Search results for: material costs
8361 Potential of Dredged Material for CSEB in Building Structure
Authors: BoSheng Liu
Abstract:
The research goal is to re-image a locally-sourced waste product as abuilding material. The author aims to contribute to the compressed stabilized earth block (CSEB) by investigating the promising role of dredged material as an alternative building ingredient in the production of bricks and tiles. Dredged material comes from the sediment deposited near the shore or downstream, where the water current velocity decreases. This sediment needs to be dredged to provide water transportation; thus, there are mounds of the dredged material stored at bay. It is the interest of this research to reduce the filtered un-organic soil in the production of CSEB and replace it with locally dredged material from the Atchafalaya River in Morgan City, Louisiana. Technology and mechanical innovations have evolved the traditional adobe production method, which mixes the soil and natural fiber into molded bricks, into chemically stabilized CSEB made by compressing the clay mixture and stabilizer in a compression chamber with particular loads. In the case of dredged material CSEB (DM-CSEB), cement plays an essential role as the bending agent contributing to the unit strength while sustaining the filtered un-organic soil. Each DM-CSEB unit is made in a compression chamber with 580 PSI (i.e., 4 MPa) force. The research studied the cement content from 5% to 10% along with the range of dredged material mixtures, which differed from 20% to 80%. The material mixture content affected the DM-CSEB's strength and workability during and after its compression. Results indicated two optimal workabilities of the mixture: 27% fine clay content and 63% dredged material with 10% cement, or 28% fine clay content, and 67% dredged material with 5% cement. The final product of DM-CSEB emitted between 10 to 13 times fewer carbon emissions compared to the conventional fired masonry structure. DM-CSEB satisfied the strength requirement given by the ASTM C62 and ASTM C34 standards for construction material. One of the final evaluations tested and validated the material performance by designing and constructing an architectural, conical tile-vault prototype that was 28" by 40" by 24." The vault utilized a computational form-finding approach to generate the form's geometry, which optimized the correlation between the vault geometry and structural load distribution. A series of scaffolding was deployed to create the framework for the tile-vault construction. The final tile-vault structure was made from 2 layers of DM-CSEB tiles jointed by mortar, and the construction of the structure used over 110 tiles. The tile-vault prototype was capable of carrying over 400 lbs of live loads, which further demonstrated the dredged material feasibility as a construction material. The presented case study of Dredged Material Compressed Stabilized Earth Block (DM-CSEB) provides the first impression of dredged material in the clayey mixture process, structural performance, and construction practice. Overall, the approach of integrating dredged material in building material can be feasible, regionally sourced, cost-effective, and environment-friendly.Keywords: dredged material, compressed stabilized earth block, tile-vault, regionally sourced, environment-friendly
Procedia PDF Downloads 1148360 Microtomographic Analysis of Friction Materials Used in the Brakes of Railway Vehicles
Authors: Mikołaj Szyca
Abstract:
Friction elements of rail vehicle brakes are more and more often made of composite materials that displace cast iron. Materials are tested primarily in terms of their dynamic abilities, but the material structure of brake pads and linings changes during operation. In connection with the above, the changes taking place in the tested rubbing materials were analyzed using X-ray computed tomography in order to obtain data on changes in the structure of the material immediately after production and after a certain number of operating cycles. The implementation of microtomography research for experimental work on new friction materials may result in increasing the potential for the production of new composites by eliminating unfavorable material factors and, consequently, improving the dynamic parameters.Keywords: composite materials, friction pair, X-ray computed microtomography, railway
Procedia PDF Downloads 758359 Supply Chain Control and Inventory Management in Garment Industry
Authors: Nisa Nur Duman, Sümeyya Kiliç
Abstract:
In global competition conditions, survival of the plants by obtaining competitive advantage relies on the effective usage of existing sources. By this way, the plants can minimize their costs without losing their quality. They also take advantage took advantage on their competitors and enlarge customer portfolio by increasing profit margins. Changing structure of market and customer demands also change the structure of the competition between companies. Furthermore, competition is not only between the companies. By this manner, supply chain and supply chain management get importance by considering company performances. Companies that want to survive, search the ways of decreasing costs and the ways of meeting customer expectations. One of the important tools for reaching these goals is inventory managemet. The best inventory management system is meeting the demands by considering plant goals.Keywords: Supply chain, inventory management, apparel sector, garment industry
Procedia PDF Downloads 3698358 Globally Convergent Sequential Linear Programming for Multi-Material Topology Optimization Using Ordered Solid Isotropic Material with Penalization Interpolation
Authors: Darwin Castillo Huamaní, Francisco A. M. Gomes
Abstract:
The aim of the multi-material topology optimization (MTO) is to obtain the optimal topology of structures composed by many materials, according to a given set of constraints and cost criteria. In this work, we seek the optimal distribution of materials in a domain, such that the flexibility of the structure is minimized, under certain boundary conditions and the intervention of external forces. In the case we have only one material, each point of the discretized domain is represented by two values from a function, where the value of the function is 1 if the element belongs to the structure or 0 if the element is empty. A common way to avoid the high computational cost of solving integer variable optimization problems is to adopt the Solid Isotropic Material with Penalization (SIMP) method. This method relies on the continuous interpolation function, power function, where the base variable represents a pseudo density at each point of domain. For proper exponent values, the SIMP method reduces intermediate densities, since values other than 0 or 1 usually does not have a physical meaning for the problem. Several extension of the SIMP method were proposed for the multi-material case. The one that we explore here is the ordered SIMP method, that has the advantage of not being based on the addition of variables to represent material selection, so the computational cost is independent of the number of materials considered. Although the number of variables is not increased by this algorithm, the optimization subproblems that are generated at each iteration cannot be solved by methods that rely on second derivatives, due to the cost of calculating the second derivatives. To overcome this, we apply a globally convergent version of the sequential linear programming method, which solves a linear approximation sequence of optimization problems.Keywords: globally convergence, multi-material design ordered simp, sequential linear programming, topology optimization
Procedia PDF Downloads 3148357 A Novel Environmentally Benign Positive Electrode Material with Improved Energy Density for Lithium Ion Batteries
Authors: Wassima El Mofid, Svetlozar Ivanov, Andreas Bund
Abstract:
The increasing requirements for high power and energy lithium ion batteries have led to the development of several classes of positive electrode materials. Among those one promising material is LiNixMnyCo1−x−yO2 due to its high reversible capacity and remarkable cycling performance. Further structural stabilization and improved electrochemical performance of this class of cathode materials can be achieved by cationic substitution to a transition metal such as Al, Mg, Cr, etc. The current study discusses a novel NMC type material obtained by simultaneous cationic substitution of the cobalt which is a toxic element, with aluminum and iron. A compound with the composition LiNi0.6Mn0.2Co0.15Al0.025Fe0.025O2 (NMCAF) was synthesized by the self-combustion method using sucrose as fuel. The material has a layered α-NaFeO2 type structure with a good hexagonal ordering. Rietveld refinement analysis of the XRD patterns revealed a very low cationic mixing compared to the non-substituted material LiNi0.6Mn0,2Co0.2O2 suggesting a structural stabilization. Galvanostatic cycling measurements indicate improved electrochemical performance after the metal substitution. An initial discharge capacity of about 190 mAh.g−1 at slow rate (C/20), and a good cycling stability even at moderately faster rates (C/5 and C) have been observed. The long term cycling displayed a capacity retention of about 90% after 10 cycles.Keywords: cationic substitution, lithium ion batteries, positive electrode material, self-combustion synthesis method
Procedia PDF Downloads 4128356 Thermal Transformation of Zn-Bi Double Hydroxide Lamellar in ZnO Doped with Bismuth in Application for Photo Catalysis under Visible Light
Authors: Benyamina Imane, Benalioua Bahia, Mansour Meriem, Bentouami Abdelhadi
Abstract:
The objective of this study is to use a synthetic route of the layered double hydroxide as a method of zinc oxide by doping a transition metal. The material is heat-treated at different temperatures then tested on the photo-fading of acid dye indigo carmine under visible radiation compared with ZnO. The material having a better efficacy was characterized by XRD and thereafter SEM. The result of XRD untreated Bi-Zn-LDH material thermally revealed peaks characteristic lamellar materials. Indeed, the lamellar morphology is very visible, observed by scanning electron microscopy (SEM). Furthermore, the lamellar character partially disappears when the material is treated at 550 °C in a muffle furnace. Thus obtained, a zinc oxide doped with bismuth confirmed by XRD. The photocatalytic efficiency of Bi-ZnO in a visible light of 500 W at 114,6 µw/cm2 as maximum of irradiance was tested on photo-bleaching of an indigoid dye in comparison with the commercial ZnO. Indeed, a complete discoloration of indigo carmine solution of 16 mg / L was obtained after 40 and 120 minutes of irradiation in the presence of Bi-ZnO and ZnO respectively.Keywords: photocatalysis, Bi-ZnO-LDH, doping, ZnO
Procedia PDF Downloads 5058355 Screening of Commonly Used Reinforcement Materials for Tomb Murals
Authors: Liping Qiu, Xiaofeng Zhang
Abstract:
In its long history, precious tomb murals suffered from various diseases due to natural and man-made destruction. The key to how to protect tomb murals is how to strengthen and protect the tomb murals. In order to maximize the life of the tomb murals, the artistic, historic, and scientific values of the tomb murals can be continued. In this paper, four kinds of traditional reinforcement materials (silicone acrylic lotion, pure acrylic lotion, polyvinyl acetate lotion, and B72) are selected to reinforce the ground support layer of tomb murals, and the reinforcement effect of each reinforcement material on the ground support layer of murals is compared and analyzed, and the best protection material is obtained.Keywords: mural, destruction cycle, reinforcement material, disease
Procedia PDF Downloads 1318354 Numerical Analysis of the Melting of Nano-Enhanced Phase Change Material in a Rectangular Latent Heat Storage Unit
Authors: Radouane Elbahjaoui, Hamid El Qarnia
Abstract:
Melting of Paraffin Wax (P116) dispersed with Al2O3 nanoparticles in a rectangular latent heat storage unit (LHSU) is numerically investigated. The storage unit consists of a number of vertical and identical plates of nano-enhanced phase change material (NEPCM) separated by rectangular channels in which heat transfer fluid flows (HTF: Water). A two dimensional mathematical model is considered to investigate numerically the heat and flow characteristics of the LHSU. The melting problem was formulated using the enthalpy porosity method. The finite volume approach was used for solving equations. The effects of nanoparticles’ volumetric fraction and the Reynolds number on the thermal performance of the storage unit were investigated.Keywords: nano-enhanced phase change material (NEPCM), phase change material (PCM), nanoparticles, latent heat storage unit (LHSU), melting.
