Search results for: geospatial techniques
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6893

Search results for: geospatial techniques

6593 GIS for Simulating Air Traffic by Applying Different Multi-radar Positioning Techniques

Authors: Amara Rafik, Bougherara Maamar, Belhadj Aissa Mostefa

Abstract:

Radar data is one of the many data sources used by ATM Air Traffic Management systems. These data come from air navigation radar antennas. These radars intercept signals emitted by the various aircraft crossing the controlled airspace and calculate the position of these aircraft and retransmit their positions to the Air Traffic Management System. For greater reliability, these radars are positioned in such a way as to allow their coverage areas to overlap. An aircraft will therefore be detected by at least one of these radars. However, the position coordinates of the same aircraft and sent by these different radars are not necessarily identical. Therefore, the ATM system must calculate a single position (radar track) which will ultimately be sent to the control position and displayed on the air traffic controller's monitor. There are several techniques for calculating the radar track. Furthermore, the geographical nature of the problem requires the use of a Geographic Information System (GIS), i.e. a geographical database on the one hand and geographical processing. The objective of this work is to propose a GIS for traffic simulation which reconstructs the evolution over time of aircraft positions from a multi-source radar data set and by applying these different techniques.

Keywords: ATM, GIS, radar data, air traffic simulation

Procedia PDF Downloads 87
6592 PhilSHORE: Development of a WebGIS-Based Marine Spatial Planning Tool for Tidal Current Energy Resource Assessment and Site Suitability Analysis

Authors: Ma. Rosario Concepcion O. Ang, Luis Caezar Ian K. Panganiban, Charmyne B. Mamador, Oliver Dan G. De Luna, Michael D. Bausas, Joselito P. Cruz

Abstract:

PhilSHORE is a multi-site, multi-device and multi-criteria decision support tool designed to support the development of tidal current energy in the Philippines. Its platform is based on Geographic Information Systems (GIS) which allows for the collection, storage, processing, analyses and display of geospatial data. Combining GIS tools with open source web development applications, PhilSHORE becomes a webGIS-based marine spatial planning tool. To date, PhilSHORE displays output maps and graphs of power and energy density, site suitability and site-device analysis. It enables stakeholders and the public easy access to the results of tidal current energy resource assessments and site suitability analyses. Results of the initial development shows PhilSHORE is a promising decision support tool for ORE project developments.

Keywords: gis, site suitability analysis, tidal current energy resource assessment, webgis

Procedia PDF Downloads 527
6591 A Survey on Data-Centric and Data-Aware Techniques for Large Scale Infrastructures

Authors: Silvina Caíno-Lores, Jesús Carretero

Abstract:

Large scale computing infrastructures have been widely developed with the core objective of providing a suitable platform for high-performance and high-throughput computing. These systems are designed to support resource-intensive and complex applications, which can be found in many scientific and industrial areas. Currently, large scale data-intensive applications are hindered by the high latencies that result from the access to vastly distributed data. Recent works have suggested that improving data locality is key to move towards exascale infrastructures efficiently, as solutions to this problem aim to reduce the bandwidth consumed in data transfers, and the overheads that arise from them. There are several techniques that attempt to move computations closer to the data. In this survey we analyse the different mechanisms that have been proposed to provide data locality for large scale high-performance and high-throughput systems. This survey intends to assist scientific computing community in understanding the various technical aspects and strategies that have been reported in recent literature regarding data locality. As a result, we present an overview of locality-oriented techniques, which are grouped in four main categories: application development, task scheduling, in-memory computing and storage platforms. Finally, the authors include a discussion on future research lines and synergies among the former techniques.

Keywords: data locality, data-centric computing, large scale infrastructures, cloud computing

Procedia PDF Downloads 260
6590 Rapid Processing Techniques Applied to Sintered Nickel Battery Technologies for Utility Scale Applications

Authors: J. D. Marinaccio, I. Mabbett, C. Glover, D. Worsley

Abstract:

Through use of novel modern/rapid processing techniques such as screen printing and Near-Infrared (NIR) radiative curing, process time for the sintering of sintered nickel plaques, applicable to alkaline nickel battery chemistries, has been drastically reduced from in excess of 200 minutes with conventional convection methods to below 2 minutes using NIR curing methods. Steps have also been taken to remove the need for forming gas as a reducing agent by implementing carbon as an in-situ reducing agent, within the ink formulation.

