Search results for: knowledge clustering
7672 Proposing a Boundary Coverage Algorithm for Underwater Sensor Network
Authors: Seyed Mohsen Jameii
Abstract:
Wireless underwater sensor networks are a type of sensor networks that are located in underwater environments and linked together by acoustic waves. The application of these kinds of network includes monitoring of pollutants (chemical, biological, and nuclear), oil fields detection, prediction of the likelihood of a tsunami in coastal areas, the use of wireless sensor nodes to monitor the passing submarines, and determination of appropriate locations for anchoring ships. This paper proposes a boundary coverage algorithm for intrusion detection in underwater sensor networks. In the first phase of the proposed algorithm, optimal deployment of nodes is done in the water. In the second phase, after the employment of nodes at the proper depth, clustering is executed to reduce the exchanges of messages between the sensors. In the third phase, the algorithm of "divide and conquer" is used to save energy and increase network efficiency. The simulation results demonstrate the efficiency of the proposed algorithm.Keywords: boundary coverage, clustering, divide and conquer, underwater sensor nodes
Procedia PDF Downloads 3417671 Power Aware Modified I-LEACH Protocol Using Fuzzy IF Then Rules
Authors: Gagandeep Singh, Navdeep Singh
Abstract:
Due to limited battery of sensor nodes, so energy efficiency found to be main constraint in WSN. Therefore the main focus of the present work is to find the ways to minimize the energy consumption problem and will results; enhancement in the network stability period and life time. Many researchers have proposed different kind of the protocols to enhance the network lifetime further. This paper has evaluated the issues which have been neglected in the field of the WSNs. WSNs are composed of multiple unattended ultra-small, limited-power sensor nodes. Sensor nodes are deployed randomly in the area of interest. Sensor nodes have limited processing, wireless communication and power resource capabilities Sensor nodes send sensed data to sink or Base Station (BS). I-LEACH gives adaptive clustering mechanism which very efficiently deals with energy conservations. This paper ends up with the shortcomings of various adaptive clustering based WSNs protocols.Keywords: WSN, I-Leach, MATLAB, sensor
Procedia PDF Downloads 2757670 Knowledge Diffusion via Automated Organizational Cartography (Autocart)
Authors: Mounir Kehal
Abstract:
The post-globalization epoch has placed businesses everywhere in new and different competitive situations where knowledgeable, effective and efficient behavior has come to provide the competitive and comparative edge. Enterprises have turned to explicit - and even conceptualizing on tacit - knowledge management to elaborate a systematic approach to develop and sustain the intellectual capital needed to succeed. To be able to do that, you have to be able to visualize your organization as consisting of nothing but knowledge and knowledge flows, whilst being presented in a graphical and visual framework, referred to as automated organizational cartography. Hence, creating the ability of further actively classifying existing organizational content evolving from and within data feeds, in an algorithmic manner, potentially giving insightful schemes and dynamics by which organizational know-how is visualized. It is discussed and elaborated on most recent and applicable definitions and classifications of knowledge management, representing a wide range of views from mechanistic (systematic, data driven) to a more socially (psychologically, cognitive/metadata driven) orientated. More elaborate continuum models, for knowledge acquisition and reasoning purposes, are being used for effectively representing the domain of information that an end user may contain in their decision making process for utilization of available organizational intellectual resources (i.e. Autocart). In this paper, we present an empirical research study conducted previously to try and explore knowledge diffusion in a specialist knowledge domain.Keywords: knowledge management, knowledge maps, knowledge diffusion, organizational cartography
Procedia PDF Downloads 3077669 Partial Knowledge Transfer Between the Source Problem and the Target Problem in Genetic Algorithms
Authors: Terence Soule, Tami Al Ghamdi
Abstract:
To study how the partial knowledge transfer may affect the Genetic Algorithm (GA) performance, we model the Transfer Learning (TL) process using GA as the model solver. The objective of the TL is to transfer the knowledge from one problem to another related problem. This process imitates how humans think in their daily life. In this paper, we proposed to study a case where the knowledge transferred from the S problem has less information than what the T problem needs. We sampled the transferred population using different strategies of TL. The results showed transfer part of the knowledge is helpful and speeds the GA process of finding a solution to the problem.Keywords: transfer learning, partial transfer, evolutionary computation, genetic algorithm
Procedia PDF Downloads 1327668 Role of Strategic Human Resource Practices and Knowledge Management Capacity
Authors: Ploychompoo Kittikunchotiwut
Abstract:
This study examines the relationships between human resource practices, knowledge management capacity, and innovation performance. The data were collected by using a questionnaire from 241 firms in the hotels in Thailand. The hypothesized relationships among variables are examined by using ordinary least square (OLS) regression analysis. The findings show that human resource practices have a positive effect on knowledge management capacity. Besides, knowledge management capacity was found to positively affect innovation performance. Finally, the limitations of the study and directions for future research are discussed.Keywords: human resource practices, knowledge management capacity, innovation performance
