student evaluations are collected after a month by using the survey to attain the students’ learning satisfaction and self-evaluation of the course. The post-test is used to assess the end of the course performance.Keywords: virtual case-based learning, traditional education, nursing education, Covid-19 crisis, online practical education
Procedia PDF Downloads 1284325 Air Classification of Dust from Steel Converter Secondary De-dusting for Zinc Enrichment
Authors: C. Lanzerstorfer
Abstract:
The off-gas from the basic oxygen furnace (BOF), where pig iron is converted into steel, is treated in the primary ventilation system. This system is in full operation only during oxygen-blowing when the BOF converter vessel is in a vertical position. When pig iron and scrap are charged into the BOF and when slag or steel are tapped, the vessel is tilted. The generated emissions during charging and tapping cannot be captured by the primary off-gas system. To capture these emissions, a secondary ventilation system is usually installed. The emissions are captured by a canopy hood installed just above the converter mouth in tilted position. The aim of this study was to investigate the dependence of Zn and other components on the particle size of BOF secondary ventilation dust. Because of the high temperature of the BOF process it can be expected that Zn will be enriched in the fine dust fractions. If Zn is enriched in the fine fractions, classification could be applied to split the dust into two size fractions with a different content of Zn. For this air classification experiments with dust from the secondary ventilation system of a BOF were performed. The results show that Zn and Pb are highly enriched in the finest dust fraction. For Cd, Cu and Sb the enrichment is less. In contrast, the non-volatile metals Al, Fe, Mn and Ti were depleted in the fine fractions. Thus, air classification could be considered for the treatment of dust from secondary BOF off-gas cleaning.Keywords: air classification, converter dust, recycling, zinc
Procedia PDF Downloads 4254324 3D Reconstruction of Human Body Based on Gender Classification
Authors: Jiahe Liu, Hongyang Yu, Feng Qian, Miao Luo
Abstract:
SMPL-X was a powerful parametric human body model that included male, neutral, and female models, with significant gender differences between these three models. During the process of 3D human body reconstruction, the correct selection of standard templates was crucial for obtaining accurate results. To address this issue, we developed an efficient gender classification algorithm to automatically select the appropriate template for 3D human body reconstruction. The key to this gender classification algorithm was the precise analysis of human body features. By using the SMPL-X model, the algorithm could detect and identify gender features of the human body, thereby determining which standard template should be used. The accuracy of this algorithm made the 3D reconstruction process more accurate and reliable, as it could adjust model parameters based on individual gender differences. SMPL-X and the related gender classification algorithm have brought important advancements to the field of 3D human body reconstruction. By accurately selecting standard templates, they have improved the accuracy of reconstruction and have broad potential in various application fields. These technologies continue to drive the development of the 3D reconstruction field, providing us with more realistic and accurate human body models.Keywords: gender classification, joint detection, SMPL-X, 3D reconstruction
Procedia PDF Downloads 704323 Satellite Imagery Classification Based on Deep Convolution Network
Authors: Zhong Ma, Zhuping Wang, Congxin Liu, Xiangzeng Liu
Abstract:
Satellite imagery classification is a challenging problem with many practical applications. In this paper, we designed a deep convolution neural network (DCNN) to classify the satellite imagery. The contributions of this paper are twofold — First, to cope with the large-scale variance in the satellite image, we introduced the inception module, which has multiple filters with different size at the same level, as the building block to build our DCNN model. Second, we proposed a genetic algorithm based method to efficiently search the best hyper-parameters of the DCNN in a large search space. The proposed method is evaluated on the benchmark database. The results of the proposed hyper-parameters search method show it will guide the search towards better regions of the parameter space. Based on the found hyper-parameters, we built our DCNN models, and evaluated its performance on satellite imagery classification, the results show the classification accuracy of proposed models outperform the state of the art method.Keywords: satellite imagery classification, deep convolution network, genetic algorithm, hyper-parameter optimization