Procedia PDF Downloads 4058353 Optimizing the Insertion of Renewables in the Colombian Power Sector
Authors: Felipe Henao, Yeny Rodriguez, Juan P. Viteri, Isaac Dyner
Abstract:
Colombia is rich in natural resources and greatly focuses on the exploitation of water for hydroelectricity purposes. Alternative cleaner energy sources, such as solar and wind power, have been largely neglected despite: a) its abundance, b) the complementarities between hydro, solar and wind power, and c) the cost competitiveness of renewable technologies. The current limited mix of energy sources creates considerable weaknesses for the system, particularly when facing extreme dry weather conditions, such as El Niño event. In the past, El Niño have exposed the truly consequences of a system heavily dependent on hydropower, i.e. loss of power supply, high energy production costs, and loss of overall competitiveness for the country. Nonetheless, it is expected that the participation of hydroelectricity will increase in the near future. In this context, this paper proposes a stochastic lineal programming model to optimize the insertion of renewable energy systems (RES) into the Colombian electricity sector. The model considers cost-based generation competition between traditional energy technologies and alternative RES. This work evaluates the financial, environmental, and technical implications of different combinations of technologies. Various scenarios regarding the future evolution of costs of the technologies are considered to conduct sensitivity analysis of the solutions – to assess the extent of the participation of the RES in the Colombian power sector. Optimization results indicate that, even in the worst case scenario, where costs remain constant, the Colombian power sector should diversify its portfolio of technologies and invest strongly in solar and wind power technologies. The diversification through RES will contribute to make the system less vulnerable to extreme weather conditions, reduce the overall system costs, cut CO2 emissions, and decrease the chances of having national blackout events in the future. In contrast, the business as usual scenario indicates that the system will turn more costly and less reliable.Keywords: energy policy and planning, stochastic programming, sustainable development, water management
Procedia PDF Downloads 2958352 The Design of a Die for the Processing of Aluminum through Equal Channel Angular Pressing
Authors: P. G. F. Siqueira, N. G. S. Almeida, P. M. A. Stemler, P. R. Cetlin, M. T. P. Aguilar
Abstract:
The processing of metals through Equal Channel Angular Pressing (ECAP) leads to their remarkable strengthening. The ECAP dies control the amount of strain imposed on the material through its geometry, especially through the angle between the die channels, and thus the microstructural and mechanical properties evolution of the material. The present study describes the design of an ECAP die whose utilization and maintenance are facilitated, and that also controls the eventual undesired flow of the material during processing. The proposed design was validated through numerical simulations procedures using commercial software. The die was manufactured according to the present design and tested. Tests using aluminum alloys also indicated to be suitable for the processing of higher strength alloys.Keywords: ECAP, mechanical design, numerical methods, SPD
Procedia PDF Downloads 1398351 Solar Power Satellites: Reconsideration Based on Novel Approaches
Authors: Alex Ellery
Abstract:
Solar power satellites (SPS), despite their promise as a clean energy source, have been relegated out of consideration due to their enormous cost and technological challenge. It has been suggested that for solar power satellites to become economically feasible, launch costs must decrease from their current $20,000/kg to < $200/kg. Even with the advent of single-stage-to-orbit launchers which propose launch costs dropping to $2,000/kg, this will not be realized. Yet, the advantages of solar power satellites are many. Here, I present a novel approach to reduce the specific cost of solar power satellites to ~$1/kg by leveraging two enabling technologies – in-situ resource utilization and 3D printing. The power of such technologies will open up enormous possibilities for providing additional options for combating climate change whilst meeting demands for global energy. From the constraints imposed by in-situ resource utilization, a novel approach to solar energy conversion in SPS may be realized.Keywords: clean energy sources, in-situ resource utilisation, solar power satellites, thermionic emission
Procedia PDF Downloads 4238350 Tandem Concentrated Photovoltaic-Thermoelectric Hybrid System: Feasibility Analysis and Performance Enhancement Through Material Assessment Methodology
Authors: Shuwen Hu, Yuancheng Lou, Dongxu Ji
Abstract:
Photovoltaic (PV) power generation, as one of the most commercialized methods to utilize solar power, can only convert a limited range of solar spectrum into electricity, whereas the majority of the solar energy is dissipated as heat. To address this problem, thermoelectric (TE) module is often integrated with the concentrated PV module for waste heat recovery and regeneration. In this research, a feasibility analysis is conducted for the tandem concentrated photovoltaic-thermoelectric (CPV-TE) hybrid system considering various operational parameters as well as TE material properties. Furthermore, the power output density of the CPV-TE hybrid system is maximized by selecting the optimal TE material with application of a systematic assessment methodology. In the feasibility analysis, CPV-TE is found to be more advantageous than sole CPV system except under high optical concentration ratio with low cold side convective coefficient. It is also shown that the effects of the TE material properties, including Seebeck coefficient, thermal conductivity, and electrical resistivity, on the feasibility of CPV-TE are interacted with each other and might have opposite effect on the system performance under different operational conditions. In addition, the optimal TE material selected by the proposed assessment methodology can improve the system power output density by 227 W/m2 under highly concentrated solar irradiance hence broaden the feasible range of CPV-TE considering optical concentration ratio.Keywords: feasibility analysis, material assessment methodology, photovoltaic waste heat recovery, tandem photovoltaic-thermoelectric