Keywords: batteries, energy, iron, nickel, storage

Procedia PDF Downloads 441
6589 Monte Carlo Simulations of LSO/YSO for Dose Evaluation in Photon Beam Radiotherapy

Authors: H. Donya

Abstract:

Monte Carlo (MC) techniques play a fundamental role in radiotherapy. A two non-water-equivalent of different media were used to evaluate the dose in water. For such purpose, Lu2SiO5 (LSO) and Y2SiO5 (YSO) orthosilicates scintillators are chosen for MC simulation using Penelope code. To get higher efficiency in dose calculation, variance reduction techniques are discussed. Overall results of this investigation ensured that the LSO/YSO bi-media a good combination to tackle over-response issue in dynamic photon radiotherapy.

Keywords: Lu2SiO5 (LSO) and Y2SiO5 (YSO) orthosilicates, Monte Carlo, correlated sampling, radiotherapy

Procedia PDF Downloads 408
6588 Optimization Techniques of Doubly-Fed Induction Generator Controller Design for Reliability Enhancement of Wind Energy Conversion Systems

Authors: Om Prakash Bharti, Aanchal Verma, R. K. Saket

Abstract:

The Doubly-Fed Induction Generator (DFIG) is suggested for Wind Energy Conversion System (WECS) to extract wind power. DFIG is preferably employed due to its robustness towards variable wind and rotor speed. DFIG has the adaptable property because the system parameters are smoothly dealt with, including real power, reactive power, DC-link voltage, and the transient and dynamic responses, which are needed to analyze constantly. The analysis becomes more prominent during any unusual condition in the electrical power system. Hence, the study and improvement in the system parameters and transient response performance of DFIG are required to be accomplished using some controlling techniques. For fulfilling the task, the present work implements and compares the optimization methods for the design of the DFIG controller for WECS. The bio-inspired optimization techniques are applied to get the optimal controller design parameters for DFIG-based WECS. The optimized DFIG controllers are then used to retrieve the transient response performance of the six-order DFIG model with a step input. The results using MATLAB/Simulink show the betterment of the Firefly algorithm (FFA) over other control techniques when compared with the other controller design methods.

Keywords: doubly-fed induction generator, wind turbine, wind energy conversion system, induction generator, transfer function, proportional, integral, derivatives

Procedia PDF Downloads 93
6587 The Role of Sustainable Development in the Design and Planning of Smart Cities Using GIS Techniques: Models of Arab Cities

Authors: Ahmed M. Jihad

Abstract:

The paper presents the concept of sustainable development, and the role of geographic techniques in the design, planning and presentation of maps of smart cities with geographical vision, and the identification of programs and tools, and models of maps of Arab cities, is the problem of research in how to apply, process and experience these programs? What is the role of geographic techniques in planning and mapping the optimal place for these cities? The paper proposes an addition to the designs of Iraqi cities, as it can be developed in the future to serve as a model for interactive smart cities by developing its services. The importance of this paper stems from the concept of sustainable development dynamic which has become a method of development imposed by the present era in rapid development to achieve social balance and specialized programs in draw paper argues that ensuring sustainable development is achieved through the use of information technology. The paper will follow the theoretical presentation of the importance of the concept of development, design tools and programs. The paper follows the method of analysis of modern systems (System Analysis Approach) through the latest programs will provide results can be said that the new Iraqi cities can be developed with smart technologies, like some of the Arab and European cities that were newly created through the introduction of international investment, and therefore Plans can be made to select the best programs in manufacturing and producing maps and smart cities in the future.