Procedia PDF Downloads 3047667 Setting Ground for Improvement of Knowledge Managament System in the Educational Organization
Authors: Mladen Djuric, Ivan Janicijevic, Sasa Lazarevic
Abstract:
One of the organizational issues is how to develop and shape decision making and knowledge management systems which will continually avoid traps of both paralyses by analyses“ and extinction by instinct“, the concepts that are a kind of tolerant limits anti-patterns which define what we can call decision making and knowledge management patterns control zone. This paper discusses potentials for development of a core base for recognizing, capturing, and analyzing anti-patterns in the educational organization, thus creating a space for improving decision making and knowledge management processes in education.Keywords: anti-patterns, decision making, education, knowledge management
Procedia PDF Downloads 6327666 Unsupervised Echocardiogram View Detection via Autoencoder-Based Representation Learning
Authors: Andrea Treviño Gavito, Diego Klabjan, Sanjiv J. Shah
Abstract:
Echocardiograms serve as pivotal resources for clinicians in diagnosing cardiac conditions, offering non-invasive insights into a heart’s structure and function. When echocardiographic studies are conducted, no standardized labeling of the acquired views is performed. Employing machine learning algorithms for automated echocardiogram view detection has emerged as a promising solution to enhance efficiency in echocardiogram use for diagnosis. However, existing approaches predominantly rely on supervised learning, necessitating labor-intensive expert labeling. In this paper, we introduce a fully unsupervised echocardiographic view detection framework that leverages convolutional autoencoders to obtain lower dimensional representations and the K-means algorithm for clustering them into view-related groups. Our approach focuses on discriminative patches from echocardiographic frames. Additionally, we propose a trainable inverse average layer to optimize decoding of average operations. By integrating both public and proprietary datasets, we obtain a marked improvement in model performance when compared to utilizing a proprietary dataset alone. Our experiments show boosts of 15.5% in accuracy and 9.0% in the F-1 score for frame-based clustering, and 25.9% in accuracy and 19.8% in the F-1 score for view-based clustering. Our research highlights the potential of unsupervised learning methodologies and the utilization of open-sourced data in addressing the complexities of echocardiogram interpretation, paving the way for more accurate and efficient cardiac diagnoses.Keywords: artificial intelligence, echocardiographic view detection, echocardiography, machine learning, self-supervised representation learning, unsupervised learning
Procedia PDF Downloads 327665 An Exploration of Organisational Elements on Social Media Platforms Based Knowledge Sharing: The Case of Higher Education Institutions in Malaysia
Authors: Nor Erlissa Abd Aziz, R. M. U. S. Udagedara, S. Sharifi
Abstract:
Managing and sharing knowledge has been a broadly satisfactory strategy to most of the organisations. Harnessing the power of knowledge supported the organisations to gain a competitive advantage over their competitors. Along with the invention of social media, knowledge sharing process has been more efficient and comfortable. Numerous researches have been conducted to investigate the effect of social media platforms for public and academic use. Furthermore, knowledge sharing, in general, have been subject to considerable n research, but research on sharing knowledge in Higher Education Institutions (HEIs) is rare. Also, it is noted that still there is a gap related to the organisational elements that contribute to the successful knowledge sharing through social media platforms. Thus, this research aims to investigate organisational elements that influence the social media platform based knowledge sharing within the context of Malaysian Higher Education Institutions (HEIs). The research used qualitative research methods to get an in-depth understanding of the subject matter. The conclusions of this study are based on interpreting the results of semi-structured interviews with academic staff from various Malaysian HEIs from the public and private sectors. Documents review will supplement the data from the interviews, and this ensures triangulation of the responses and thus increase the validity of the research. This research contributes to the literature by investigating an in-depth understanding the role of organisational elements about the social media platform based knowledge sharing in nourishing knowledge and spreading it to become better HEIs in utilising their knowledge. The proposed framework which identifies the organisational elements influences of social media platform based knowledge sharing will present as the main contribution of this research.Keywords: knowledge sharing, social media, knowledge and knowledge management
Procedia PDF Downloads 2057664 The Impact of Innovation Efficiency on the Production of New Knowledge: A Manufacturing Firm Level Perspective
Authors: Vasilios Kanellopoulos
Abstract:
The present paper examines the effect of innovation efficiency on the production of new knowledge from a firm level perspective. It resorts to the Greek version of community innovation survey (CIS 2012-2014 microdata) and employs 1274 firms of the manufacturing, which constitutes the main sector of examination. It assumes a knowledge production function (KPF) and finds that R&D spillovers related to the expenditures on innovation activities, internal R&D, external R&D, skilled labor, and the expenditures in the acquisition of machinery have a positive and significant effect on the production of new knowledge when OLS techniques are applied. However, innovation efficiency comes from a Banker and Morey (1986) data envelopment analysis (DEA) with categorical variables has a statistically insignificant impact on the production of new knowledge measured by firm’s turnover.Keywords: firms, innovation efficiency, production of new knowledge, R&D spillovers