Procedia PDF Downloads 718349 Effect of Incremental Forming Parameters on Titanium Alloys Properties
Authors: P. Homola, L. Novakova, V. Kafka, M. P. Oscoz
Abstract:
Shear spinning is closely related to the asymmetric incremental sheet forming (AISF) that could significantly reduce costs incurred by the fabrication of complex aeronautical components with a minimal environmental impact. The spinning experiments were carried out on commercially pure titanium (Ti-Gr2) and Ti-6Al-4V (Ti-Gr5) alloy. Three forming modes were used to characterize the titanium alloys properties from the point of view of different spinning parameters. The structure and properties of the materials were assessed by means of metallographic analyses and micro-hardness measurements. The highest value wall angle failure limit was achieved using spinning parameters mode for both materials. The feed rate effect was observed only in the samples from the Ti-Gr2 material, when a refinement of the grain microstructure with lower feed rate and higher tangential speed occurred. Ti-Gr5 alloy exhibited a decrease of the micro-hardness at higher straining due to recovery processes.Keywords: incremental forming, metallography, shear spinning, titanium alloys
Procedia PDF Downloads 2358348 Accelerated Aging of Photopolymeric Material Used in Flexography
Authors: S. Mahovic Poljacek, T. Tomasegovic, T. Cigula, D. Donevski, R. Szentgyörgyvölgyi, S. Jakovljevic
Abstract:
In this paper, a degradation of the photopolymeric material (PhPM), used as printing plate in the flexography reproduction technique, caused by accelerated aging has been observed. Since the basis process for production of printing plates from the PhPM is a radical cross-linking process caused by exposing to UV wavelengths, the assumption was that improper storage or irregular handling of the PhPM plate can change the surface and structure characteristics of the plates. Results have shown that the aging process causes degradation in the structure and changes in the surface of the PhPM printing plate.Keywords: aging process, artificial treatment, flexography, photopolymeric material (PhPM)
Procedia PDF Downloads 3478347 Multi-Period Supply Chain Design under Uncertainty
Authors: Amir Azaron
Abstract:
In this research, a stochastic programming approach is developed for designing supply chains with uncertain parameters. Demands and selling prices of products at markets are considered as the uncertain parameters. The proposed mathematical model will be multi-period two-stage stochastic programming, which takes into account the selection of retailer sites, suppliers, production levels, inventory levels, transportation modes to be used for shipping goods, and shipping quantities among the entities of the supply chain network. The objective function is to maximize the chain’s net present value. In order to maximize the chain’s NPV, the sum of first-stage investment costs on retailers, and the expected second-stage processing, inventory-holding and transportation costs should be kept as low as possible over multiple periods. The effects of supply uncertainty where suppliers are unreliable will also be investigated on the efficiency of the supply chain.Keywords: supply chain management, stochastic programming, multiobjective programming, inventory control
Procedia PDF Downloads 2938346 Determining Which Material Properties Resist the Tool Wear When Machining Pre-Sintered Zirconia
Authors: David Robert Irvine
Abstract:
In the dental restoration sector, there has been a shift to using zirconia. With the ever increasing need to decrease lead times to deliver restorations faster the zirconia is machined in its pre-sintered state instead of grinding the very hard sintered state. As with all machining, there is tool wear and while investigating the tooling used to machine pre-sintered zirconia it became apparent that the wear rate is based more on material build up and abrasion than it is on plastic deformation like conventional metal machining. It also came to light that the tool material can currently not be selected based on wear resistance, as there is no data. Different works have analysed the effect of the individual wear mechanism separately using similar if not the same material. In this work, the testing method used to analyse the wear was a modified from ISO 8688:1989 to use the pre-sintered zirconia and the cutting conditions used in dental to machine it. This understanding was developed through a series of tests based in machining operations, to give the best representation of the multiple wear factors that can occur in machining of pre-sintered zirconia such as 3 body abrasion, material build up, surface welding, plastic deformation, tool vibration and thermal cracking. From the testing, it found that carbide grades with low trans-granular rupture toughness would fail due to abrasion while those with high trans-granular rupture toughness failed due to edge chipping from build up or thermal properties. The results gained can assist the development of these tools and the restorative dental process. This work was completed with the aim of assisting in the selection of tool material for future tools along with a deeper understanding of the properties that assist in abrasive wear resistance and material build up.Keywords: abrasive wear, cemented carbide, pre-sintered zirconia, tool wear
