Search results for: molecular genetics
1941 Investigation of Genetic Variation among Anemone narcissiflora L. Population Using PCR-RAPD Molecular Marker
Authors: Somayeh Akrami, Habib Onsori, Elham Tahmassebian
Abstract:
Species of Anemone narcissiflora is belonged to Anemone genus of Ranunculaceae family. This species has two subspecies named narcissiflora and willdenowii which the latest is recorded in Iran in 2010. Some samples of A. narcissiflora is gathered from kuhkamar-zonouz region of East -Azerbaijan province, Iran to study the genetic diversity of the species by using RAPD molecular markers, and estimation of genetic diversity were evaluated with the using 10mer RAPD primers by PCR-RAPD method. 39 polymorphic bands were produced from the six primers used in this technique that the maximum band is related to the RP1 primer, the lowest band is related to the RP7 and the average band for all primers were 6.5 polymorphic bands. Cluster analysis of samples in done by UPGMA method in NTSYSpc 2.02 software. Dendrogram resulting from migrating bands showed that the studied samples can be divided into two groups. The first group includes samples with 1-2 flowers and the second group consists of two sub-groups which the first subgroup consists of samples with 3-5 flowers, and the second subgroup consists of samples with 6-7 flowers. The results of the comparison and analysis of the data obtained from RAPD technique and similarity matrix represents the genetic variation between collected samples. This study shows that RAPD markers can determine the polymorphisms between different genotypes of A. narcissiflora and their hybrids. So RAPD technique can serve as a suitable molecular method to determine the genetic diversity of samples.Keywords: Anemone narcissiflora, genetic diversity, RAPD-PCR
Procedia PDF Downloads 4751940 Docking and Dynamic Molecular Study of Isoniazid Derivatives as Anti-Tuberculosis Drug Candidate
Authors: Richa Mardianingrum, Srie R. N. Endah
Abstract:
In this research, we have designed four isoniazid derivatives i.e., isonicotinohydrazide (1-isonicotinoyl semicarbazide, 1-thiosemi isonicotinoyl carbazide, N '-(1,3-dimethyl-1 h-pyrazole-5-carbonyl) isonicotino hydrazide, and N '-(1,2,3- 4-thiadiazole-carbonyl) isonicotinohydrazide. The docking and molecular dynamic have performed to them in order to study its interaction with Mycobacterium tuberculosis Enoyl-Acyl Carrier Protein Reductase (InhA). Based on this research, all of the compounds were predicted to have a stable interaction with Mycobacterium tuberculosis Enoyl-Acyl Carrier Protein Reductase (INHA) receptor, so they could be used as an anti-tuberculosis drug candidate.Keywords: anti-tuberculosis, docking, Inhibin alpha subunit, InhA, inhibition, synthesis, isonicotinohydrazide
Procedia PDF Downloads 1811939 Molecular Epidemiologic Distribution of HDV Genotypes among Different Ethnic Groups in Iran: A Systematic Review
Authors: Khabat Barkhordari
Abstract:
Hepatitis delta virus (HDV) is a RNA virus that needs the function of hepatitis B virus (HBV) for its propagation and assembly. Infection by HDV can occur spontaneously with HBV infection and cause acute hepatitis or develop as secondary infection in HBV suffering patients. Based on genome sequence analysis, HDV has several genotypes which show broad geographic and diverse clinical features. The aim of current study is determine the molecular epidemiology of hepatitis delta virus genotype in patients with positive HBsAg among different ethnic groups of Iran. This systematic review study reviews the results of different studies which examined 2000 Iranian patients with HBV infection from 2010 to 2015. Among 2000 patients in this study, 16.75 % were containing anti-HDV antibody and HDV RNA was found in just 1.75% cases. All of positive cases also have genotype I.Keywords: HDV, genotype, epidemiology, distribution
Procedia PDF Downloads 2751938 Ab Initio Spectroscopic Study of the Electronic Properties of the (Bana)+ Molecular Ion
Authors: Tahani H. Alluhaybi, Leila Mejrissi
Abstract:
In the present theoretical study, we investigated adiabatically the electronic structure of the (BaNa)+ by the use of the ab initio calculation. We optimized a large atomic GTO basis set for Na and Ba atoms. The (BaNa)+ molecular ion is considered a two-electron thank to a non-empirical pseudo-potentials approach applied to Ba and Na cores with the Core Polarization Potentials operator (CPP). Then, we performed the Full Configuration Interaction (FCI) method. Accordingly, we calculated the adiabatic Potential Energy Curves (PECs) and their spectroscopic constants (well depth De, transition energies Te, the equilibrium distances Re, vibrational constant ⍵e, and anharmonic constant ⍵exe) for 10 electronic states in Σ+ symmetry. Then we determined the vibrational level energies and their spacing, and the electric Permanent Dipole Moments (PDM).Keywords: Ab initio, dipole moment, non-empirical pseudo-potential, potential energy curves, spectroscopic constants, vibrational energy
Procedia PDF Downloads 1131937 Thiazolo[5,4-D]Thiazole-Core Organic Chromophore with Furan Spacer for Organic Solar Cells
Authors: M. Nazim, S. Ameen, H. K. Seo, H. S. Shin
Abstract:
Energy is the basis of life and strong attention has been growing for the cost-effective energy production. Recently, solution-processed small molecule organic solar cells (SMOSCs) have grown much attention due to the wages such as well-defined molecular structures, definite molecular weight, easy synthesis and easy purification techniques. In particular, the size of donor (D) and acceptor (A) unit is a crucial factor for the exciton-diffusion towards D-A interface and then charge-separation for the effective charge-transport to the electrodes. Furan-bridged materials are more electron-rich, high fluorescence, with better molecular-packing, and greater rigidity and greater solubility than their thiophene-counterparts In this work, a furan-bridged thiazolo[5,4-d]thiazole based organic small molecule (RFTzR) was formulated and applied for BHJ organic solar cells (OSCs). The introduction of furan spacer with two terminal alkyl units improved its absorption and solubility in the common organic solvents, significantly. RFTzR exhibited a HOMO and LUMO energy levels of -5.36 eV and -3.14 eV, respectively. The fabricated solar cell devices of RFTzR (donor) with PC60BM (acceptor) as photoactive materials showed high performance of 2.72% (RFTzR:PC60BM, 2:1, w/w) ratio with open-circuit voltage of 0.756 V and high photocurrent density of 10.13 mA/cm².Keywords: chromophore, organic solar cells, photoactive materials, small molecule
Procedia PDF Downloads 1631936 Habitat Suitability, Genetic Diversity and Population Structure of Two Sympatric Fruit Bat Species Reveal the Need of an Urgent Conservation Action
Authors: Mohamed Thani Ibouroi, Ali Cheha, Claudine Montgelard, Veronique Arnal, Dawiyat Massoudi, Guillelme Astruc, Said Ali Ousseni Dhurham, Aurelien Besnard
Abstract:
The Livingstone's flying fox (Pteropus livingstonii) and the Comorian fruit bat (P.seychellensis comorensis) are two endemic fruit bat species among the mostly threatened animals of the Comoros archipelagos. Despite their role as important ecosystem service providers like all flying fox species as pollinators and seed dispersers, little is known about their ecologies, population genetics and structures making difficult the development of evidence-based conservation strategies. In this study, we assess spatial distribution and ecological niche of both species using Species Distribution Modeling (SDM) based on the recent Ensemble of Small Models (ESMs) approach using presence-only data. Population structure and genetic diversity of the two species were assessed using both mitochondrial and microsatellite markers based on non-invasive genetic samples. Our ESMs highlight a clear niche partitioning of the two sympatric species. Livingstone’s flying fox has a very limited distribution, restricted on steep slope of natural forests at high elevation. On the contrary, the Comorian fruit bat has a relatively large geographic range spread over low elevations in farmlands and villages. Our genetic analysis shows a low genetic diversity for both fruit bats species. They also show that the Livingstone’s flying fox population of the two islands were genetically isolated while no evidence of genetic differentiation was detected for the Comorian fruit bats between islands. Our results support the idea that natural habitat loss, especially the natural forest loss and fragmentation are the important factors impacting the distribution of the Livingstone’s flying fox by limiting its foraging area and reducing its potential roosting sites. On the contrary, the Comorian fruit bats seem to be favored by human activities probably because its diets are less specialized. By this study, we concluded that the Livingstone’s flying fox species and its habitat are of high priority in term of conservation at the Comoros archipelagos scale.Keywords: Comoros islands, ecological niche, habitat loss, population genetics, fruit bats, conservation biology
Procedia PDF Downloads 2661935 Theoretical Study of the Photophysical Properties and Potential Use of Pseudo-Hemi-Indigo Derivatives as Molecular Logic Gates
Authors: Christina Eleftheria Tzeliou, Demeter Tzeli
Abstract:
Introduction: Molecular Logic Gates (MLGs) are molecular machines that can perform complex work, such as solving logic operations. Molecular switches, which are molecules that can experience chemical changes are examples of successful types of MLGs. Recently, Quintana-Romero and Ariza-Castolo studied experimentally six stable pseudo-hemi-indigo-derived MLGs capable of solving complex logic operations. The MLG design relies on a molecular switch that experiences Z and E isomerism, thus the molecular switch's axis has to be a double bond. The hemi-indigo structure was preferred for the assembly of molecular switches due to its interaction with visible light. Z and E pseudo-hemi-indigo isomers can also be utilized for selective isomerization as they have distinct absorption spectra. Methodology: Here, the photophysical properties of pseudo-hemi-indigo derivatives are examined, i.e., derivatives of molecule 1 with anthracene, naphthalene, phenanthrene, pyrene, and pyrrole. In conjunction with some trials that were conducted, the level of theory mentioned subsequently was determined. The structures under study were optimized in both cis and trans conformations at the PBE0/6-31G(d,p) level of theory. The absorption spectra of the structures were calculated at PBE0/DEF2TZVP. In all cases, the absorption spectra of the studied systems were calculated including up to 50 singlet- and triplet-spin excited electronic states. Transition states (cis → cis, cis → trans, and trans → trans) were obtained in cases where it was possible, with PBE0/6-31G(d,p) for the optimization of the transition states and PBE0/DEF2TZVP for the respective absorption spectra. Emission spectra were obtained for the first singlet state of each molecule in cis both and trans conformations in PBE0/DEF2TZVP as well. All studies were performed in chloroform solvent that was added as a dielectric constant and the polarizable continuum model was also employed. Findings: Shifts of up to 25 nm are observed in the absorption spectra due to cis-trans isomerization, while the transition state is shifted up to about 150 nm. The electron density distribution is also examined, where charge transfer and electron transfer phenomena are observed regarding the three excitations of interest, i.e., H-1 → L, H → L and H → L+1. Emission spectra calculations were also carried out at PBE0/DEF2TZVP for the complete investigation of these molecules. Using protonation as input, selected molecules act as MLGs. Conclusion: Theoretical data so far indicate that both cis-trans isomerization, and cis-cis and trans-trans conformer isomerization affect the UV-visible absorption and emission spectra. Specifically, shifts of up to 30 nm are observed, while the transition state is shifted up to about 150 nm in cis-cis isomerization. The computational data obtained are in agreement with available experimental data, which have predicted that the pyrrole derivative is a MLG at 445 nm and 400 nm using protonation as input, while the anthracene derivative is a MLG that operates at 445 nm using protonation as input. Finally, it was found that selected molecules are candidates as MLG using protonation and light as inputs. These MLGs could be used as chemical sensors or as particular intracellular indicators, among several other applications. Acknowledgements: The author acknowledges the Hellenic Foundation for Research and Innovation for the financial support of this project (Fellowship Number: 21006).Keywords: absorption spectra, DFT calculations, isomerization, molecular logic gates
Procedia PDF Downloads 211934 Analysis of Some Produced Inhibitors for Corrosion of J55 Steel in NaCl Solution Saturated with CO₂
Authors: Ambrish Singh
Abstract:
The corrosion inhibition performance of pyran (AP) and benzimidazole (BI) derivatives on J55 steel in 3.5% NaCl solution saturated with CO₂ was investigated by electrochemical, weight loss, surface characterization, and theoretical studies. The electrochemical studies included electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PDP), electrochemical frequency modulation (EFM), and electrochemical frequency modulation trend (EFMT). Surface characterization was done using contact angle, scanning electron microscopy (SEM), and atomic force microscopy (AFM) techniques. DFT and molecular dynamics (MD) studies were done using Gaussian and Materials Studio softwares. All the studies suggested the good inhibition by the synthesized inhibitors on J55 steel in 3.5% NaCl solution saturated with CO₂ due to the formation of a protective film on the surface. Molecular dynamic simulation was applied to search for the most stable configuration and adsorption energies for the interaction of the inhibitors with Fe (110) surface.Keywords: corrosion, inhibitor, EFM, AFM, DFT, MD
Procedia PDF Downloads 1051933 The Rational Design of Original Anticancer Agents Using Computational Approach
Authors: Majid Farsadrooh, Mehran Feizi-Dehnayebi
Abstract:
Serum albumin is the most abundant protein that is present in the circulatory system of a wide variety of organisms. Although it is a significant macromolecule, it can contribute to osmotic blood pressure and also, plays a superior role in drug disposition and efficiency. Molecular docking simulation can improve in silico drug design and discovery procedures to propound a lead compound and develop it from the discovery step to the clinic. In this study, the molecular docking simulation was applied to select a lead molecule through an investigation of the interaction of the two anticancer drugs (Alitretinoin and Abemaciclib) with Human Serum Albumin (HSA). Then, a series of new compounds (a-e) were suggested using lead molecule modification. Density functional theory (DFT) including MEP map and HOMO-LUMO analysis were used for the newly proposed compounds to predict the reactivity zones on the molecules, stability, and chemical reactivity. DFT calculation illustrated that these new compounds were stable. The estimated binding free energy (ΔG) values for a-e compounds were obtained as -5.78, -5.81, -5.95, -5,98, and -6.11 kcal/mol, respectively. Finally, the pharmaceutical properties and toxicity of these new compounds were estimated through OSIRIS DataWarrior software. The results indicated no risk of tumorigenic, irritant, or reproductive effects and mutagenicity for compounds d and e. As a result, compounds d and e, could be selected for further study as potential therapeutic candidates. Moreover, employing molecular docking simulation with the prediction of pharmaceutical properties helps to discover new potential drug compounds.Keywords: drug design, anticancer, computational studies, DFT analysis
Procedia PDF Downloads 771932 The Molecular Bases of Δβ T-Cell Mediated Antigen Recognition
Authors: Eric Chabrol, Sidonia B.G. Eckle, Renate de Boer, James McCluskey, Jamie Rossjohn, Mirjam H.M. Heemskerk, Stephanie Gras
Abstract:
αβ and γδ T-cells are disparate T-cell lineages that, via their use of either αβ or γδ T-cell antigen receptors (TCRs) respectively, can respond to distinct antigens. Here we characterise a new population of human T-cells, term δβ T-cells, that express TCRs comprising a TCR-δ variable gene fused to a Joining-α/Constant-α domain, paired with an array of TCR-β chains. We characterised the cellular, functional, biophysical and structural characteristic feature of this new T-cells population that reveal some new insight into TCR diversity. We provide molecular bases of how δβ T-cells can recognise viral peptide presented by Human Leukocyte Antigen (HLA) molecule. Our findings highlight how components from αβ and γδTCR gene loci can recombine to confer antigen specificity thus expanding our understanding of T-cell biology and TCR diversity.Keywords: new delta-beta TCR, HLA, viral peptide, structural immunology
Procedia PDF Downloads 4251931 Molecular Docking Study of Rosmarinic Acid and Its Analog Compounds on Sickle Cell Hemoglobin
Authors: Roohallah Yousefi
Abstract:
Introduction: Voxelotor, also known as GBT 440, binds to the alpha cleft in HbS tetramers and promotes the stability of the relaxed or oxygenated state of HbS. This process hinders the conformational change of the HbS tetramers into the deoxygenated state. Voxelotor prevents interactions between HbS tetramers in the deoxygenated state, ultimately inhibiting the polymerization of HbS tetramers and resulting in significant clinical improvements, particularly in raising hemoglobin levels in patients. In this study, we have explored the use of herbal compound models, such as rosmarinic acid and compounds with similar structures that exhibit high binding affinity to Voxelotor's hemoglobin binding site. Materials and methods: The molecular model of hemoglobin (PDB: 5E83) was initially obtained from the RCSB PDB database. In addition, we collected 453 ligand models with structural similarity to rosmarinic acid from the PubChem database. To prepare these models for molecular docking, we utilized the Molegro Virtual Docker tool. Subsequently, we used the SwissADME web tool to predict the physicochemical properties and pharmacokinetics of these compounds. Results: We investigated the affinity and binding site of 453 compounds similar to rosmarinic acid on the hemoglobin model (PDB: 5E83). Our focus was on the alpha cleft between two alpha chains of the hemoglobin model (PDB: 5E83). The results showed that most compounds had molecular weights above 500 daltons, and some exhibited acceptable hydrophobicity. Furthermore, their solubility in aqueous solutions was good. None of the compounds were able to cross the blood-brain barrier or have gastrointestinal absorption. However, they did have varying inhibitory effects on CYP2C9 cytochromes. The skin penetration rate was generally low. Conclusion: Through our study, we identified three compounds (CID: 162739375, CID: 141386569, and CID: 24015539) with promising potential for further research. These compounds demonstrated high binding affinity to the hemoglobin model, favorable dissolution and digestive absorption rates, as well as suitable hydrophobicity, making them ideal candidates for continued laboratory investigation.Keywords: voxelotor, binding site, hemoglobin, rosmarinic acid
Procedia PDF Downloads 81930 Profile of Cross-Reactivity Allergens Highlighted by Multiplex Technology “Alex Microchip Technique” in the Diagnosis of Type I Hypersensitivity
Authors: Gadiri Sabiha
Abstract:
Introduction: Current allergy diagnostic tools using Multiplex technology have made it possible to increase the efficiency of the search for specific IgE. This opportunity is provided by the newly developed “Alex Biochip”, consisting of a panel of 282 allergens in native and molecular form, a CCD inhibitor, and the potential for detecting cross-reactive allergens. We evaluated the performance of this technology in detecting cross-reactivity in previously explored patients. Material/Method: The sera of 39 patients presenting sensitization and polysensitization profiles were explored. The search for specific IgE is carried out by the Alex ® IgE Biochip, and the results are analyzed by nature and by molecular family of allergens using specific software. Results/Discussion: The analysis gave a particular profile of cross-reactivity allergens: 33% for the Ole e1 family, 31% for NPC2, 26% for storage proteins, 20% for Tropomyosin, 10% for LTPs, 10% for Arginine Kinase and 10% for Uteroglobin CCDs were absent in all patients. The “Ole e1” allergen is responsible for a pollen-pollen cross allergy. The storage proteins found and LTP are not species-specific, causing cross-pollen-food allergy. The nDer p2 of the NPC2 family is responsible for cross-reactivity between mite species. Conclusion: The cross-reactivities responsible for mixed syndromes at diagnosis in our patients were dominated by pollen-pollen and pollen-food syndromes. They allow the identification of severity factors linked to the prognosis and the best-adapted immunotherapy.Keywords: specific IgE, allergy, cross reactivity, molecular allergens
Procedia PDF Downloads 661929 Influence of Molecular and Supramolecular Structure on Thermally Stimulated Short-Circuit Currents in Polyvinylidene Fluoride Films
Authors: Temnov D., Volgina E., Gerasimov D.