Keywords: geographic techniques, planning the cities, smart cities, sustainable development

Procedia PDF Downloads 210
6586 The Application of Nuclear Energy for Sustainable Agriculture and Food Security: A Review

Authors: Gholamreza Farrokhi, Behzad Sani

Abstract:

The goals of sustainable agricultural are development, improved nutrition, and food security. Sustainable agriculture must be developed that will meet today’s needs for food and other products, as well as preserving the vital natural resource base that will allow future generations to meet their needs. Sustainable development requires international cooperation and the effective use of technology. Access to sustainable sources of food will remain a preeminent challenge in the decades to come. Based upon current practice and consumption, agricultural production will have to increase by about 70% by 2050 to meet demand. Nuclear techniques are used in developing countries to increase production sustainably by breeding improved crops, enhancing livestock reproduction and nutrition, as well as controlling animal and plant pests and diseases. Post-harvest losses can be reduced and safety increased with nuclear technology. Soil can be evaluated with nuclear techniques to conserve and improve soil productivity and water management.

Keywords: food safety, food security, nuclear techniques, sustainable agriculture, sustainable future

Procedia PDF Downloads 358
6585 Effective Supply Chain Coordination with Hybrid Demand Forecasting Techniques

Authors: Gurmail Singh

Abstract:

Effective supply chain is the main priority of every organization which is the outcome of strategic corporate investments with deliberate management action. Value-driven supply chain is defined through development, procurement and by configuring the appropriate resources, metrics and processes. However, responsiveness of the supply chain can be improved by proper coordination. So the Bullwhip effect (BWE) and Net stock amplification (NSAmp) values were anticipated and used for the control of inventory in organizations by both discrete wavelet transform-Artificial neural network (DWT-ANN) and Adaptive Network-based fuzzy inference system (ANFIS). This work presents a comparative methodology of forecasting for the customers demand which is non linear in nature for a multilevel supply chain structure using hybrid techniques such as Artificial intelligence techniques including Artificial neural networks (ANN) and Adaptive Network-based fuzzy inference system (ANFIS) and Discrete wavelet theory (DWT). The productiveness of these forecasting models are shown by computing the data from real world problems for Bullwhip effect and Net stock amplification. The results showed that these parameters were comparatively less in case of discrete wavelet transform-Artificial neural network (DWT-ANN) model and using Adaptive network-based fuzzy inference system (ANFIS).

Keywords: bullwhip effect, hybrid techniques, net stock amplification, supply chain flexibility

Procedia PDF Downloads 128
6584 Digital Watermarking Using Fractional Transform and (k,n) Halftone Visual Cryptography (HVC)

Authors: R. Rama Kishore, Sunesh Malik

Abstract:

Development in the usage of internet for different purposes in recent times creates great threat for the copy right protection of the digital images. Digital watermarking is the best way to rescue from the said problem. This paper presents detailed review of the different watermarking techniques, latest trends in the field and categorized like spatial and transform domain, blind and non-blind methods, visible and non visible techniques etc. It also discusses the different optimization techniques used in the field of watermarking in order to improve the robustness and imperceptibility of the method. Different measures are discussed to evaluate the performance of the watermarking algorithm. At the end, this paper proposes a watermarking algorithm using (k.n) shares of halftone visual cryptography (HVC) instead of (2, 2) share cryptography. (k,n) shares visual cryptography improves the security of the watermark. As halftone is a method of reprographic, it helps in improving the visual quality of watermark image. The proposed method uses fractional transformation to improve the robustness of the copyright protection of the method.

Keywords: digital watermarking, fractional transform, halftone, visual cryptography

Procedia PDF Downloads 357
6583 Embedded Hw-Sw Reconfigurable Techniques For Wireless Sensor Network Applications

Authors: B. Kirubakaran, C. Rajasekaran

Abstract:

Reconfigurable techniques are used in many engineering and industrial applications for the efficient data transmissions through the wireless sensor networks. Nowadays most of the industrial applications are work for try to minimize the size and cost. During runtime the reconfigurable technique avoid the unwanted hang and delay in the system performance. In recent world Field Programmable Gate Array (FPGA) as one of the most efficient reconfigurable device and widely used for most of the hardware and software reconfiguration applications. In this paper, the work deals with whatever going to make changes in the hardware and software during runtime it’s should not affect the current running process that’s the main objective of the paper our changes be done in a parallel manner at the same time concentrating the cost and power transmission problems during data trans-receiving. Analog sensor (Temperature) as an input for the controller (PIC) through that control the FPGA digital sensors in generalized manner.