Procedia PDF Downloads 1588345 The Effect of Season, Fire and Slope Position on Seriphium plumosum L. Forage Quality in South African Grassland Communities
Authors: Hosia T. Pule, Julius T. Tjelele, Michelle J. Tedder, Dawood Hattas
Abstract:
Acceptability of plant material to herbivores is influenced by, among other factors; nutrients, plant secondary metabolites and growth stage of the plants. However, the effect of these factors on Seriphium plumosum L. acceptability to livestock is still not clearly understood, despite its importance in managing its encroachment in grassland communities. The study used 2 x 2 x 2 factorial analysis of variance to investigate the effect of season (wet and dry), fire, slope position (top and bottom) and their interaction on Seriphium plumosum chemistry. We tested the hypothesis that S. plumosum chemistry varies temporally, spatially and pre- and post-fire treatment. Seriphium plumosum edible material was collected during the wet and dry season from burned and unburned areas on both top and bottom slopes before being analysed for protein (CP) content, neutral detergent fibre (NDF), total phenolics (TP) and condensed tannins (CT). Season had a significant effect on S. plumosum protein content, neutral detergent fibre, total phenolics and condensed tannins. Fire had a significant effect on CP. Interaction of season x fire had a significant effect on NDF and CP (p < 0.05). Seriphium plumosum in the wet season (6.69% ± 0.20 (SE)) had significantly higher CP than in the dry season (5.22% ± 0.13). NDF was significantly higher (58.01% ± 0.41) in the dry season than in the wet season (53.17% ± 0.34), while TP were significantly higher in the dry season (14.44 mg/gDw ± 1.03) than in the wet season (11.08 mg/gDw ± 1.07). CT in the wet season were significantly higher (1.56 mg/gDw ± 0.13) than in the dry season (1 mg/gDw ± 0.03). CP was significantly higher in burned (6. 31 % ± 0.22) than in unburned S. plumosum edible material (5.60 % ± 0.15). Seriphium plumosum CP was significantly higher in wet season x burned (7.34 % ± 0.31) than wet season x unburned (6.08 % ± 0.20) material and dry season x burned (5.34 % ± 0.18) and unburned (5.09 % ± 0.18) material were similar. NDF was similar in dry season x burned (58.31% ± 0.54) and dry season x unburned (57.69 % ± 0.62) material and significantly higher than similar wet season x burned (52.43% ± 0.45) and wet season x post-unburned (53.88% ± 0.47) material. This study suggests integrating fire, browsers, and supplements as encroacher S. plumosum control agents, especially in the wet season, following fire due to high S. plumosum CP content.Keywords: acceptability, chemistry, edible material, encroachment, phenolics, tannins
Procedia PDF Downloads 1568344 Cryogenic Machining of Sawdust Incorporated Polypropylene Composites
Authors: K. N. Umesh
Abstract:
Wood Polymer Composites (WPC) were synthesized artificially by combining polypropylene, wood and resin. It is difficult to obtain a good surface finish by conventional machining on WPC because of material degradation due to excessive heat generated during the process. In order to preserve the material property and deliver a better surface finish and accuracy, a proper solution is devised for the machining of wood composites at low temperature. This research focuses on studying the effects of parameters of cryogenic machining on sawdust incorporated polypropylene composite material, in view of evolving the most suitable composition and an appropriate combination of process parameters. The machining characteristics of the six different compositions of WPC were evaluated by analyzing the trend. An attempt is made to determine proper combinations material composition and process control parameters, through process capability studies. A WPC of 80%-wood (saw dust particles), 20%-polypropylene and 0%-resin was found to be the best alternative for obtaining the best surface finish under cryogenic machining conditions.Keywords: Cryogenic Machining, Process Capability, Surface Finish, Wood Polymer Composites
Procedia PDF Downloads 2478343 Integrating Dependent Material Planning Cycle into Building Information Management: A Building Information Management-Based Material Management Automation Framework
Authors: Faris Elghaish, Sepehr Abrishami, Mark Gaterell, Richard Wise
Abstract:
The collaboration and integration between all building information management (BIM) processes and tasks are necessary to ensure that all project objectives can be delivered. The literature review has been used to explore the state of the art BIM technologies to manage construction materials as well as the challenges which have faced the construction process using traditional methods. Thus, this paper aims to articulate a framework to integrate traditional material planning methods such as ABC analysis theory (Pareto principle) to analyse and categorise the project materials, as well as using independent material planning methods such as Economic Order Quantity (EOQ) and Fixed Order Point (FOP) into the BIM 4D, and 5D capabilities in order to articulate a dependent material planning cycle into BIM, which relies on the constructability method. Moreover, we build a model to connect between the material planning outputs and the BIM 4D and 5D data to ensure that all project information will be accurately presented throughout integrated and complementary BIM reporting formats. Furthermore, this paper will present a method to integrate between the risk management output