Procedia PDF Downloads 3004322 The Role of Inventory Classification in Supply Chain Responsiveness in a Build-to-Order and Build-To-Forecast Manufacturing Environment: A Comparative Analysis
Authors: Qamar Iqbal
Abstract:
Companies strive to improve their forecasting methods to predict the fluctuations in customer demand. These fluctuation and variation in demand affect the manufacturing operations and can limit a company’s ability to fulfill customer demand on time. Companies keep the inventory buffer and maintain the stocking levels to reduce the impact of demand variation. A mid-size company deals with thousands of stock keeping units (skus). It is neither easy and nor efficient to control and manage each sku. Inventory classification provides a tool to the management to increase their ability to support customer demand. The paper presents a framework that shows how inventory classification can play a role to increase supply chain responsiveness. A case study will be presented to further elaborate the method both for build-to-order and build-to-forecast manufacturing environments. Results will be compared that will show which manufacturing setting has advantage over another under different circumstances. The outcome of this study is very useful to the management because this will give them an insight on how inventory classification can be used to increase their ability to respond to changing customer needs.Keywords: inventory classification, supply chain responsiveness, forecast, manufacturing environment
Procedia PDF Downloads 5954321 On the Cyclic Property of Groups of Prime Order
Authors: Ying Yi Wu
Abstract:
The study of finite groups is a central topic in algebraic structures, and one of the most fundamental questions in this field is the classification of finite groups up to isomorphism. In this paper, we investigate the cyclic property of groups of prime order, which is a crucial result in the classification of finite abelian groups. We prove the following statement: If p is a prime, then every group G of order p is cyclic. Our proof utilizes the properties of group actions and the class equation, which provide a powerful tool for studying the structure of finite groups. In particular, we first show that any non-identity element of G generates a cyclic subgroup of G. Then, we establish the existence of an element of order p, which implies that G is generated by a single element. Finally, we demonstrate that any two generators of G are conjugate, which shows that G is a cyclic group. Our result has significant implications in the classification of finite groups, as it implies that any group of prime order is isomorphic to the cyclic group of the same order. Moreover, it provides a useful tool for understanding the structure of more complicated finite groups, as any finite abelian group can be decomposed into a direct product of cyclic groups. Our proof technique can also be extended to other areas of group theory, such as the classification of finite p-groups, where p is a prime. Therefore, our work has implications beyond the specific result we prove and can contribute to further research in algebraic structures.Keywords: group theory, finite groups, cyclic groups, prime order, classification.
Procedia PDF Downloads 844320 Sentiment Analysis on the East Timor Accession Process to the ASEAN
Authors: Marcelino Caetano Noronha, Vosco Pereira, Jose Soares Pinto, Ferdinando Da C. Saores
Abstract:
One particularly popular social media platform is Youtube. It’s a video-sharing platform where users can submit videos, and other users can like, dislike or comment on the videos. In this study, we conduct a binary classification task on YouTube’s video comments and review from the users regarding the accession process of Timor Leste to become the eleventh member of the Association of South East Asian Nations (ASEAN). We scrape the data directly from the public YouTube video and apply several pre-processing and weighting techniques. Before conducting the classification, we categorized the data into two classes, namely positive and negative. In the classification part, we apply Support Vector Machine (SVM) algorithm. By comparing with Naïve Bayes Algorithm, the experiment showed SVM achieved 84.1% of Accuracy, 94.5% of Precision, and Recall 73.8% simultaneously.Keywords: classification, YouTube, sentiment analysis, support sector machine
Procedia PDF Downloads 1084319 On the Network Packet Loss Tolerance of SVM Based Activity Recognition
Authors: Gamze Uslu, Sebnem Baydere, Alper K. Demir
Abstract:
In this study, data loss tolerance of Support Vector Machines (SVM) based activity recognition model and multi activity classification performance when data are received over a lossy wireless sensor network is examined. Initially, the classification algorithm we use is evaluated in terms of resilience to random data loss with 3D acceleration sensor data for sitting, lying, walking and standing actions. The results show that the proposed classification method can recognize these activities successfully despite high data loss. Secondly, the effect of differentiated quality of service performance on activity recognition success is measured with activity data acquired from a multi hop wireless sensor network, which introduces high data loss. The effect of number of nodes on the reliability and multi activity classification success is demonstrated in simulation environment. To the best of our knowledge, the effect of data loss in a wireless sensor network on activity detection success rate of an SVM based classification algorithm has not been studied before.Keywords: activity recognition, support vector machines, acceleration sensor, wireless sensor networks, packet loss
Procedia PDF Downloads 4754318 Nurses' Assessments of Their Work Environments
Authors: Manar Aslan, Selver Gokdemir, Chatitze Chousein
Abstract:
This research was conducted to evaluate the factors affecting the working environment of nurses working in three state hospitals. A favorable working environment contributes to increased job satisfaction of nurses and improved working conditions that affects the quality of the work done in a positive way. The population of the study was composed the three largest state hospitals in the region of Thrace in Turkey and 931 nurses working in there. In this research was not used any sampling method. The sampling was composed of nurses who accepted to take part in this research from three hospitals. It was used nursing work index-the practice work environment scale (Turkish version) for data collection (Cronbach alpha: 0.94).When the total scale scores of the nurses in the research were examined, it was determined that they evaluated the working environment below the average. It was also determined that the adequacy of human and other resources, dimensions of the physician-nurse communication scores were low. As in every profession group, the working environment in nursing has an importance to provide quality health and nursing care. A favorable working environment will increase nurses' performance and satisfaction with their work. Identifying the factors affecting the working environment and carrying out the remedial work for them will increase the quality of the health service.Keywords: work environment, work index, nursing, hospitals
Procedia PDF Downloads 2464317 Prediction Modeling of Alzheimer’s Disease and Its Prodromal Stages from Multimodal Data with Missing Values
Authors: M. Aghili, S. Tabarestani, C. Freytes, M. Shojaie, M. Cabrerizo, A. Barreto, N. Rishe, R. E. Curiel, D. Loewenstein, R. Duara, M. Adjouadi
Abstract:
A major challenge in medical studies, especially those that are longitudinal, is the problem of missing measurements which hinders the effective application of many machine learning algorithms. Furthermore, recent Alzheimer's Disease studies have focused on the delineation of Early Mild Cognitive Impairment (EMCI) and Late Mild Cognitive Impairment (LMCI) from cognitively normal controls (CN) which is essential for developing effective and early treatment methods. To address the aforementioned challenges, this paper explores the potential of using the eXtreme Gradient Boosting (XGBoost) algorithm in handling missing values in multiclass classification. We seek a generalized classification scheme where all prodromal stages of the disease are considered simultaneously in the classification and decision-making processes. Given the large number of subjects (1631) included in this study and in the presence of almost 28% missing values, we investigated the performance of XGBoost on the classification of the four classes of AD, NC, EMCI, and LMCI. Using 10-fold cross validation technique, XGBoost is shown to outperform other state-of-the-art classification algorithms by 3% in terms of accuracy and F-score. Our model achieved an accuracy of 80.52%, a precision of 80.62% and recall of 80.51%, supporting the more natural and promising multiclass classification.Keywords: eXtreme gradient boosting, missing data, Alzheimer disease, early mild cognitive impairment, late mild cognitive impair, multiclass classification, ADNI, support vector machine, random forest
Procedia PDF Downloads 1884316 Transformation to M-Learning at the Nursing Institute in the Armed Force Hospital Alhada, in Saudi Arabia Based on Activity Theory
Authors: Rahimah Abdulrahman, A. Eardle, Wilfred Alan, Abdel Hamid Soliman
Abstract:
With the rapid development in technology, and advances in learning technologies, m-learning has begun to occupy a great part of our lives. The pace of the life getting together with the need for learning started mobile learning (m-learning) concept. In 2008, Saudi Arabia requested a national plan for the adoption of information technology (IT) across the country. Part of the recommendations of this plan concerns the implementation of mobile learning (m-learning) as well as their prospective applications to higher education within the Kingdom of Saudi Arabia. The overall aim of the research is to explore the main issues that impact the deployment of m-learning in nursing institutes in Saudi Arabia, at the Armed Force Hospitals (AFH), Alhada. This is in order to be able to develop a generic model to enable and assist the educational policy makers and implementers of m-learning, to comprehend and treat those issues effectively. Specifically, the research will explore the concept of m-learning; identify and analyse the main organisational; technological and cultural issue, that relate to the adoption of m-learning; develop a model of m-learning; investigate the perception of the students of the Nursing Institutes to the use of m-learning technologies for their nursing diploma programmes based on their experiences; conduct a validation of the m-learning model with the use of the nursing Institute of the AFH, Alhada in Saudi Arabia, and evaluate the research project as a learning experience and as a contribution to the body of knowledge. Activity Theory (AT) will be adopted for the study due to the fact that it provides a conceptual framework that engenders an understanding of the structure, development and the context of computer-supported activities. The study will be adopt a set of data collection methods which engage nursing students in a quantitative survey, while nurse teachers are engaged through in depth qualitative studies to get first-hand information about the organisational, technological and cultural issues that impact on the deployment of m-learning. The original contribution will be a model for developing m-learning material for classroom-based learning in the nursing institute that can have a general application.Keywords: activity theory (at), mobile learning (m-learning), nursing institute, Saudi Arabia (sa)
Procedia PDF Downloads 3534315 A Descriptive Study to Assess the Knowledge Regarding Prevention and Management of Methicillin-Resistant Staphylococcus Aureus (MRSA) Infections Among Nursing Officers in a Selected Hospital, Bengaluru
Authors: Maneesha Pahlani, Najmin Sultana
Abstract:
A hospital is one of the most suitable places for acquiring an infection because it harbors a high population of virulent strains of microorganisms that may be resistant to antibiotics, especially the prevalence of Methicillin-Resistant Staphylococcus Aureus (MRSA) infections. The hospital-acquired infection has become a global challenge. In developed countries, healthcare-associated infections occur in 5-15% of hospitalized clients, affecting 9-37% of those admitted to intensive care units (ICU). A non-experimental descriptive study was conducted among 50 nursing officers working in a selected hospital in Bangalore to assess the nursing officers’ level of knowledge regarding the prevention and management of MRSA infections and to associate the pre-test knowledge mean scores of nursing officers with selected socio-demographic variables. Data was collected using a structured questionnaire consisting of socio-demographic data and a structured questionnaire on knowledge regarding the prevention and management of MRSA infections. The data was analyzed in terms of frequencies and percentages for the analysis of demographic variables and computing chi-square to determine the association between knowledge means scores and selected demographic variables. The study findings revealed that the nursing officer had an overall good level of knowledge (63.05%) regarding the prevention and management of MRSA infections, and there is no significant association found between the level of knowledge mean scores for prevention and management of MRSA infection with the selected socio-demographic variables. However, the categorization of knowledge items showed that the nursing officer must thoroughly receive education on correct guidance and information regarding MRSA infection control policy, including measures and practices on hygiene precautions and information regarding antibiotic resistance for effective nursing care to patients with MRSA infections. The conclusions drawn from the study findings showed that it is necessary that the nursing officer thoroughly receive education on correct guidance and information regarding MRSA infection control policy, including measures and practices on hygiene precautions and information regarding antibiotic resistance to provide effective nursing care to patients with MRSA infection as they constantly care for the patient who can be at risk for multi-drug resistance organisms to reduce the risk of MRSA infection in hospital care settings as well community settings.Keywords: MRSA, nursing officers, knowledge, preventive and management
Procedia PDF Downloads 694314 A Descriptive Study to Assess the Knowledge Regarding Prevention and Management of Methicillin-Resistant Staphylococcus Aureus Infections Among Nursing Officers in a Selected Hospital, Bengaluru.