Procedia PDF Downloads 1377663 The Role of Knowledge Sharing in Market Response: The Case of Saman Bank of Iran
Authors: Fatemeh Torabi, Jamal El-Den, Narumon Sriratanviriyakul
Abstract:
Perpetual changes in the workplace and daily business activities bring a need for imbedding organizational knowledge sharing within the organizations’ culture, routines and processes. Organizations should adapt to the changing in the environment in order to survive. Accordingly, the management should promote a knowledge sharing culture which might result in knowledge accumulation, hence better response to these changing environmental conditions. Researchers in the field of strategy and marketing stressed that employees’, as well as the overall performance of the organization, would improve as a result of implementing a knowledge-oriented culture. The research investigated the significant impact of knowledge sharing on market response and the competitiveness of organizations. A knowledge sharing framework was developed based on current literary frameworks with additional constructs such as employees’ learning commitments, experiences and prior knowledge. Linear regression was used to analyze the relationships among dependent and independent variables. The research’s results indicated strong positive correlation between the dependent and independent variables, especially in organizational market sharing. We anticipate that this correlation would improve organizational knowledge sharing related practices and the associated knowledge entities. The research posits the introduced framework could be a solid ground for further investigations on how some organizational factors would influence the organization’s response to the market as well as on competitiveness. Final results support all hypotheses. Finding of this research show that knowledge sharing intention had the significant and positive effect on market response and competitiveness of organizations.Keywords: knowledge management, knowledge sharing, market response, organizational competitiveness
Procedia PDF Downloads 2067662 RASPE: Risk Advisory Smart System for Pipeline Projects in Egypt
Authors: Nael Y. Zabel, Maged E. Georgy, Moheeb E. Ibrahim
Abstract:
A knowledge-based expert system with the acronym RASPE is developed as an application tool to help decision makers in construction companies make informed decisions about managing risks in pipeline construction projects. Choosing to use expert systems from all available artificial intelligence techniques is due to the fact that an expert system is more suited to representing a domain’s knowledge and the reasoning behind domain-specific decisions. The knowledge-based expert system can capture the knowledge in the form of conditional rules which represent various project scenarios and potential risk mitigation/response actions. The built knowledge in RASPE is utilized through the underlying inference engine that allows the firing of rules relevant to a project scenario into consideration. This paper provides an overview of the knowledge acquisition process and goes about describing the knowledge structure which is divided up into four major modules. The paper shows one module in full detail for illustration purposes and concludes with insightful remarks.Keywords: expert system, knowledge management, pipeline projects, risk mismanagement
Procedia PDF Downloads 3107661 Research on the Risks of Railroad Receiving and Dispatching Trains Operators: Natural Language Processing Risk Text Mining
Authors: Yangze Lan, Ruihua Xv, Feng Zhou, Yijia Shan, Longhao Zhang, Qinghui Xv
Abstract:
Receiving and dispatching trains is an important part of railroad organization, and the risky evaluation of operating personnel is still reflected by scores, lacking further excavation of wrong answers and operating accidents. With natural language processing (NLP) technology, this study extracts the keywords and key phrases of 40 relevant risk events about receiving and dispatching trains and reclassifies the risk events into 8 categories, such as train approach and signal risks, dispatching command risks, and so on. Based on the historical risk data of personnel, the K-Means clustering method is used to classify the risk level of personnel. The result indicates that the high-risk operating personnel need to strengthen the training of train receiving and dispatching operations towards essential trains and abnormal situations.Keywords: receiving and dispatching trains, natural language processing, risk evaluation, K-means clustering
Procedia PDF Downloads 917660 The Use of Appeals in Green Printed Advertisements: A Case of Product Orientation and Organizational Image Orientation Ads
Authors: Chutima Ruanguttamanun
Abstract:
Despite the relatively large number of studies that have examined the use of appeals in advertisements, research on the use of appeals in green advertisements is still underdeveloped and needs to be investigated further, as it is definitely a tool for marketers to create illustrious ads. In this study, content analysis was employed to examine the nature of green advertising appeals and to match the appeals with the green advertisements. Two different types of green print advertisings, product orientation and organizational image orientation were used. Thirty highly educated participants with different backgrounds were asked individually to ascertain three appeals out of thirty-four given appeals found among forty real green advertisements. To analyze participant responses and to group them based on common appeals, two-step K-mean clustering is used. The clustering solution indicates that eye-catching graphics and imaginative appeals are highly notable in both types of green ads. Depressed, meaningful and sad appeals are found to be highly used in organizational image orientation ads, whereas, corporate image, informative and natural appeals are found to be essential for product orientation ads.Keywords: advertising appeals, green marketing, green advertisement, printed advertisement