and the material management process to ensure that all critical materials are monitored and managed under the all project stages. The paper includes browsers which are proposed to be embedded in any 4D BIM platform in order to predict the EOQ as well as FOP and alarm the user during the construction stage. This enables the planner to check the status of the materials on the site as well as to get alarm when the new order will be requested. Therefore, this will lead to manage all the project information in a single context and avoid missing any information at early design stage. Subsequently, the planner will be capable of building a more reliable 4D schedule by allocating the categorised material with the required EOQ to check the optimum locations for inventory and the temporary construction facilitates.Keywords: building information management, BIM, economic order quantity, EOQ, fixed order point, FOP, BIM 4D, BIM 5D
Procedia PDF Downloads 1728342 The Use of the Steel Aggregate and Procedures for Application on Rural Roads to Improve Traffic
Authors: Luís Felipe da Cunha Mendonça
Abstract:
Normally, rural roads do not have any type of coating, and when they have any coating, they have a high maintenance cost due to the characteristics of natural materials. The Steel Aggregate has specific technical characteristics, which considerably reduce the maintenance costs of rural roads with the execution of the Primary Coating. For use as a primary coating, it must be mixed with clay due to the physical-chemical properties of the material. The application is mainly in the Primary Coating of rural roads due to the cementitious property in the presence of water, offering greater resistance to wear caused by traffic and consequently a longer useful life of the coating. The Steel Aggregate executed on rural roads has reduced particulate emissions and offers normal traffic in any weather condition, as well as creating sustainability. Contribute to the quality of life of communities through improvements in the conditions of rural and urban unpaved roads. Leading to substantial savings in maintenance. Because the durability, if applied correctly, is about 3 years, but if annual monitoring is carried out, it can be extended for more than 5 years.Keywords: steel slag, co-product, primary coating, steel aggregate
Procedia PDF Downloads 1238341 Indications and Characteristics of Clinical Application of Periodontal Suturing
Authors: Saimir Heta, Ilma Robo, Vera Ostreni, Glorja Demika, Sonila Kapaj
Abstract:
Suturing, as a procedure of joining the lips of the lembo or wound, is important at the beginning of the healing process. This procedure helps to pass the healing process from the procedure per secundam to the stages of healing per primam, thus logically reducing the healing time of the wound. The element that remains in the individual selection of the dentist applying the suture is the selection of the suture material. At a moment when some types of sutures are offered for use, some elements should be considered in the selection of the suture depending on the constituent material, the cross-section of the suture elements, and whether it collects bacteria in the "pits" created by the material. The presence of bacteria is a source of infection and possible delay in the healing of the sutured wound. Conclusion: The marketing of suture types offers a variety of materials, from which the selection of the most suitable suture type for specific application cases is a personal indication of the dental surgeon, based on professional experiences and knowledge in the field.Keywords: suture, suture material, types of sutures, clinical application
Procedia PDF Downloads 818340 The Effects of Aging on the Cost of Operating and Support: An Empirical Study Applied to Weapon Systems
Authors: Byungchae Kim, Jiwoo Nam
Abstract:
Aging of weapon systems can cause the failure and degeneration of components which results in increase of operating and support costs. However, whether this aging effect is significantly strong and it influences a lot on national defense spending due to the rapid increase in operating and support (O&S) costs is questionable. To figure out this, we conduct a literature review analyzing the aging effect of US weapon systems. We also conduct an empirical research using a maintenance database of Korean weapon systems, Defense Logistics Integrated Information System (DAIIS). We run regression of various types of O&S cost on weapon system age to investigate the statistical significance of aging effect and use generalized linear model to find relations between the failure of different priced components and the age. Our major finding is although aging effect exists, its impacts on weapon system cost seem to be not too large considering several characteristics of O&S cost elements not relying on the age.Keywords: O&S cost, aging effect, weapon system, GLM
Procedia PDF Downloads 1408339 Analysis of Behavior and Determinants of Cost Stickiness in Manufacturing Companies in Indonesia
Authors: Farizy Yunaz, Catur Sasongko
Abstract:
This research aims to provide the empirical evidence regarding cost stickiness behavior and its determinants on listed manufacturing companies. Hypothesis testing is performed using pooled least square method. The result concludes that there is cost stickiness behavior in selling, general and administrative costs. In term of determinants, firm-specific adjustment costs measured by asset intensity and employee intensity have significant positive impact on the level of cost stickiness. Meanwhile, earnings target and leverage have significant negative impact on the level of cost stickiness. However, the management empire building incentives measured by free cash flow has no significant positive impact.Keywords: adjustment cost, cost behavior, cost stickiness, earnings target, leverage, management empire building incentive