Keywords: field programmable gate array, peripheral interrupt controller, runtime reconfigurable techniques, wireless sensor networks

Procedia PDF Downloads 409
6582 Geographic Information System for Simulating Air Traffic By Applying Different Multi-Radar Positioning Techniques

Authors: Amara Rafik, Mostefa Belhadj Aissa

Abstract:

Radar data is one of the many data sources used by ATM Air Traffic Management systems. These data come from air navigation radar antennas. These radars intercept signals emitted by the various aircraft crossing the controlled airspace and calculate the position of these aircraft and retransmit their positions to the Air Traffic Management System. For greater reliability, these radars are positioned in such a way as to allow their coverage areas to overlap. An aircraft will therefore be detected by at least one of these radars. However, the position coordinates of the same aircraft and sent by these different radars are not necessarily identical. Therefore, the ATM system must calculate a single position (radar track) which will ultimately be sent to the control position and displayed on the air traffic controller's monitor. There are several techniques for calculating the radar track. Furthermore, the geographical nature of the problem requires the use of a Geographic Information System (GIS), i.e. a geographical database on the one hand and geographical processing. The objective of this work is to propose a GIS for traffic simulation which reconstructs the evolution over time of aircraft positions from a multi-source radar data set and by applying these different techniques.

Keywords: ATM, GIS, radar data, simulation

Procedia PDF Downloads 119
6581 Deep Supervision Based-Unet to Detect Buildings Changes from VHR Aerial Imagery

Authors: Shimaa Holail, Tamer Saleh, Xiongwu Xiao

Abstract:

Building change detection (BCD) from satellite imagery is an essential topic in urbanization monitoring, agricultural land management, and updating geospatial databases. Recently, methods for detecting changes based on deep learning have made significant progress and impressive results. However, it has the problem of being insensitive to changes in buildings with complex spectral differences, and the features being extracted are not discriminatory enough, resulting in incomplete buildings and irregular boundaries. To overcome these problems, we propose a dual Siamese network based on the Unet model with the addition of a deep supervision strategy (DS) in this paper. This network consists of a backbone (encoder) based on ImageNet pre-training, a fusion block, and feature pyramid networks (FPN) to enhance the step-by-step information of the changing regions and obtain a more accurate BCD map. To train the proposed method, we created a new dataset (EGY-BCD) of high-resolution and multi-temporal aerial images captured over New Cairo in Egypt to detect building changes for this purpose. The experimental results showed that the proposed method is effective and performs well with the EGY-BCD dataset regarding the overall accuracy, F1-score, and mIoU, which were 91.6 %, 80.1 %, and 73.5 %, respectively.

Keywords: building change detection, deep supervision, semantic segmentation, EGY-BCD dataset

Procedia PDF Downloads 123
6580 Multimodal Data Fusion Techniques in Audiovisual Speech Recognition

Authors: Hadeer M. Sayed, Hesham E. El Deeb, Shereen A. Taie

Abstract:

In the big data era, we are facing a diversity of datasets from different sources in different domains that describe a single life event. These datasets consist of multiple modalities, each of which has a different representation, distribution, scale, and density. Multimodal fusion is the concept of integrating information from multiple modalities in a joint representation with the goal of predicting an outcome through a classification task or regression task. In this paper, multimodal fusion techniques are classified into two main classes: model-agnostic techniques and model-based approaches. It provides a comprehensive study of recent research in each class and outlines the benefits and limitations of each of them. Furthermore, the audiovisual speech recognition task is expressed as a case study of multimodal data fusion approaches, and the open issues through the limitations of the current studies are presented. This paper can be considered a powerful guide for interested researchers in the field of multimodal data fusion and audiovisual speech recognition particularly.