Procedia PDF Downloads 2777659 Exploring the Role of Data Mining in Crime Classification: A Systematic Literature Review
Authors: Faisal Muhibuddin, Ani Dijah Rahajoe
Abstract:
This in-depth exploration, through a systematic literature review, scrutinizes the nuanced role of data mining in the classification of criminal activities. The research focuses on investigating various methodological aspects and recent developments in leveraging data mining techniques to enhance the effectiveness and precision of crime categorization. Commencing with an exposition of the foundational concepts of crime classification and its evolutionary dynamics, this study details the paradigm shift from conventional methods towards approaches supported by data mining, addressing the challenges and complexities inherent in the modern crime landscape. Specifically, the research delves into various data mining techniques, including K-means clustering, Naïve Bayes, K-nearest neighbour, and clustering methods. A comprehensive review of the strengths and limitations of each technique provides insights into their respective contributions to improving crime classification models. The integration of diverse data sources takes centre stage in this research. A detailed analysis explores how the amalgamation of structured data (such as criminal records) and unstructured data (such as social media) can offer a holistic understanding of crime, enriching classification models with more profound insights. Furthermore, the study explores the temporal implications in crime classification, emphasizing the significance of considering temporal factors to comprehend long-term trends and seasonality. The availability of real-time data is also elucidated as a crucial element in enhancing responsiveness and accuracy in crime classification.Keywords: data mining, classification algorithm, naïve bayes, k-means clustering, k-nearest neigbhor, crime, data analysis, sistematic literature review
Procedia PDF Downloads 647658 Bioinformatic Approaches in Population Genetics and Phylogenetic Studies
Authors: Masoud Sheidai
Abstract:
Biologists with a special field of population genetics and phylogeny have different research tasks such as populations’ genetic variability and divergence, species relatedness, the evolution of genetic and morphological characters, and identification of DNA SNPs with adaptive potential. To tackle these problems and reach a concise conclusion, they must use the proper and efficient statistical and bioinformatic methods as well as suitable genetic and morphological characteristics. In recent years application of different bioinformatic and statistical methods, which are based on various well-documented assumptions, are the proper analytical tools in the hands of researchers. The species delineation is usually carried out with the use of different clustering methods like K-means clustering based on proper distance measures according to the studied features of organisms. A well-defined species are assumed to be separated from the other taxa by molecular barcodes. The species relationships are studied by using molecular markers, which are analyzed by different analytical methods like multidimensional scaling (MDS) and principal coordinate analysis (PCoA). The species population structuring and genetic divergence are usually investigated by PCoA and PCA methods and a network diagram. These are based on bootstrapping of data. The Association of different genes and DNA sequences to ecological and geographical variables is determined by LFMM (Latent factor mixed model) and redundancy analysis (RDA), which are based on Bayesian and distance methods. Molecular and morphological differentiating characters in the studied species may be identified by linear discriminant analysis (DA) and discriminant analysis of principal components (DAPC). We shall illustrate these methods and related conclusions by giving examples from different edible and medicinal plant species.Keywords: GWAS analysis, K-Means clustering, LFMM, multidimensional scaling, redundancy analysis
Procedia PDF Downloads 1247657 Positioning Organisational Culture in Knowledge Management Research
Authors: Said Al Saifi
Abstract:
This paper proposes a conceptual model for understanding the impact of organisational culture on knowledge management processes and their link with organisational performance. It is suggested that organisational culture should be assessed as a multi-level construct comprising artifacts, espoused beliefs and values, and underlying assumptions. A holistic view of organisational culture and knowledge management processes, and their link with organisational performance, is presented. A comprehensive review of previous literature was undertaken in the development of the conceptual model. Taken together, the literature and the proposed model reveal possible relationships between organisational culture, knowledge management processes, and organisational performance. Potential implications of organisational culture levels for the creation, sharing, and application of knowledge are elaborated. In addition, the paper offers possible new insight into the impact of organisational culture on various knowledge management processes and their link with organisational performance. A number of possible relationships between organisational culture factors, knowledge management processes, and their link with organisational performance were employed to examine such relationships. The research model highlights the multi-level components of organisational culture. These are: the artifacts, the espoused beliefs and