Abstract:
Relaxation processes in polyvinylidene fluoride (PVDF) films were studied by the method of thermally stimulated fractional polarization currents (TSTF). The films were obtained by extrusion of a polymer melt followed by isometric annealing. PVDF granules of the Kynar-720 brand (Atofina Chemicals, USA) with a molecular weight of Mw=190,000 g•mol-1 were used for the manufacture of films. The annealing temperature was varied in the range from 120 °C to 170 °C in increments of 10 °C. The dependences of the degree of crystallinity of films (χ) and the intensity of thermally stimulated depolarization currents on the annealing temperature (Toc) are investigated. The TSTF spectra were obtained at the TSC II facility (Setaram, France). Measurements were carried out in a helium atmosphere, and the values of currents were determined by a Keithley electrometer. The annealed PVDF films were polarized at an electric field strength of 100 V/mm at a temperature of 31°C, after which they were cooled to 26°C, at which they were kept for 1 minute. During depolarization, the external field was removed, and the short-circuit sample was cooled to 0°C. The thermally stimulated short-circuit current was recorded during linear heating. Relaxation processes in PVDF films were studied in the temperature range from 0 – 70 °C. It is shown that the intensity curve of the peaks of TST FP has a course that is the reverse of the dependence of the degree of crystallinity on the annealing temperature. This allows us to conclude that the relaxation processes occurring in PVDF in the 35°C region are associated with the amorphous part of the structure of PVDF films between the layers of the spherulite crystalline phase.Keywords: molecular and supramolecular structure, thermally stimulated currents, polyvinylidene fluoride films, relaxation processes
Procedia PDF Downloads 471928 Isolation and Molecular Identification of Two Fungal Strains Capable of Degrading hydrocarbon Contaminants on Saudi Arabian Environment
Authors: Amr A. EL Hanafy, Yasir Anwar, Saleh A. Mohamed, Saleh Mohamed Saleh Al-Garni, Jamal S. M. Sabir , Osama A. H. Abu Zinadah, Mohamed Morsi Ahmed
Abstract:
In the vicinity of the red sea about 15 fungi species were isolated from oil contaminated sites. On the basis of aptitude to degrade the crude oil and DCPIP assay, two fungal isolates were selected amongst 15 oil degrading strains. Analysis of ITS-1, ITS-2 and amplicon pyrosequencing studies of fungal diversity revealed that these strains belong to Penicillium and Aspergillus species. Two strains that proved to be the most efficient in degrading crude oil was Aspergillus niger (54 %) and Penicillium commune (48 %) Subsequent to two weeks of cultivation in BHS medium the degradation rate were recorded by using spectrophotometer and GC-MS. Hence, it is cleared that these fungal strains has the capability of degradation and can be utilized for cleaning the Saudi Arabian environment.Keywords: fungal strains, hydrocarbon contaminants, molecular identification, biodegradation, GC-MS
Procedia PDF Downloads 5221927 Behaviour of Non-local Correlations and Quantum Information Theoretic Measures in Frustrated Molecular Wheels
Authors: Amit Tribedi
Abstract:
Genuine Quantumness present in Quantum Systems is the resource for implementing Quantum Information and Computation Protocols which can outperform the classical counterparts. These Quantumness measures encompass non-local ones known as quantum entanglement (QE) and quantum information theoretic (QIT) ones, e.g. Quantum Discord (QD). In this paper, some well-known measures of QE and QD in some wheel-like frustrated molecular magnetic systems have been studied. One of the systems has already been synthesized using coordination chemistry, and the other is hypothetical, where the dominant interaction is the spin-spin exchange interaction. Exact analytical methods and exact numerical diagonalization methods have been used. Some counter-intuitive non-trivial features, like non-monotonicity of quantum correlations with temperature, persistence of multipartite entanglement over bipartite ones etc. indicated by the behaviour of the correlations and the QIT measures have been found. The measures, being operational ones, can be used to realize the resource of Quantumness in experiments.Keywords: 0D Magnets, discord, entanglement, frustration
Procedia PDF Downloads 2281926 Chemometric Estimation of Inhibitory Activity of Benzimidazole Derivatives by Linear Least Squares and Artificial Neural Networks Modelling
Authors: Sanja O. Podunavac-Kuzmanović, Strahinja Z. Kovačević, Lidija R. Jevrić, Stela Jokić
Abstract:
The subject of this paper is to correlate antibacterial behavior of benzimidazole derivatives with their molecular characteristics using chemometric QSAR (Quantitative Structure–Activity Relationships) approach. QSAR analysis has been carried out on the inhibitory activity of benzimidazole derivatives against Staphylococcus aureus. The data were processed by linear least squares (LLS) and artificial neural network (ANN) procedures. The LLS mathematical models have been developed as a calibration models for prediction of the inhibitory activity. The quality of the models was validated by leave one out (LOO) technique and by using external data set. High agreement between experimental and predicted inhibitory acivities indicated the good quality of the derived models. These results are part of the CMST COST Action No. CM1306 "Understanding Movement and Mechanism in Molecular Machines".Keywords: Antibacterial, benzimidazoles, chemometric, QSAR.