Keywords: multimodal data, data fusion, audio-visual speech recognition, neural networks

Procedia PDF Downloads 114
6579 Intrusion Detection Techniques in Mobile Adhoc Networks: A Review

Authors: Rashid Mahmood, Muhammad Junaid Sarwar

Abstract:

Mobile ad hoc networks (MANETs) use has been well-known from the last few years in the many applications, like mission critical applications. In the (MANETS) prevention method is not adequate as the security concerned, so the detection method should be added to the security issues in (MANETs). The authentication and encryption is considered the first solution of the MANETs problem where as now these are not sufficient as MANET use is increasing. In this paper we are going to present the concept of intrusion detection and then survey some of major intrusion detection techniques in MANET and aim to comparing in some important fields.

Keywords: MANET, IDS, intrusions, signature, detection, prevention

Procedia PDF Downloads 381
6578 The Functional Magnetic Resonance Imaging and the Consumer Behaviour: Reviewing Recent Research

Authors: Mikel Alonso López

Abstract:

In the first decade of the twenty-first century, advanced imaging techniques began to be applied for neuroscience research. The Functional Magnetic Resonance Imaging (fMRI) is one of the most important and most used research techniques for the investigation of emotions, because of its ease to observe the brain areas that oxygenate when performing certain tasks. In this research, we make a review about the main research carried out on the influence of the emotions in the decision-making process that is exposed by using the fMRI.

Keywords: decision making, emotions, fMRI, consumer behaviour

Procedia PDF Downloads 480
6577 Prediction of Embankment Fires at Railway Infrastructure Using Machine Learning, Geospatial Data and VIIRS Remote Sensing Imagery

Authors: Jan-Peter Mund, Christian Kind

Abstract:

In view of the ongoing climate change and global warming, fires along railways in Germany are occurring more frequently, with sometimes massive consequences for railway operations and affected railroad infrastructure. In the absence of systematic studies within the infrastructure network of German Rail, little is known about the causes of such embankment fires. Since a further increase in these hazards is to be expected in the near future, there is a need for a sound knowledge of triggers and drivers for embankment fires as well as methodical knowledge of prediction tools. Two predictable future trends speak for the increasing relevance of the topic: through the intensification of the use of rail for passenger and freight transport (e.g..: doubling of annual passenger numbers by 2030, compared to 2019), there will be more rail traffic and also more maintenance and construction work on the railways. This research project approach uses satellite data to identify historical embankment fires along rail network infrastructure. The team links data from these fires with infrastructure and weather data and trains a machine-learning model with the aim of predicting fire hazards on sections of the track. Companies reflect on the results and use them on a pilot basis in precautionary measures.

Keywords: embankment fires, railway maintenance, machine learning, remote sensing, VIIRS data

Procedia PDF Downloads 89
6576 Geospatial and Statistical Evidences of Non-Engineered Landfill Leachate Effects on Groundwater Quality in a Highly Urbanised Area of Nigeria

Authors: David A. Olasehinde, Peter I. Olasehinde, Segun M. A. Adelana, Dapo O. Olasehinde

Abstract:

An investigation was carried out on underground water system dynamics within Ilorin metropolis to monitor the subsurface flow and its corresponding pollution. Africa population growth rate is the highest among the regions of the world, especially in urban areas. A corresponding increase in waste generation and a change in waste composition from predominantly organic to non-organic waste has also been observed. Percolation of leachate from non-engineered landfills, the chief means of waste disposal in many of its cities, constitutes a threat to the underground water bodies. Ilorin city, a transboundary town in southwestern Nigeria, is a ready microcosm of Africa’s unique challenge. In spite of the fact that groundwater is naturally protected from common contaminants such as bacteria as the subsurface provides natural attenuation process, groundwater samples have been noted to however possesses relatively higher dissolved chemical contaminants such as bicarbonate, sodium, and chloride which poses a great threat to environmental receptors and human consumption. The Geographic Information System (GIS) was used as a tool to illustrate, subsurface dynamics and the corresponding pollutant indicators. Forty-four sampling points were selected around known groundwater pollutant, major old dumpsites without landfill liners. The results of the groundwater flow directions and the corresponding contaminant transport were presented using expert geospatial software. The experimental results were subjected to four descriptive statistical analyses, namely: principal component analysis, Pearson correlation analysis, scree plot analysis, and Ward cluster analysis. Regression model was also developed aimed at finding functional relationships that can adequately relate or describe the behaviour of water qualities and the hypothetical factors landfill characteristics that may influence them namely; distance of source of water body from dumpsites, static water level of groundwater, subsurface permeability (inferred from hydraulic gradient), and soil infiltration. The regression equations developed were validated using the graphical approach. Underground water seems to flow from the northern portion of Ilorin metropolis down southwards transporting contaminants. Pollution pattern in the study area generally assumed a bimodal pattern with the major concentration of the chemical pollutants in the underground watershed and the recharge. The correlation between contaminant concentrations and the spread of pollution indicates that areas of lower subsurface permeability display a higher concentration of dissolved chemical content. The principal component analysis showed that conductivity, suspended solids, calcium hardness, total dissolved solids, total coliforms, and coliforms were the chief contaminant indicators in the underground water system in the study area. Pearson correlation revealed a high correlation of electrical conductivity for many parameters analyzed. In the same vein, the regression models suggest that the heavier the molecular weight of a chemical contaminant of a pollutant from a point source, the greater the pollution of the underground water system at a short distance. The study concludes that the associative properties of landfill have a significant effect on groundwater quality in the study area.

Keywords: dumpsite, leachate, groundwater pollution, linear regression, principal component

Procedia PDF Downloads 118
6575 Rural Entrepreneurship as a Response to Climate Change and Resource Conservation

Authors: Omar Romero-Hernandez, Federico Castillo, Armando Sanchez, Sergio Romero, Andrea Romero, Michael Mitchell

Abstract:

Environmental policies for resource conservation in rural areas include subsidies on services and social programs to cover living expenses. Government's expectation is that rural communities who benefit from social programs, such as payment for ecosystem services, are provided with an incentive to conserve natural resources and preserve natural sinks for greenhouse gases. At the same time, global climate change has affected the lives of people worldwide. The capability to adapt to global warming depends on the available resources and the standard of living, putting rural communities at a disadvantage. This paper explores whether rural entrepreneurship can represent a solution to resource conservation and global warming adaptation in rural communities. The research focuses on a sample of two coffee communities in Oaxaca, Mexico. Researchers used geospatial information contained in aerial photographs of the geographical areas of interest. Households were identified in the photos via the roofs of households and georeferenced via coordinates. From the household population, a random selection of roofs was performed and received a visit. A total of 112 surveys were completed, including questions of socio-demographics, perception to climate change and adaptation activities. The population includes two groups of study: entrepreneurs and non-entrepreneurs. Data was sorted, filtered, and validated. Analysis includes descriptive statistics for exploratory purposes and a multi-regression analysis. Outcomes from the surveys indicate that coffee farmers, who demonstrate entrepreneurship skills and hire employees, are more eager to adapt to climate change despite the extreme adverse socioeconomic conditions of the region. We show that farmers with entrepreneurial tendencies are more creative in using innovative farm practices such as the planting of shade trees, the use of live fencing, instead of wires, and watershed protection techniques, among others. This result counters the notion that small farmers are at the mercy of climate change and have no possibility of being able to adapt to a changing climate. The study also points to roadblocks that farmers face when coping with climate change. Among those roadblocks are a lack of extension services, access to credit, and reliable internet, all of which reduces access to vital information needed in today’s constantly changing world. Results indicate that, under some circumstances, funding and supporting entrepreneurship programs may provide more benefit than traditional social programs.