values, and the underlying assumptions. Through a conceptualisation of the relationships between organisational culture, knowledge management processes, and organisational performance, the study provides practical guidance for practitioners during the implementation of knowledge management processes. The focus of previous research on knowledge management has been on understanding organisational culture from the limited perspective of promoting knowledge creation and sharing. This paper proposes a more comprehensive approach to understanding organisational culture in that it draws on artifacts, espoused beliefs and values, and underlying assumptions, and reveals their impact on the creation, sharing, and application of knowledge which can affect overall organisational performance.Keywords: knowledge application, knowledge creation, knowledge management, knowledge sharing, organisational culture, organisational performance
Procedia PDF Downloads 5767656 AM/E/c Queuing Hub Maximal Covering Location Model with Fuzzy Parameter
Authors: M. H. Fazel Zarandi, N. Moshahedi
Abstract:
The hub location problem appears in a variety of applications such as medical centers, firefighting facilities, cargo delivery systems and telecommunication network design. The location of service centers has a strong influence on the congestion at each of them, and, consequently, on the quality of service. This paper presents a fuzzy maximal hub covering location problem (FMCHLP) in which travel costs between any pair of nodes is considered as a fuzzy variable. In order to consider the quality of service, we model each hub as a queue. Arrival rate follows Poisson distribution and service rate follows Erlang distribution. In this paper, at first, a nonlinear mathematical programming model is presented. Then, we convert it to the linear one. We solved the linear model using GAMS software up to 25 nodes and for large sizes due to the complexity of hub covering location problems, and simulated annealing algorithm is developed to solve and test the model. Also, we used possibilistic c-means clustering method in order to find an initial solution.Keywords: fuzzy modeling, location, possibilistic clustering, queuing
Procedia PDF Downloads 3937655 Knowledge of Strategies to Teach Reading Components Among Teachers of Hard of Hearing Students
Authors: Khalid Alasim
Abstract:
This study investigated Saudi Arabian elementary school teachers’ knowledge of strategies to teach reading components to hard-of-hearing students. The study focused on four of the five reading components the National Reading Panel (NPR, 2000) identified: phonemic awareness; phonics; vocabulary, and reading comprehension, and explored the relationship between teachers’ demographic characteristics and their knowledge of the strategies as well. An explanatory sequential mixed methods design was used that included two phases. The quantitative phase examined the knowledge of these Arabic reading components among 89 elementary school teachers of hard-of-hearing students, and the qualitative phase consisted of interviews with 10 teachers. The results indicated that the teachers have a great deal of knowledge (above the mean score) of strategies to teach reading components. Specifically, teachers’ knowledge of strategies to teach the vocabulary component was the highest. The results also showed no significant association between teachers’ demographic characteristics and their knowledge of strategies to teach reading components. The qualitative analysis revealed two themes: 1) teachers’ lack of basic knowledge of strategies to teach reading components, and 2) the absence of in-service courses and training programs in reading for teachers.Keywords: knowledge, reading, components, hard-of-hearing, phonology, vocabulary
Procedia PDF Downloads 807654 Effective Leadership Styles Influence on Knowledge Sharing Behaviour among Employees of SME's in Nigeria
Authors: Christianah Oyelekan Oyewole, Adeniyi Temitope Adetunji
Abstract:
Earlier researchers acknowledge the significance of knowledge sharing among employees in improving their responsiveness when dealing with unpredicted situations. Effective leadership styles have been known to impact employee knowledge-sharing behavior within an organisation positively. The role of influential leaders in knowledge sharing is accomplished through enhanced social networks and technology. However, preliminary research pointed to a lack of clear conclusions from recently published studies on the impact of effective leadership styles on knowledge-sharing behaviour among employees. The present study addressed this problem through a structured literature review. The review demonstrated that knowledge managers incorporate incentives and reward systems with their leadership styles to influence knowledge-sharing behaviour among employees positively. There was ample evidence that rational, innovative, stable and participatory organisational cultures combined with supportive and command leadership enhance employee intention for knowledge sharing in the organisation. The analysis revealed that transformational, transactional, and mentor leadership styles enhance employees’ knowledge-sharing behavior. Overall, it was resolved that the relationship between knowledge-sharing behavior among employees and leadership styles is mediated by the ability of the organisation to prioritize employee development.Keywords: leadership styles, knowledge sharing, transactional leadership, transformational leadership, mentor leadership, team performance, team productivity, motivation, and creativity
Procedia PDF Downloads 817653 Conceptualizing the Knowledge to Manage and Utilize Data Assets in the Context of Digitization: Case Studies of Multinational Industrial Enterprises
Authors: Martin Böhmer, Agatha Dabrowski, Boris Otto
Abstract:
The trend of digitization significantly changes the role of data for enterprises. Data turn from an enabler to an intangible organizational asset that requires management and qualifies as a tradeable good. The idea of a networked economy has gained momentum in the data domain as collaborative approaches for data management emerge. Traditional organizational knowledge consequently needs to be extended by comprehensive knowledge about data. The knowledge about data is vital for organizations to ensure that data quality requirements are met and data can be effectively utilized and sovereignly governed. As this specific knowledge has been paid little attention to so far by academics, the aim of the research presented in this paper is to conceptualize it by proposing a “data knowledge model”. Relevant model entities have been identified based on a design science research (DSR) approach that iteratively integrates insights of various industry case studies and literature research.Keywords: data management, digitization, industry 4.0, knowledge engineering, metamodel
Procedia PDF Downloads 3567652 Knowledge Diffusion via Automated Organizational Cartography: Autocart
Authors: Mounir Kehal, Adel Al Araifi
Abstract:
The post-globalisation epoch has placed businesses everywhere in new and different competitive situations where knowledgeable, effective and efficient behaviour has come to provide the competitive and comparative edge. Enterprises have turned to explicit- and even conceptualising on tacit- Knowledge Management to elaborate a systematic approach to develop and sustain the Intellectual Capital needed to succeed. To be able to do that, you have to be able to visualize your organization as consisting of nothing but knowledge and knowledge flows, whilst being presented in a graphical and visual framework, referred to as automated organizational cartography. Hence, creating the ability of further actively classifying existing organizational content evolving from and within data feeds, in an algorithmic manner, potentially giving insightful schemes and dynamics by which organizational know-how is visualised. It is discussed and elaborated on most recent and applicable definitions and classifications of knowledge management, representing a wide range of views from mechanistic (systematic, data driven) to a more socially (psychologically, cognitive/metadata driven) orientated. More elaborate continuum models, for knowledge acquisition and reasoning purposes, are being used for effectively representing the domain of information that an end user may contain in their decision making process for utilization of available organizational intellectual resources (i.e. Autocart). In this paper we present likewise an empirical research study conducted previously to try and explore knowledge diffusion in a specialist knowledge domain.Keywords: knowledge management, knowledge maps, knowledge diffusion, organizational cartography
Procedia PDF Downloads 4177651 Summarizing Data Sets for Data Mining by Using Statistical Methods in Coastal Engineering
Authors: Yunus Doğan, Ahmet Durap
Abstract:
Coastal regions are the one of the most commonly used places by the natural balance and the growing population. In coastal engineering, the most valuable data is wave behaviors. The amount of this data becomes very big because of observations that take place for periods of hours, days and months. In this study, some statistical methods such as the wave spectrum analysis methods and the standard statistical methods have been used. The goal of this study is the discovery profiles of the different coast areas by using these statistical methods, and thus, obtaining an instance based data set from the big data to analysis by using data mining algorithms. In the experimental studies, the six sample data sets about the wave behaviors obtained by 20 minutes of observations from Mersin Bay in Turkey and converted to an instance based form, while different clustering techniques in data mining algorithms were used to discover similar coastal places. Moreover, this study discusses that this summarization approach can be used in other branches collecting big data such as medicine.Keywords: clustering algorithms, coastal engineering, data mining, data summarization, statistical methods
Procedia PDF Downloads 3617650 Cardiac Biosignal and Adaptation in Confined Nuclear Submarine Patrol
Authors: B. Lefranc, C. Aufauvre-Poupon, C. Martin-Krumm, M. Trousselard
Abstract:
Isolated and confined environments (ICE) present several challenges which may adversely affect human’s psychology and physiology. Submariners in Sub-Surface Ballistic Nuclear (SSBN) mission exposed to these environmental constraints must be able to perform complex tasks as part of their normal duties, as well as during crisis periods when emergency actions are required or imminent. The operational and environmental constraints they face contribute to challenge human adaptability. The impact of such a constrained environment has yet to be explored. Establishing a knowledge framework is a determining factor, particularly in view of the next long space travels. Ensuring that the crews are maintained in optimal operational conditions is a real challenge because the success of the mission depends on them. This study focused on the evaluation of the impact of stress on mental health and sensory degradation of submariners during a mission on SSBN using cardiac biosignal (heart rate variability, HRV) clustering. This is a pragmatic exploratory study of a prospective cohort included 19 submariner volunteers. HRV was recorded at baseline to classify by clustering the submariners according to their stress level based on parasympathetic (Pa) activity. Impacts of high Pa (HPa) versus low Pa (LPa) level at baseline were assessed on emotional state and sensory perception (interoception and exteroception) as a cardiac biosignal during the patrol and at a recovery time one month after. Whatever the time, no significant difference was found in mental health between groups. There are significant differences in the