Procedia PDF Downloads 3161925 Molecular Dynamics Simulation for Vibration Analysis at Nanocomposite Plates
Authors: Babak Safaei, A. M. Fattahi
Abstract:
Polymer/carbon nanotube nanocomposites have a wide range of promising applications Due to their enhanced properties. In this work, free vibration analysis of single-walled carbon nanotube-reinforced composite plates is conducted in which carbon nanotubes are embedded in an amorphous polyethylene. The rule of mixture based on various types of plate model namely classical plate theory (CLPT), first-order shear deformation theory (FSDT), and higher-order shear deformation theory (HSDT) was employed to obtain fundamental frequencies of the nanocomposite plates. Generalized differential quadrature (GDQ) method was used to discretize the governing differential equations along with the simply supported and clamped boundary conditions. The material properties of the nanocomposite plates were evaluated using molecular dynamic (MD) simulation corresponding to both short-(10,10) SWCNT and long-(10,10) SWCNT composites. Then the results obtained directly from MD simulations were fitted with those calculated by the rule of mixture to extract appropriate values of carbon nanotube efficiency parameters accounting for the scale-dependent material properties. The selected numerical results are presented to address the influences of nanotube volume fraction and edge supports on the value of fundamental frequency of carbon nanotube-reinforced composite plates corresponding to both long- and short-nanotube composites.Keywords: nanocomposites, molecular dynamics simulation, free vibration, generalized, differential quadrature (GDQ) method
Procedia PDF Downloads 3291924 Integrative Omics-Portrayal Disentangles Molecular Heterogeneity and Progression Mechanisms of Cancer
Authors: Binder Hans
Abstract:
Cancer is no longer seen as solely a genetic disease where genetic defects such as mutations and copy number variations affect gene regulation and eventually lead to aberrant cell functioning which can be monitored by transcriptome analysis. It has become obvious that epigenetic alterations represent a further important layer of (de-)regulation of gene activity. For example, aberrant DNA methylation is a hallmark of many cancer types, and methylation patterns were successfully used to subtype cancer heterogeneity. Hence, unraveling the interplay between different omics levels such as genome, transcriptome and epigenome is inevitable for a mechanistic understanding of molecular deregulation causing complex diseases such as cancer. This objective requires powerful downstream integrative bioinformatics methods as an essential prerequisite to discover the whole genome mutational, transcriptome and epigenome landscapes of cancer specimen and to discover cancer genesis, progression and heterogeneity. Basic challenges and tasks arise ‘beyond sequencing’ because of the big size of the data, their complexity, the need to search for hidden structures in the data, for knowledge mining to discover biological function and also systems biology conceptual models to deduce developmental interrelations between different cancer states. These tasks are tightly related to cancer biology as an (epi-)genetic disease giving rise to aberrant genomic regulation under micro-environmental control and clonal evolution which leads to heterogeneous cellular states. Machine learning algorithms such as self organizing maps (SOM) represent one interesting option to tackle these bioinformatics tasks. The SOMmethod enables recognizing complex patterns in large-scale data generated by highthroughput omics technologies. It portrays molecular phenotypes by generating individualized, easy to interpret images of the data landscape in combination with comprehensive analysis options. Our image-based, reductionist machine learning methods provide one interesting perspective how to deal with massive data in the discovery of complex diseases, gliomas, melanomas and colon cancer on molecular level. As an important new challenge, we address the combined portrayal of different omics data such as genome-wide genomic, transcriptomic and methylomic ones. The integrative-omics portrayal approach is based on the joint training of the data and it provides separate personalized data portraits for each patient and data type which can be analyzed by visual inspection as one option. The new method enables an integrative genome-wide view on the omics data types and the underlying regulatory modes. It is applied to high and low-grade gliomas and to melanomas where it disentangles transversal and longitudinal molecular heterogeneity in terms of distinct molecular subtypes and progression paths with prognostic impact.Keywords: integrative bioinformatics, machine learning, molecular mechanisms of cancer, gliomas and melanomas
Procedia PDF Downloads 1481923 Computational Chemical-Composition of Carbohydrates in the Context of Healthcare Informatics
Authors: S. Chandrasekaran, S. Nandita, M. Shivathmika, Srikrishnan Shivakumar
Abstract:
The objective of the research work is to analyze the computational chemical-composition of carbohydrates in the context of healthcare informatics. The computation involves the representation of complex chemical molecular structure of carbohydrate using graph theory and in a deployable Chemical Markup Language (CML). The parallel molecular structure of the chemical molecules with or without other adulterants for the sake of business profit can be analyzed in terms of robustness and derivatization measures. The rural healthcare program should create awareness in malnutrition to reduce ill-effect of decomposition and help the consumers to know the level of such energy storage mixtures in a quantitative way. The earlier works were based on the empirical and wet data which can vary from time to time but cannot be made to reuse the results of mining. The work is carried out on the quantitative computational chemistry on carbohydrates to provide a safe and secure right to food act and its regulations.Keywords: carbohydrates, chemical-composition, chemical markup, robustness, food safety
Procedia PDF Downloads 3741922 Free and Encapsulated (TiO2)2 Dimers into Carbon Nanotubes
Authors: S. Dargouthi, S. Boughdiri, B. Tangour
Abstract:
This work invoked two complementary parts. In the first, we performed a theoretical study of various dimers of molecular of titanium dioxide. Five structures were examined. Three among them, the (T), (C) and (T/P) isomers, may be considered as stable compounds because they represent absolute minima on their potential energy surfaces. (T) and (C) may coexist because they are separted by only 6.5 kcal mol-1 but (T/P) dimer is in a metastable state from an energetic point of view. Non bonded dimer (P) transforms into its homologue (O) which has been considered as transitory specie with low lifetime which evolves to (T) structure. In the second part, we highlight the possible stabilization of (T), (C) and (P) dimers by encapsulation in carbon nanotubes. This indicates the probable role that plays this transitory specie the polymerization process of molecular TiO2. Confinement is suitable to control the fast evolution process and could towards the synthesis of new titanium dioxide nanostructured materials. An alternative description of TiO2 polymorphs (Rutie, anatase et Brookite) is proposed from (T), (C) and (T/P) dimmers motifs.Keywords: titanium dioxide, carbon nanotube, confinement. encapsulation, transitory specie