Keywords: entrepreneurship, global warming, rural communities, climate change adaptation

Procedia PDF Downloads 241
6574 Applications Using Geographic Information System for Planning and Development of Energy Efficient and Sustainable Living for Smart-Cities

Authors: Javed Mohammed

Abstract:

As urbanization process has been and will be happening in an unprecedented scale worldwide, strong requirements from academic research and practical fields for smart management and intelligent planning of cities are pressing to handle increasing demands of infrastructure and potential risks of inhabitants agglomeration in disaster management. Geo-spatial data and Geographic Information System (GIS) are essential components for building smart cities in a basic way that maps the physical world into virtual environment as a referencing framework. On higher level, GIS has been becoming very important in smart cities on different sectors. In the digital city era, digital maps and geospatial databases have long been integrated in workflows in land management, urban planning and transportation in government. People have anticipated GIS to be more powerful not only as an archival and data management tool but also as spatial models for supporting decision-making in intelligent cities. The purpose of this project is to offer observations and analysis based on a detailed discussion of Geographic Information Systems( GIS) driven Framework towards the development of Smart and Sustainable Cities through high penetration of Renewable Energy Technologies.

Keywords: digital maps, geo-spatial, geographic information system, smart cities, renewable energy, urban planning

Procedia PDF Downloads 526
6573 Resident-Aware Green Home

Authors: Ahlam Elkilani, Bayan Elsheikh Ali, Rasha Abu Romman, Amjed Al-mousa, Belal Sababha

Abstract:

The amount of energy the world uses doubles every 20 years. Green homes play an important role in reducing the residential energy demand. This paper presents a platform that is intended to learn the behavior of home residents and build a profile about their habits and actions. The proposed resident aware home controller intervenes in the operation of home appliances in order to save energy without compromising the convenience of the residents. The presented platform can be used to simulate the actions and movements happening inside a home. The paper includes several optimization techniques that are meant to save energy in the home. In addition, several test scenarios are presented that show how the controller works. Moreover, this paper shows the computed actual savings when each of the presented techniques is implemented in a typical home. The test scenarios have validated that the techniques developed are capable of effectively saving energy at homes.

Keywords: green home, resident aware, resident profile, activity learning, machine learning

Procedia PDF Downloads 390
6572 Hybrid Approach for Software Defect Prediction Using Machine Learning with Optimization Technique

Authors: C. Manjula, Lilly Florence

Abstract:

Software technology is developing rapidly which leads to the growth of various industries. Now-a-days, software-based applications have been adopted widely for business purposes. For any software industry, development of reliable software is becoming a challenging task because a faulty software module may be harmful for the growth of industry and business. Hence there is a need to develop techniques which can be used for early prediction of software defects. Due to complexities in manual prediction, automated software defect prediction techniques have been introduced. These techniques are based on the pattern learning from the previous software versions and finding the defects in the current version. These techniques have attracted researchers due to their significant impact on industrial growth by identifying the bugs in software. Based on this, several researches have been carried out but achieving desirable defect prediction performance is still a challenging task. To address this issue, here we present a machine learning based hybrid technique for software defect prediction. First of all, Genetic Algorithm (GA) is presented where an improved fitness function is used for better optimization of features in data sets. Later, these features are processed through Decision Tree (DT) classification model. Finally, an experimental study is presented where results from the proposed GA-DT based hybrid approach is compared with those from the DT classification technique. The results show that the proposed hybrid approach achieves better classification accuracy.