Procedia PDF Downloads 3628338 Advanced Model for Calculation of the Neutral Axis Shifting and the Wall Thickness Distribution in Rotary Draw Bending Processes
Abstract:
Rotary draw bending is a method which is being used in tube forming. In the tube bending process, the neutral axis moves towards the inner arc and the wall thickness distribution changes for tube’s cross section. Thinning takes place in the outer arc of the tube (extrados) due to the stretching of the material, whereas thickening occurs in the inner arc of the tube (intrados) due to the comparison of the material. The calculations of the wall thickness distribution, neutral axis shifting, and strain distribution have not been accurate enough, so far. The previous model (the geometrical model) describes the neutral axis shifting and wall thickness distribution. The geometrical of the tube, bending radius and bending angle are considered in the geometrical model, while the influence of the material properties of the tube forming are ignored. The advanced model is a modification of the previous model using material properties that depends on the correction factor. The correction factor is a purely empirically determined factor. The advanced model was compared with the Finite element simulation (FE simulation) using a different bending factor (Bf=bending radius/ diameter of the tube), wall thickness (Wf=diameter of the tube/ wall thickness), and material properties (strain hardening exponent). Finite element model of rotary draw bending has been performed in PAM-TUBE program (version: 2012). Results from the advanced model resemble the FE simulation and the experimental test.Keywords: rotary draw bending, material properties, neutral axis shifting, wall thickness distribution
Procedia PDF Downloads 3958337 A Review of BIM Applications for Heritage and Historic Buildings: Challenges and Solutions
Authors: Reza Yadollahi, Arash Hejazi, Dante Savasta
Abstract:
Building Information Modeling (BIM) is growing so fast in construction projects around the world. Considering BIM's weaknesses in implementing existing heritage and historical buildings, it is critical to facilitate BIM application for such structures. One of the pieces of information to build a model in BIM is to import material and its characteristics. Material library is essential to speed up the entry of project information. To save time and prevent cost overrun, a BIM object material library should be provided. However, historical buildings' lack of information and documents is typically a challenge in renovation and retrofitting projects. Due to the lack of case documents for historic buildings, importing data is a time-consuming task, which can be improved by creating BIM libraries. Based on previous research, this paper reviews the complexities and challenges in BIM modeling for heritage, historic, and architectural buildings. Through identifying the strengths and weaknesses of the standard BIM systems, recommendations are provided to enhance the modeling platform.Keywords: building Information modeling, historic, heritage buildings, material library
Procedia PDF Downloads 1178336 Reliability Based Topology Optimization: An Efficient Method for Material Uncertainty
Authors: Mehdi Jalalpour, Mazdak Tootkaboni
Abstract:
We present a computationally efficient method for reliability-based topology optimization under material properties uncertainty, which is assumed to be lognormally distributed and correlated within the domain. Computational efficiency is achieved through estimating the response statistics with stochastic perturbation of second order, using these statistics to fit an appropriate distribution that follows the empirical distribution of the response, and employing an efficient gradient-based optimizer. The proposed algorithm is utilized for design of new structures and the changes in the optimized topology is discussed for various levels of target reliability and correlation strength. Predictions were verified thorough comparison with results obtained using Monte Carlo simulation.Keywords: material uncertainty, stochastic perturbation, structural reliability, topology optimization
Procedia PDF Downloads 6048335 Design and Analysis of Crankshaft Using Al-Al2O3 Composite Material
Authors: Palanisamy Samyraj, Sriram Yogesh, Kishore Kumar, Vaishak Cibi
Abstract:
The project is about design and analysis of crankshaft using Al-Al2O3 composite material. The project is mainly concentrated across two areas one is to design and analyze the composite material, and the other is to work on the practical model. Growing competition and the growing concern for the environment has forced the automobile manufactures to meet conflicting demands such as increased power and performance, lower fuel consumption, lower pollution emission and decrease noise and vibration. Metal matrix composites offer good properties for a number of automotive components. The work reports on studies on Al-Al2O3 as the possible alternative material for a crank shaft. These material have been considered for use in various components in engines due to the high amount of strength to weight ratio. These materials are significantly taken into account for their light weight, high strength, high specific modulus, low co-efficient of thermal expansion, good air resistance properties. In addition high specific stiffness, superior high temperature, mechanical properties and oxidation resistance of Al2O3 have developed some advanced materials that are Al-Al2O3 composites. Crankshafts are used in automobile industries. Crankshaft is connected to the connecting rod for the movement of the piston which is subjected to high stresses which cause the wear of the crankshaft. Hence using composite material in crankshaft gives good fuel efficiency, low manufacturing cost, less weight.Keywords: metal matrix composites, Al-Al2O3, high specific modulus, strength to weight ratio