Procedia PDF Downloads 2911921 Segmental Motion of Polymer Chain at Glass Transition Probed by Single Molecule Detection
Authors: Hiroyuki Aoki
Abstract:
The glass transition phenomenon has been extensively studied for a long time. The glass transition of polymer materials is assigned to the transition of the dynamics of the chain backbone segment. However, the detailed mechanism of the transition behavior of the segmental motion is still unclear. In the current work, the single molecule detection technique was employed to reveal the trajectory of the molecular motion of the single polymer chain. The center segment of poly(butyl methacrylate) chain was labeled by a perylenediimide dye molecule and observed by a highly sensitive fluorescence microscope in a defocus condition. The translational and rotational diffusion of the center segment in a single polymer chain was analyzed near the glass transition temperature. The direct observation of the individual polymer chains revealed the intermittent behavior of the segmental motion, indicating the spatial inhomogeneity.Keywords: glass transition, molecular motion, polymer materials, single molecule
Procedia PDF Downloads 3371920 Separation and Characterization of Micobacterium bovis Cell Surface Lysate Antigen
Authors: Albina V. Moskvicheva, Gevorg G. Kazarian, Anna R. Valeeva, Marina A. Efimova, Malik N. Mukminov, Eduard A. Shuralev, Rustam Kh. Ravilov, Kamil S. Khaertynov
Abstract:
Improving the early diagnosis of tuberculosis and solving a number of problems associated with the differential diagnosis of Mycobacterium bovis infection, nonspecific tuberculin reactions caused by sensitization of the body by non-tuberculosis mycobacteria, is urgent. The filtrates and extracts of M. bovis cell surface components are promising antigens with diagnostic potential. The purpose of this study was to isolate and characterize antigenic proteins and determine the dominant M. bovis antigens recognized by the humoral immune system. The mycobacterial cells were homogenized on FastPrep-24. Gel-filtration chromatography was used to fractionate the lysates of cell surface component extracts and proteins isolated from M. bovis culture supernatant. The separated fractions were analyzed using two-dimensional gel electrophoresis followed by determination of antigen serological activity using immunoblot with specific hyperimmune rabbit blood serum. As a result of electrophoretic separation of components by molecular weight, 23 antigen fractions were obtained. Analysis of densitograms showed that the fractions contained two zones of antigens with pronounced serological activity, corresponding to molecular weights of 28 and 21 kDa. The high serological activity of the 28 kDa antigen was established by immunoblot using hyperimmune blood sera. Separated and characterized by M. bovis specific antigen with a molecular weight of 28 kDa was added to the collection of specific marker antigens for M. bovis.Keywords: antigen, gel-filtration chromatography, immunoblot, Mycobacterium bovis
Procedia PDF Downloads 1361919 The Scientific Phenomenon Revealed in the Holy Quran - an Update
Authors: Arjumand Warsy
Abstract:
The Holy Quran was revealed to Prophet Mohammad (May Peace and Blessings of Allah be upon Him) over fourteen hundred years ago, at a time when majority of the people in Arabia were illiterate and very few could read or write. Any knowledge about medicine, anatomy, biology, astronomy, physics, geology, geophysics or other sciences were almost non-existent. Many superstitious and groundless believes were prevalent and these believes were passed down through past generations. At that time, the Holy Quran was revealed and it presented several phenomenon that have been only currently unveiled, as scientists have worked endlessly to provide explanation for these physical and biological phenomenon applying scientific technologies. Many important discoveries were made during the 20th century and it is interesting to note that many of these discoveries were already present in the Holy Quran fourteen hundred years ago. The Scientific phenomenon, mentioned in the Holy Quran, cover many different fields in biological and physical sciences and have been the source of guidance for a number of scientists. A perfect description of the creation of the universe, the orbits in space, the development process, development of hearing process prior to sight, importance of the skin in sensing pain, uniqueness of fingerprints, role of males in selection of the sex of the baby, are just a few of the many facts present in the Quran that have astonished many scientists. The Quran in Chapter 20, verse 50 states: قَالَ رَبُّنَا الَّذِيۤ اَعْطٰى كُلَّ شَيْءٍ خَلْقَهٗ ثُمَّ هَدٰى ۰۰ (He said "Our Lord is He, Who has given a distinctive form to everything and then guided it aright”). Explaining this brief statement in the light of the modern day Molecular Genetics unveils the entire genetic basis of life and how guidance is stored in the genetic material (DNA) present in the nucleus. This thread like structure, made of only six molecules (sugar, phosphate, adenine, thymine, cytosine and guanine), is so brilliantly structured by the Creator that it holds all the information about each and every living thing, whether it is viruses, bacteria, fungi, plants, animals or humans or any other living being. This paper will present an update on some of the physical and biological phenomena’ presented in the Holy Quran, unveiled using advanced technologies during the last century and will discuss how the need to incorporate this information in the curricula.Keywords: The Holy Quran, scientific facts, curriculum, Muslims
Procedia PDF Downloads 3551918 A Molecular Dynamics Study on Intermittent Plasticity and Dislocation Avalanche Emissions in FCC and BCC Crystals
Authors: Javier Varillas, Jorge Alcalá
Abstract:
We investigate dislocation avalanche phenomena in face-centered cubic (FCC) and body-centered cubic (BCC) crystals using massive, large-scale molecular dynamics (MD) simulations. The analysis is focused on the intermittent development of dense dislocation arrangements subjected to uniaxial tensile straining under displacement control. We employ a novel computational scheme that allows us to inject an entangled dislocation structure in periodic MD domains. We assess the emission of plastic bursts (or dislocation avalanches) in terms of the sharp stress drops detected in the stress-strain curve. The plastic activity corresponds to the sporadic operation of specific dislocation glide processes exhibiting quiescent periods between successive avalanche events. We find that the plastic intermittences in our simulations do not overlap in time under sufficiently low strain rates as dissipation operates faster than driving, where the dense dislocation networks evolve through the emission of dislocation avalanche events whose carried slip adheres to self-organized power-law distributions. These findings enable the extension of the slip distributions obtained from strict displacement-controlled micropillar compression experiments towards smaller values of slip size. Our results furnish further understanding upon the development of entangled dislocation networks in metal plasticity, including specific mechanisms of dislocation propagation and annihilation, along with the evolution of specific dislocation populations through dislocation density analyses.Keywords: dislocations, intermittent plasticity, molecular dynamics, slip distributions
Procedia PDF Downloads 1391917 Identification of Potent and Selective SIRT7 Anti-Cancer Inhibitor via Structure-Based Virtual Screening and Molecular Dynamics Simulation
Authors: Md. Fazlul Karim, Ashik Sharfaraz, Aysha Ferdoushi
Abstract:
Background: Computational medicinal chemistry approaches are used for designing and identifying new drug-like molecules, predicting properties and pharmacological activities, and optimizing lead compounds in drug development. SIRT7, a nicotinamide adenine dinucleotide (NAD+)-dependent deacylase which regulates aging, is an emerging target for cancer therapy with mounting evidence that SIRT7 downregulation plays important roles in reversing cancer phenotypes and suppressing tumor growth. Activation or altered expression of SIRT7 is associated with the progression and invasion of various cancers, including liver, breast, gastric, prostate, and non-small cell lung cancer. Objectives: The goal of this work was to identify potent and selective bioactive candidate inhibitors of SIRT7 by in silico screening of small molecule compounds obtained from Nigella sativa (N. sativa). Methods: SIRT7 structure was retrieved from The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB), and its active site was identified using CASTp and metaPocket. Molecular docking simulation was performed with PyRx 0.8 virtual screening software. Drug-likeness properties were tested using SwissADME and pkCSM. In silico toxicity was evaluated by Osiris Property Explorer. Bioactivity was predicted by Molinspiration software. Antitumor activity was screened for Prediction of Activity Spectra for Substances (PASS) using Way2Drug web server. Molecular dynamics (MD) simulation was carried out by Desmond v3.6 package. Results: A total of 159 bioactive compounds from the N. Sativa were screened against the SIRT7 enzyme. Five bioactive compounds: chrysin (CID:5281607), pinocembrin (CID:68071), nigellidine (CID:136828302), nigellicine (CID:11402337), and epicatechin (CID:72276) were identified as potent SIRT7 anti-cancer candidates after docking score evaluation and applying Lipinski's Rule of Five. Finally, MD simulation identified Chrysin as the top SIRT7 anti-cancer candidate molecule. Conclusion: Chrysin, which shows a potential inhibitory effect against SIRT7, can act as a possible anti-cancer drug candidate. This inhibitor warrants further evaluation to check its pharmacokinetics and pharmacodynamics properties both in vitro and in vivo.Keywords: SIRT7, antitumor, molecular docking, molecular dynamics simulation
Procedia PDF Downloads 791916 The Maps of Meaning (MoM) Consciousness Theory
Authors: Scott Andersen
Abstract:
Perhaps simply and rather unadornedly, consciousness is having multiple goals for action and the continuously adjudication of such goals to implement action, referred to as the Maps of Meaning (MoM) Consciousness Theory. The MoM theory triangulates through three parallel corollaries, action (behavior), mechanism (morphology/pathophysiology), and goals (teleology). (1) An organism’s consciousness contains a fluid, nested goals. These goals are not intentionality, but intersectionality, embodiment meeting the world. i.e., Darwinian inclusive fitness or randomization, then survival of the fittest. These goals form via gradual descent under inclusive fitness, the goals being the abstraction of a ‘match’ between the evolutionary environment and organism. Human consciousness implements the brain efficiency hypothesis, genetics, epigenetics, and experience crystallize efficiencies, not necessitating best or objective but fitness, i.e., perceived efficiency based on one’s adaptive environment. These efficiencies are objectively arbitrary, but determine the operation and level of one’s consciousness, termed extreme thrownness. Since inclusive fitness drives efficiencies in physiologic mechanism, morphology and behavior (action) and originates one’s goals, embodiment is necessarily entangled to human consciousness as its the intersection of mechanism or action (both necessitating embodiment) occurring in the world that determines fitness. Perception is the operant process of consciousness and is the consciousness’ de facto goal adjudication process. Goal operationalization is fundamentally efficiency-based via one’s unique neuronal mapping as a byproduct of genetics, epigenetics, and experience. Perception involves information intake and information discrimination, equally underpinned by efficiencies of inclusive fitness via extreme thrownness. Perception isn’t a ‘frame rate,’ but Bayesian priors of efficiency based on one’s extreme thrownness. Consciousness and human consciousness is a modular (i.e., a scalar level of richness, which builds up like building blocks) and dimensionalized (i.e., cognitive abilities become possibilities as emergent phenomena at various modularities, like stratified factors in factor analysis). The meta dimensions of human consciousness seemingly include intelligence quotient, personality (five-factor model), richness of perception intake, and richness of perception discrimination, among other potentialities. Future consciousness research should utilize factor analysis to parse modularities and dimensions of human consciousness and animal models.Keywords: consciousness, perception, prospection, embodiment
Procedia PDF Downloads 591915 Proteome-Wide Convergent Evolution on Vocal Learning Birds Reveals Insight into cAMP-Based Learning Pathway
Authors: Chul Lee, Seoae Cho, Erich D. Jarvis, Heebal Kim
Abstract:
Vocal learning, the ability to imitate vocalizations based on auditory experience, is a homoplastic character state observed in different independent lineages of animals such as songbirds, parrots, hummingbirds and human. It has now become possible to perform genome-wide molecular analyses across vocal learners and vocal non-learners with the recent expansion of avian genome data. It was analyzed the whole genomes of human and 48 avian species including those belonging to the three avian vocal learning lineages, to determine if behavior and neural convergence are associated with molecular convergence in divergent species of vocal learners. Analyses of 8295 orthologous genes across bird species revealed 141 genes with amino acid substitutions specific to vocal learners. Out of these, 25 genes have vocal learner specific genetic homoplasies, and their functions were enriched for learning. Several sites in these genes are estimated under convergent evolution and positive selection. A potential role for a subset of these genes in vocal learning was supported by associations with gene expression profiles in vocal learning brain regions of songbirds and human disease that cause language dysfunctions. The key candidate gene with multiple independent lines of the evidences specific to vocal learners was DRD5. Our findings suggest cAMP-based learning pathway in avian vocal learners, indicating molecular homoplastic changes associated with a complex behavioral trait, vocal learning.Keywords: amino acid substitutions, convergent evolution, positive selection, vocal learning
Procedia PDF Downloads 3411914 Comparison of Nucleic Acid Extraction Platforms On Tissue Samples
Authors: Siti Rafeah Md Rafei, Karen Wang Yanping, Park Mi Kyoung
Abstract:
Tissue samples are precious supply for molecular studies or disease identification diagnosed using molecular assays, namely real-time PCR (qPCR). It is critical to establish the most favorable nucleic acid extraction that gives the PCR-amplifiable genomic DNA. Furthermore, automated nucleic acid extraction is an appealing alternative to labor-intensive manual methods. Operational complexity, defined as the number of steps required to obtain an extracted sample, is one of the criteria in the comparison. Here we are comparing the One BioMed’s automated X8 platform with the commercially available manual-operated kits from QIAGEN Mini Kit and Roche. We extracted DNA from rat fresh-frozen tissue (from different type of organs) in the matrices. After tissue pre-treatment, it is added to the One BioMed’s X8 pre-filled cartridge, and the QIAGEN QIAmp column respectively. We found that the results after subjecting the eluates to the Real Time PCR using BIORAD CFX are comparable.Keywords: DNA extraction, frozen tissue, PCR, qPCR, rat
Procedia PDF Downloads 1601913 Antigen Stasis can Predispose Primary Ciliary Dyskinesia (PCD) Patients to Asthma
Authors: Nadzeya Marozkina, Joe Zein, Benjamin Gaston
Abstract:
Introduction: We have observed that many patients with Primary Ciliary Dyskinesia (PCD) benefit from asthma medications. In healthy airways, the ciliary function is normal. Antigens and irritants are rapidly cleared, and NO enters the gas phase normally to be exhaled. In the PCD airways, however, antigens, such as Dermatophagoides, are not as well cleared. This defect leads to oxidative stress, marked by increased DUOX1 expression and decreased superoxide dismutase [SOD] activity (manuscript under revision). H₂O₂, in high concentrations in the PCD airway, injures the airway. NO is oxidized rather than being exhaled, forming cytotoxic peroxynitrous acid. Thus, antigen stasis on PCD airway epithelium leads to airway injury and may predispose PCD patients to asthma. Indeed, recent population genetics suggest that PCD genes may be associated with asthma. We therefore hypothesized that PCD patients would be predisposed to having asthma. Methods. We analyzed our database of 18 million individual electronic medical records (EMRs) in the Indiana Network for Patient Care research database (INPCR). There is not an ICD10 code for PCD itself; code Q34.8 is most commonly used clinically. To validate analysis of this code, we queried patients who had an ICD10 code for both bronchiectasis and situs inversus totalis in INPCR. We also studied a validation cohort using the IBM Explorys® database (over 80 million individuals). Analyses were adjusted for age, sex and race using a 1 PCD: 3 controls matching method in INPCR and multivariable logistic regression in the IBM Explorys® database. Results. The prevalence of asthma ICD10 codes in subjects with a code Q34.8 was 67% vs 19% in controls (P < 0.0001) (Regenstrief Institute). Similarly, in IBM*Explorys, the OR [95% CI] for having asthma if a patient also had ICD10 code 34.8, relative to controls, was =4.04 [3.99; 4.09]. For situs inversus alone the OR [95% CI] was 4.42 [4.14; 4.71]; and bronchiectasis alone the OR [95% CI] =10.68 (10.56; 10.79). For both bronchiectasis and situs inversus together, the OR [95% CI] =28.80 (23.17; 35.81). Conclusions: PCD causes antigen stasis in the human airway (under review), likely predisposing to asthma in addition to oxidative and nitrosative stress and to airway injury. Here, we show that, by several different population-based metrics, and using two large databases, patients with PCD appear to have between a three- and 28-fold increased risk of having asthma. These data suggest that additional studies should be undertaken to understand the role of ciliary dysfunction in the pathogenesis and genetics of asthma. Decreased antigen clearance caused by ciliary dysfunction may be a risk factor for asthma development.Keywords: antigen, PCD, asthma, nitric oxide
Procedia PDF Downloads 1061912 Correlation between Polysaccharides Molecular Weight Changes and Pectinases Gene Expression during Papaya Ripening
Authors: Samira B. R. Prado, Paulo R. Melfi, Beatriz T. Minguzzi, João P. Fabi
Abstract:
Fruit softening is the main change that occurs during papaya (Carica papaya L.) ripening. It is characterized by the depolymerization of cell wall polysaccharides, especially the pectic fractions, which causes cell wall disassembling. However, it is uncertain how the modification of the two main pectin polysaccharides fractions (water-soluble – WSF, and oxalate-soluble fractions - OSF) accounts for fruit softening. The aim of this work was to correlate molecular weight changes of WSF and OSF with the gene expression of pectin-solubilizing enzymes (pectinases) during papaya ripening. Papaya fruits obtained from a producer were harvest and storage under specific conditions. The fruits were divided in five groups according to days after harvesting. Cell walls from all groups of papaya pulp were isolated and fractionated (WSF and OSF). Expression profiles of pectinase genes were achieved according to the MIQE guidelines (Minimum Information for publication of Quantitative real-time PCR Experiments). The results showed an increased yield and a decreased molecular weight throughout ripening for WSF and OSF. Gene expression data support that papaya softening is achieved by polygalacturonases (PGs) up-regulation, in which their actions might have been facilitated by the constant action of pectinesterases (PMEs). Moreover, BGAL1 gene was up-regulated during ripening with a simultaneous galactose release, suggesting that galactosidases (GALs) could also account for pulp softening. The data suggest that a solubilization of galacturonans and a depolymerization of cell wall components were caused mainly by the action of PGs and GALs.Keywords: carica papaya, fruit ripening, galactosidases, plant cell wall, polygalacturonases
Procedia PDF Downloads 423