Authors: Najmin Sultana, Maneesha Pahlani
Abstract:
A hospital is one of the most suitable places for acquiring an infection because it harbors a high population of virulent strains of microorganisms that may be resistant to antibiotics, especially the prevalence of Methicillin-Resistant Staphylococcus Aureus (MRSA) infections. The hospital-acquired infection has become a global challenge. In developed countries, healthcare-associated infections occur in 5-15% of hospitalized clients, affecting 9-37% of those admitted to intensive care units (ICU). A non-experimental descriptive study was conducted among 50 nursing officers working in a selected hospital in bengaluru to assess the nursing officers’ level of knowledge regarding the prevention and management of MRSA infections and to associate the pre-test knowledge mean scores of nursing officers with selected socio-demographic variables. Data was collected using a structured questionnaire consisting of socio-demographic data and a structured questionnaire on knowledge regarding the prevention and management of MRSA infections. The data was analyzed in terms of frequencies and percentages for the analysis of demographic variables and computing chi-square to determine the association between knowledge means scores and selected demographic variables. The study findings revealed that the nursing officer had an overall good level of knowledge (63.05%) regarding the prevention and management of MRSA infections, and there is no significant association found between the level of knowledge mean scores for prevention and management of MRSA infection with the selected socio-demographic variables. However, the categorization of knowledge items showed that the nursing officer must thoroughly receive education on correct guidance and information regarding MRSA infection control policy, including measures and practices on hygiene precautions and information regarding antibiotic resistance for effective nursing care to patients with MRSA infections. The conclusions drawn from the study findings showed that it is necessary that the nursing officer thoroughly receive education on correct guidance and information regarding MRSA infection control policy, including measures and practices on hygiene precautions and information regarding antibiotic resistance to provide effective nursing care to patients with MRSA infection as they constantly care for the patient who can be at risk for multi-drug resistance organisms to reduce the risk of MRSA infection in hospital care settings as well community settings.Keywords: MRSA, knowledge, nursing officers', prevention and management
Procedia PDF Downloads 634313 Effects of Clinical Practice Guideline on Knowledge and Preventive Practices of Nursing Personnel and Incidences of Ventilator-associated Pneumonia Thailand
Authors: Phawida Wattanasoonthorn
Abstract:
Ventilator-associated pneumonia is a serious infection found to be among the top three infections in the hospital. To investigate the effects of clinical practice guideline on knowledge and preventive practices of nursing personnel, and incidences of ventilator-associated pneumonia. A pre-post quasi-experimental study on 17 professional nurses, and 123 ventilator-associated pneumonia patients admitted to the surgical intensive care unit, and the accident and surgical ward of Songkhla Hospital from October 2013 to January 2014. The study found that after using the clinical practice guideline, the subjects’ median score increased from 16.00 to 19.00. The increase in practicing correctly was from 66.01 percent to 79.03 percent with the statistical significance level of .05, and the incidences of ventilator-associated pneumonia decreased by 5.00 percent. The results of this study revealed that the use of the clinical practice guideline helped increase knowledge and practice skill of nursing personnel, and decrease incidences of ventilator-associated pneumonia. Thus, nursing personnel should be encouraged, reminded and promoted to continue using the practice guideline through various means including training, providing knowledge, giving feedback, and putting up posters to remind them of practicing correctly and sustainably.Keywords: Clinical Practice Guideline, knowledge, Preventive Ventilator, Pneumonia
Procedia PDF Downloads 4104312 The Importance of Reflection and Collegial Support for Clinical Instructors When Evaluating Failing Students in a Clinical Nursing Course
Authors: Maria Pratt, Lynn Martin
Abstract:
Context: In nursing education, clinical instructors are crucial in assessing and evaluating students' performance in clinical courses. However, instructors often struggle when assigning failing grades to students at risk of failing. Research Aim: This qualitative study aims to understand clinical instructors' experiences evaluating students with unsatisfactory performance, including how reflection and collegial support impact this evaluation process. Methodology, Data Collection, and Analysis Procedures: This study employs Gadamer's Hermeneutic Inquiry as the research methodology. A purposive maximum variation sampling technique was used to recruit eight clinical instructors from a collaborative undergraduate nursing program in Southwestern Ontario. Semi-structured, open-ended, and audio-taped interviews were conducted with the participants. The hermeneutic analysis was applied to interpret the interview data to allow for a thorough exploration and interpretation of the instructors' experiences evaluating failing students. Findings: The main findings of this qualitative research indicate that evaluating failing students was emotionally draining for the clinical instructors who experienced multiple challenges, uncertainties, and negative feelings associated with assigning failing grades. However, the analysis revealed that ongoing reflection and collegial support played a crucial role in mitigating the challenges they experienced. Conclusion: This study contributes to the theoretical understanding of nursing education by shedding light on clinical instructors' challenges in evaluating failing students. It emphasizes the emotional toll associated with this process and the role that reflection and collegial support play in alleviating those challenges. The findings underscore the need for ongoing professional development and support for instructors in nursing education. By understanding and addressing clinical instructors' experiences, nursing education programs can better equip them to effectively evaluate struggling students and provide the necessary support for their professional growth.Keywords: clinical instructor, student evaluation, nursing, reflection, support
Procedia PDF Downloads 934311 Deep Learning Based-Object-classes Semantic Classification of Arabic Texts
Authors: Imen Elleuch, Wael Ouarda, Gargouri Bilel
Abstract:
We proposes in this paper a Deep Learning based approach to classify text in order to enrich an Arabic ontology based on the objects classes of Gaston Gross. Those object classes are defined by taking into account the syntactic and semantic features of the treated language. Thus, our proposed approach is a hybrid one. In fact, it is based on the one hand on the object classes that represents a knowledge based-approach on classification of text and in the other hand it uses the deep learning approach that use the word embedding-based-approach to classify text. We have applied our proposed approach on a corpus constructed from an Arabic dictionary. The obtained semantic classification of text will enrich the Arabic objects classes ontology. In fact, new classes can be added to the ontology or an expansion of the features that characterizes each object class can be updated. The obtained results are compared to a similar work that treats the same object with a classical linguistic approach for the semantic classification of text. This comparison highlight our hybrid proposed approach that can be ameliorated by broaden the dataset used in the deep learning process.Keywords: deep-learning approach, object-classes, semantic classification, Arabic
Procedia PDF Downloads 874310 The Use of Layered Neural Networks for Classifying Hierarchical Scientific Fields of Study
Authors: Colin Smith, Linsey S Passarella
Abstract:
Due to the proliferation and decentralized nature of academic publication, no widely accepted scheme exists for organizing papers by their scientific field of study (FoS) to the author’s best knowledge. While many academic journals require author provided keywords for papers, these keywords range wildly in scope and are not consistent across papers, journals, or field domains, necessitating alternative approaches to paper classification. Past attempts to perform field-of-study (FoS) classification on scientific texts have largely used a-hierarchical FoS schemas or ignored the schema’s inherently hierarchical structure, e.g. by compressing the structure into a single layer for multi-label classification. In this paper, we introduce an application of a Layered Neural Network (LNN) to the problem of performing supervised hierarchical classification of scientific fields of study (FoS) on research papers. In this approach, paper embeddings from a pretrained language model are fed into a top-down LNN. Beginning with a single neural network (NN) for the highest layer of the class hierarchy, each node uses a separate local NN to classify the subsequent subfield child node(s) for an input embedding of concatenated paper titles and abstracts. We compare our LNN-FOS method to other recent machine learning methods using the Microsoft Academic Graph (MAG) FoS hierarchy and find that the LNN-FOS offers increased classification accuracy at each FoS hierarchical level.Keywords: hierarchical classification, layer neural network, scientific field of study, scientific taxonomy
Procedia PDF Downloads 1334309 Sentiment Analysis: Comparative Analysis of Multilingual Sentiment and Opinion Classification Techniques
Authors: Sannikumar Patel, Brian Nolan, Markus Hofmann, Philip Owende, Kunjan Patel
Abstract:
Sentiment analysis and opinion mining have become emerging topics of research in recent years but most of the work is focused on data in the English language. A comprehensive research and analysis are essential which considers multiple languages, machine translation techniques, and different classifiers. This paper presents, a comparative analysis of different approaches for multilingual sentiment analysis. These approaches are divided into two parts: one using classification of text without language translation and second using the translation of testing data to a target language, such as English, before classification. The presented research and results are useful for understanding whether machine translation should be used for multilingual sentiment analysis or building language specific sentiment classification systems is a better approach. The effects of language translation techniques, features, and accuracy of various classifiers for multilingual sentiment analysis is also discussed in this study.Keywords: cross-language analysis, machine learning, machine translation, sentiment analysis