interoceptive, exteroceptive and physiological functioning during the patrol and at recovery time. To sum up, compared to the LPa group, the HPa maintains a higher level in psychosensory functioning during the patrol and at recovery but exhibits a decrease in Pa level. The HPa group has less adaptable HRV characteristics, less unpredictability and flexibility of cardiac biosignals while the LPa group increases them during the patrol and at recovery time. This dissociation between psychosensory and physiological adaptation suggests two treatment modalities for ICE environments. To our best knowledge, our results are the first to highlight the impact of physiological differences in the HRV profile on the adaptability of submariners. Further studies are needed to evaluate the negative emotional and cognitive effects of ICEs based on the cardiac profile. Artificial intelligence offers a promising future for maintaining high level of operational conditions. These future perspectives will not only allow submariners to be better prepared, but also to design feasible countermeasures that will help support analog environments that bring us closer to a trip to Mars.Keywords: adaptation, exteroception, HRV, ICE, interoception, SSBN
Procedia PDF Downloads 1827649 Moderating Role of Positive External Factors in Relationship of Abusive Supervision and Knowledge Sharing
Abstract:
Knowledge sharing is very important in organizations for their future progress and survival. This study investigates the impact of destructive leadership (abusive supervision) on knowledge sharing in employees. Further, the authors want to investigate a context variable (group cohesion) and explore its cross level influence on the relationship of abusive supervision and knowledge sharing. Conservation of resource theory (COR) claims loss of psychological capital (an internal positive resource) in employees due to abusive supervision and hence decrease occurs in knowledge sharing. This study tests psychological capital as mediator and group cohesion as moderator in relationship of abusive supervision and knowledge sharing. Data was collected from 239 respondents from more than 40 different organizations and 50 different groups from all over Pakistan. Results show that abusive supervision has negative effect on knowledge sharing through reduction in psychological capital of employees, and increased group cohesion in employees reduces this negative effect improving psychological capital in employees.Keywords: abusive supervision, knowledge sharing, psychological capital, group cohesion, conservation of resources
Procedia PDF Downloads 2167648 Knowledge regarding Sexual and Reproductive Health among Adolescents in Higher Secondary School
Authors: Kopila Shrestha
Abstract:
Adolescent sexual reproductive health is one of the most important issues in the world. Reproductive ability is taking place at an earlier age and adolescents are indulging in risk taking behaviors day by day. A descriptive cross-sectional study was conducted in Kathmandu valley to assess the knowledge regarding sexual and reproductive health among adolescent. Total of 200 respondents were selected through non-probability convenient sampling technique. Self-administered written questionnaires using semi-structured questions were used. The collected data were analyzed by using descriptive statistics such as frequency, percentage, mean, standard deviation and inferential statistics such as Chi-square test. The findings revealed that most of the respondents had adequate knowledge regarding transmission and protection of HIV/AIDs and STIs but still some respondents had a misconception regarding it. Few respondents had knowledge regarding legal age for marriage and the minimum age for first child bearing. The statistical analysis revealed that the total mean knowledge score with standard deviation was 45.02±8.674. Nearly half of the respondents (49.5%) had a moderate level of knowledge, followed by an inadequate level of knowledge 29.5% and adequate level of knowledge 21.0% regarding sexual and reproductive health. There was significant association of level of knowledge with area of residence (p-value .002) but no association with age (p-value .067), sex (p-value .999), religion (p-value .082) and ethnicity (p-value .114). Nearly half of the participants possess some knowledge about sexual and reproductive health but still effective educational intervention is required in higher secondary school to encourage more sensible and healthy behaviour.Keywords: adolescents, higher secondary school, knowledge, sexual and reproductive health
Procedia PDF Downloads 2837647 Assessment of Academic Knowledge Transfer Channels in Field of Environment
Authors: Jagul Huma Lashari, Arabella Bhutto
Abstract:
Last few years have shown increased an interest of researchers in knowledge and technology transfer. However, facts show fewer types of knowledge transfer practices in the developing countries. This article focuses on assessment transfer channels of academic research produced by highly qualified academicians working in universities in Sindh offering degrees in field of an Environment in Sindh Pakistan. The academic field has been chosen because in field of the environment there is alarming need of research into practice for sustainable development. Using case study approach; in this research qualitative interviews have been conducted from PhD faculty members working in the universities offering degrees in field of environment. Obtained data is analyzed using descriptive statistics and chi-square test with the help of statistical packages for social sciences (SPSS). Research explored 31 channels of academic knowledge transfer from detailed review of literature and exploratory interviews with participants. Identified knowledge transfer channels have been grouped together in 6 groups of knowledge transfer channels; As knowledge transfer through publications, networking, mobility of researchers, joint research, intellectual property and co-operations. Results revealed that academic knowledge have been transferred through publications, networking, and co-operation. However, less number of academic knowledge has been transferred through groups of knowledge transfer channels such as Intellectual Property and joint research.Keywords: environment, research knowledge, transfer channels, universities