Procedia PDF Downloads 2728334 Comparative Comparison (Cost-Benefit Analysis) of the Costs Caused by the Earthquake and Costs of Retrofitting Buildings in Iran
Authors: Iman Shabanzadeh
Abstract:
Earthquake is known as one of the most frequent natural hazards in Iran. Therefore, policy making to improve the strengthening of structures is one of the requirements of the approach to prevent and reduce the risk of the destructive effects of earthquakes. In order to choose the optimal policy in the face of earthquakes, this article tries to examine the cost of financial damages caused by earthquakes in the building sector and compare it with the costs of retrofitting. In this study, the results of adopting the scenario of "action after the earthquake" and the policy scenario of "strengthening structures before the earthquake" have been collected, calculated and finally analyzed by putting them together. Methodologically, data received from governorates and building retrofitting engineering companies have been used. The scope of the study is earthquakes occurred in the geographical area of Iran, and among them, eight earthquakes have been specifically studied: Miane, Ahar and Haris, Qator, Momor, Khorasan, Damghan and Shahroud, Gohran, Hormozgan and Ezgole. The main basis of the calculations is the data obtained from retrofitting companies regarding the cost per square meter of building retrofitting and the data of the governorate regarding the power of earthquake destruction, the realized costs for the reconstruction and construction of residential units. The estimated costs have been converted to the value of 2021 using the time value of money method to enable comparison and aggregation. The cost-benefit comparison of the two policies of action after the earthquake and retrofitting before the earthquake in the eight earthquakes investigated shows that the country has suffered five thousand billion Tomans of losses due to the lack of retrofitting of buildings against earthquakes. Based on the data of the Budget Law's of Iran, this figure was approximately twice the budget of the Ministry of Roads and Urban Development and five times the budget of the Islamic Revolution Housing Foundation in 2021. The results show that the policy of retrofitting structures before an earthquake is significantly more optimal than the competing scenario. The comparison of the two policy scenarios examined in this study shows that the policy of retrofitting buildings before an earthquake, on the one hand, prevents huge losses, and on the other hand, by increasing the number of earthquake-resistant houses, it reduces the amount of earthquake destruction. In addition to other positive effects of retrofitting, such as the reduction of mortality due to earthquake resistance of buildings and the reduction of other economic and social effects caused by earthquakes. These are things that can prove the cost-effectiveness of the policy scenario of "strengthening structures before earthquakes" in Iran.Keywords: disaster economy, earthquake economy, cost-benefit analysis, resilience
Procedia PDF Downloads 628333 Feels Like Home: A Study Of The Role Of Material Culture In Older Adults' Transition To A Retirement Village
Authors: Sharon Ganzer
Abstract:
Older adults want choices about where they ‘age-in-place’ and express the desire to remain in their home for as long as possible because it maintains feelings of independence and autonomy, perpetuates a sense of identity, enable people to have space for their belongings and supports connections and social engagement. When circumstances change, and alternative living arrangements are required, more and more older adults are considering a transition to a retirement village – the liminal space between home and residential care. This qualitative study explores the lived experience of older adults who relocate to a retirement village in Queensland, Australia, and the role that material culture plays in this process.Keywords: material culture, social gerontology, concepts of home, retirement villages
Procedia PDF Downloads 808332 Architectural Knowledge Systems Related to Use of Terracotta in Bengal
Authors: Nandini Mukhopadhyay
Abstract:
The prominence of terracotta as a building material in Bengal is well justified by its geographical location. The architectural knowledge system associated with terracotta can be comprehended in the typology of the built structures as they act as texts to interpret the knowledge. The history of Bengal has witnessed the influence of several rulers in developing the architectural vocabulary of the region. This metamorphosis of the architectural knowledge systems in the region includes the Bhakti movement, the Islamic influence, and the British rule, which led to the evolution of the use of terracotta from decorative elements to structural elements in the present-day context. This paper intends to develop an understanding of terracotta as a building material, its use in a built structure, the common problems associated with terracotta construction, and the techniques of maintenance, repair, and conservation. This paper also explores the size, shape, and geometry of the material and its varied use in temples, mosques in the region. It also takes into note that the use of terracotta was concentrated majorly to religious structures and not in the settlements of the common people. And the architectural style of temples and mosques of Bengal is hugely influenced by the houses of the common.Keywords: terracotta, material, knowledge system, conservation
Procedia PDF Downloads 147