Procedia PDF Downloads 7134308 Meaning and Cultivating Factors of Mindfulness as Experienced by Thai Females Who Practice Dhamma
Authors: Sukjai Charoensuk, Penphan Pitaksongkram, Michael Christopher
Abstract:
Preliminary evidences supported the effectiveness of mindfulness-based interventions in reducing symptoms associated with a variety of medical and psychological conditions. However, the measurements of mindfulness are questionable since they have not been developed based-on Buddhist experiences. The purpose of this qualitative study was to describe meaning and cultivating factors of mindfulness as experienced by Thai females who practice Dhamma. Participants were purposively selected to include 2 groups of Thai females who practice Dhamma. The first group consisted of 6 female Buddhist monks, and the second group consisted of 7 female who practice Dhamma without ordaining. Data were collected using in-depth interview. The instruments used were demographic data questionnaire and guideline for in-depth interview developed by researchers. Content analysis was employed to analyze the data. The results revealed that Thai women who practice Dhamma described their experience in 2 themes, which were meaning and cultivating factors of mindfulness. The meaning composed of 4 categories; 1) Being Present, 2) Self-awareness, 3) Contemplation, and 4) Neutral. The cultivating factors of mindfulness composed of 2 categories; In-personal factors and Ex-personal factors. The In-personal cultivating factors included 4 sub-categories; Faith and Love, the Five Precepts, Sound body, and Practice. The Ex-personal cultivating factors included 2 sub-categories; Serenity, and Learning. These findings increase understanding about meaning of mindfulness and its cultivating factors. These could be used as a guideline to promote mental health and develop nursing interventions using mindfulness based, as well as, develop the instrument for assessing mindfulness in Thai context.Keywords: cultivating factor, meaning of mindfulness, practice Dhamma, Thai women
Procedia PDF Downloads 3514307 Nursing System Development in Patients Undergoing Operation in 3C Ward
Authors: Darawan Augsornwan, Artitaya Sabangbal, Maneewan Srijan, Kanokarn Kongpitee, Lalida Petphai, Palakorn Surakunprapha
Abstract:
Background: Srinagarind Hospital, Ward 3C, has patients with head and neck cancer, congenital urology anomalies such as hypospadis, cleft lip and cleft palate and congenital megacolon who need surgery. Undergoing surgery is a difficult time for patients/ family; they feel fear and anxiety. Nurses work closely with patients and family for 24 hours in the process of patients care, so should have the good nursing ability, innovation and an efficient nursing care system to promote patients self-care ability reducing suffering and preventing complications. From previous nursing outcomes we found patients did not receive appropriate information, could not take care of their wound, not early ambulation after the operation and lost follow-up. Objective: to develop the nursing system for patients who were undergoing an operation. Method: this is a participation action research. The sample population was 11 nurses and 60 patients. This study was divided into 3 phase: Phase 1. Situation review In this phase we review the clinical outcomes, the process of care from documents such as nurses note and interview nurses, patients and family about the process of care by nurses. Phase 2: focus group with 11 nurses, searching guideline for specific care, nursing care system then establish the protocol. This phase we have the protocol for giving information, teaching protocol and teaching record, leaflet for all of top five diseases, make video media to convey information, ambulation package and protocol for patients with head and neck cancer, patients zoning, primary nurse, improved job description for each staff level. Program to record number of patients, kind of medical procedures for showing nurses activity each day. Phase 3 implementation and evaluation. Result: patients/family receive appropriate information about deep breathing exercise, cough, early ambulation after the operation, information during the stay in the hospital. Patients family satisfaction is 95.04 percent, appropriate job description for a practical nurse, nurse aid, and worker. Nurses satisfaction is 95 percent. The complications can be prevented. Conclusion: the nursing system is the dynamic process using evidence to develop nursing care. The appropriate system depends on context and needs to keep an eye on every event.Keywords: development, nursing system, patients undergoing operation, 3C Ward
Procedia PDF Downloads 2644306 Impact of Positive Psychology Education and Interventions on Well-Being: A Study of Students Engaged in Pastoral Care
Authors: Inna R. Edara, Haw-Lin Wu
Abstract:
Positive psychology investigates human strengths and virtues and promotes well-being. Relying on this assumption, positive interventions have been continuously designed to build pleasure and happiness, joy and contentment, engagement and meaning, hope and optimism, satisfaction and gratitude, spirituality, and various other positive measures of well-being. In line with this model of positive psychology and interventions, this study investigated certain measures of well-being in a group of 45 students enrolled in an 18-week positive psychology course and simultaneously engaged in service-oriented interventions that they chose for themselves based on the course content and individual interests. Students’ well-being was measured at the beginning and end of the course. The well-being indicators included positive automatic thoughts, optimism and hope, satisfaction with life, and spirituality. A paired-samples t-test conducted to evaluate the impact of class content and service-oriented interventions on students’ scores of well-being indicators indicated statistically significant increase from pre-class to post-class scores. There were also significant gender differences in post-course well-being scores, with females having higher levels of well-being than males. A two-way between groups analysis of variance indicated a significant interaction effect of age by gender on the post-course well-being scores, with females in the age group of 56-65 having the highest scores of well-being in comparison to the males in the same age group. Regression analyses indicated that positive automatic thought significantly predicted hope and satisfaction with life in the pre-course analysis. In the post-course regression analysis, spiritual transcendence made a significant contribution to optimism, and positive automatic thought made a significant contribution to both hope and satisfaction with life. Finally, a significant test between pre-course and post-course regression coefficients indicated that the regression coefficients at pre-course were significantly different from post-course coefficients, suggesting that the positive psychology course and the interventions were helpful in raising the levels of well-being. The overall results suggest a substantial increase in the participants’ well-being scores after engaging in the positive-oriented interventions, implying a need for designing more positive interventions in education to promote well-being.Keywords: hope, optimism, positive automatic thoughts, satisfaction with life, spirituality, well-being
Procedia PDF Downloads 2174305 Managing Climate Change: Vulnerability Reduction or Resilience Building
Authors: Md Kamrul Hassan
Abstract:
Adaptation interventions are the common response to manage the vulnerabilities of climate change. The nature of adaptation intervention depends on the degree of vulnerability and the capacity of a society. The coping interventions can take the form of hard adaptation – utilising technologies and capital goods like dykes, embankments, seawalls, and/or soft adaptation – engaging knowledge and information sharing, capacity building, policy and strategy development, and innovation. Hard adaptation is quite capital intensive but provides immediate relief from climate change vulnerabilities. This type of adaptation is not real development, as the investment for the adaptation cannot improve the performance – just maintain the status quo of a social or ecological system, and often lead to maladaptation in the long-term. Maladaptation creates a two-way loss for a society – interventions bring further vulnerability on top of the existing vulnerability and investment for getting rid of the consequence of interventions. Hard adaptation is popular to the vulnerable groups, but it focuses so much on the immediate solution and often ignores the environmental issues and future risks of climate change. On the other hand, soft adaptation is education oriented where vulnerable groups learn how to live with climate change impacts. Soft adaptation interventions build the capacity of vulnerable groups through training, innovation, and support, which might enhance the resilience of a system. In consideration of long-term sustainability, soft adaptation can contribute more to resilience than hard adaptation. Taking a developing society as the study context, this study aims to investigate and understand the effectiveness of the adaptation interventions of the coastal community of Sundarbans mangrove forest in Bangladesh. Applying semi-structured interviews with a range of Sundarbans stakeholders including community residents, tourism demand-supply side stakeholders, and conservation and management agencies (e.g., Government, NGOs and international agencies) and document analysis, this paper reports several key insights regarding climate change adaptation. Firstly, while adaptation interventions may offer a short-term to medium-term solution to climate change vulnerabilities, interventions need to be revised for long-term sustainability. Secondly, soft adaptation offers advantages in terms of resilience in a rapidly changing environment, as it is flexible and dynamic. Thirdly, there is a challenge to communicate to educate vulnerable groups to understand more about the future effects of hard adaptation interventions (and the potential for maladaptation). Fourthly, hard adaptation can be used if the interventions do not degrade the environmental balance and if the investment of interventions does not exceed the economic benefit of the interventions. Overall, the goal of an adaptation intervention should be to enhance the resilience of a social or ecological system so that the system can with stand present vulnerabilities and future risks. In order to be sustainable, adaptation interventions should be designed in such way that those can address vulnerabilities and risks of climate change in a long-term timeframe.Keywords: adaptation, climate change, maladaptation, resilience, Sundarbans, sustainability, vulnerability
Procedia PDF Downloads 194