Procedia PDF Downloads 3367646 The Impact of Motivation, Trust, and National Cultural Differences on Knowledge Sharing within the Context of Electronic Mail
Authors: Said Abdullah Al Saifi
Abstract:
The goal of this research is to examine the impact of trust, motivation, and national culture on knowledge sharing within the context of electronic mail. This study is quantitative and survey based. In order to conduct the research, 200 students from a leading university in New Zealand were chosen randomly to participate in a questionnaire survey. Motivation and trust were found to be significantly and positively related to knowledge sharing. The research findings illustrated that face saving, face gaining, and individualism positively moderates the relationship between motivation and knowledge sharing. In addition, collectivism culture negatively moderates the relationship between motivation and knowledge sharing. Moreover, the research findings reveal that face saving, individualism, and collectivism culture positively moderate the relationship between trust and knowledge sharing. In addition, face gaining culture negatively moderates the relationship between trust and knowledge sharing. This study sets out several implications for researchers and practitioners. The study produces an integrative model that shows how attributes of national culture impact knowledge sharing through the use of emails. A better understanding of the relationship between knowledge sharing and trust, motivation, and national culture differences will increase individuals’ ability to make wise choices when sharing knowledge with those from different cultures.Keywords: knowledge sharing, motivation, national culture, trust
Procedia PDF Downloads 3487645 Implementation of an IoT Sensor Data Collection and Analysis Library
Authors: Jihyun Song, Kyeongjoo Kim, Minsoo Lee
Abstract:
Due to the development of information technology and wireless Internet technology, various data are being generated in various fields. These data are advantageous in that they provide real-time information to the users themselves. However, when the data are accumulated and analyzed, more various information can be extracted. In addition, development and dissemination of boards such as Arduino and Raspberry Pie have made it possible to easily test various sensors, and it is possible to collect sensor data directly by using database application tools such as MySQL. These directly collected data can be used for various research and can be useful as data for data mining. However, there are many difficulties in using the board to collect data, and there are many difficulties in using it when the user is not a computer programmer, or when using it for the first time. Even if data are collected, lack of expert knowledge or experience may cause difficulties in data analysis and visualization. In this paper, we aim to construct a library for sensor data collection and analysis to overcome these problems.Keywords: clustering, data mining, DBSCAN, k-means, k-medoids, sensor data
Procedia PDF Downloads 3787644 Building a Lean Construction Body of Knowledge
Authors: Jyoti Singh, Ahmed Stifi, Sascha Gentes
Abstract:
The process of construction significantly contributes to high level of risks, complexity and uncertainties leading to cost and time overrun, customer dissatisfaction etc. lean construction is important as it is a comprehensive system of tools and concepts focusing on moving closer to customer satisfaction by understanding the process, identifying the waste and eliminating it. The proposed work includes identification of knowledge areas from lean perspective, lean tools/concepts used in lean construction and establishing a relationship matrix between knowledge areas and lean tools/concepts, thus developing and building up a lean construction body of knowledge (LCBOK), i.e. a guide to lean construction, aiming to provide guidelines to manage individual projects and also helping construction industry to minimise waste and maximize value to the customer. In this study, we identified 8 knowledge areas and 62 lean tools/concepts from lean perspective and also one tool can help to manage two or more knowledge areas.Keywords: knowledge areas, lean body matrix, lean construction, lean tools
Procedia PDF Downloads 4367643 Modelling Public Knowledge and Attitude towards Genetically Modified Maize in Kenya
Authors: Ezrah Kipkirui Tonui, George Otieno Orwa
Abstract:
A survey of 138 farmers was conducted in Rift valley, Kenya, in November and December 2013 in three counties (Uasin-gishu, Elgeyo-marakwet, and Tranzoia) to determine public knowledge and attitude towards genetically modified (GM) maize. Above two third (70%) of the respondents had knowledge of GM maize, mostly those educated and male. Female was found to be having low knowledge on GM maize. Public acknowledged the technology’s potential positive impacts, with more than 90% willing to adopt and more than 98% willing to buy GM seedlings at any given price. A small percentage less than 3% were of a negative opinion about willing to buy and adopt GM seeds. We conclude that GM technology has a role to play in food security in Kenya. However, the public needs more information about the technology, which can be provided through established sources of information and training. Finally, public knowledge and attitude on GM maize should be studied on a regular basis, and the survey population broadened to 47 counties.Keywords: public, knowledge, attitudes, GM maize, Kenya
Procedia PDF Downloads 308