Keywords: decision tree, genetic algorithm, machine learning, software defect prediction

Procedia PDF Downloads 330
6571 A Survey of Feature-Based Steganalysis for JPEG Images

Authors: Syeda Mainaaz Unnisa, Deepa Suresh

Abstract:

Due to the increase in usage of public domain channels, such as the internet, and communication technology, there is a concern about the protection of intellectual property and security threats. This interest has led to growth in researching and implementing techniques for information hiding. Steganography is the art and science of hiding information in a private manner such that its existence cannot be recognized. Communication using steganographic techniques makes not only the secret message but also the presence of hidden communication, invisible. Steganalysis is the art of detecting the presence of this hidden communication. Parallel to steganography, steganalysis is also gaining prominence, since the detection of hidden messages can prevent catastrophic security incidents from occurring. Steganalysis can also be incredibly helpful in identifying and revealing holes with the current steganographic techniques, which makes them vulnerable to attacks. Through the formulation of new effective steganalysis methods, further research to improve the resistance of tested steganography techniques can be developed. Feature-based steganalysis method for JPEG images calculates the features of an image using the L1 norm of the difference between a stego image and the calibrated version of the image. This calibration can help retrieve some of the parameters of the cover image, revealing the variations between the cover and stego image and enabling a more accurate detection. Applying this method to various steganographic schemes, experimental results were compared and evaluated to derive conclusions and principles for more protected JPEG steganography.

Keywords: cover image, feature-based steganalysis, information hiding, steganalysis, steganography

Procedia PDF Downloads 217
6570 Video Summarization: Techniques and Applications

Authors: Zaynab El Khattabi, Youness Tabii, Abdelhamid Benkaddour

Abstract:

Nowadays, huge amount of multimedia repositories make the browsing, retrieval and delivery of video contents very slow and even difficult tasks. Video summarization has been proposed to improve faster browsing of large video collections and more efficient content indexing and access. In this paper, we focus on approaches to video summarization. The video summaries can be generated in many different forms. However, two fundamentals ways to generate summaries are static and dynamic. We present different techniques for each mode in the literature and describe some features used for generating video summaries. We conclude with perspective for further research.

Keywords: video summarization, static summarization, video skimming, semantic features

Procedia PDF Downloads 404
6569 A Survey on Types of Noises and De-Noising Techniques

Authors: Amandeep Kaur

Abstract:

Digital Image processing is a fundamental tool to perform various operations on the digital images for pattern recognition, noise removal and feature extraction. In this paper noise removal technique has been described for various types of noises. This paper comprises discussion about various noises available in the image due to different environmental, accidental factors. In this paper, various de-noising approaches have been discussed that utilize different wavelets and filters for de-noising. By analyzing various papers on image de-noising we extract that wavelet based de-noise approaches are much effective as compared to others.

Keywords: de-noising techniques, edges, image, image processing

Procedia PDF Downloads 336
6568 Optimization and Simulation Models Applied in Engineering Planning and Management

Authors: Abiodun Ladanu Ajala, Wuyi Oke

Abstract:

Mathematical simulation and optimization models packaged within interactive computer programs provide a common way for planners and managers to predict the behaviour of any proposed water resources system design or management policy before it is implemented. Modeling presents a principal technique of predicting the behaviour of the proposed infrastructural designs or management policies. Models can be developed and used to help identify specific alternative plans that best meet those objectives. This study discusses various types of models, their development, architecture, data requirements, and applications in the field of engineering. It also outlines the advantages and limitations of each the optimization and simulation models presented. The techniques explored in this review include; dynamic programming, linear programming, fuzzy optimization, evolutionary algorithms and finally artificial intelligence techniques. Previous studies carried out using some of the techniques mentioned above were reviewed, and most of the results from different researches showed that indeed optimization and simulation provides viable alternatives and predictions which form a basis for decision making in building engineering structures and also in engineering planning and management.

Keywords: linear programming, mutation, optimization, simulation

Procedia PDF Downloads 592
6567 A Comparison between Different Segmentation Techniques Used in Medical Imaging

Authors: Ibtihal D. Mustafa, Mawia A. Hassan

Abstract:

Tumor segmentation from MRI image is important part of medical images experts. This is particularly a challenging task because of the high assorting appearance of tumor tissue among different patients. MRI images are advance of medical imaging because it is give richer information about human soft tissue. There are different segmentation techniques to detect MRI brain tumor. In this paper, different procedure segmentation methods are used to segment brain tumors and compare the result of segmentations by using correlation and structural similarity index (SSIM) to analysis and see the best technique that could be applied to MRI image.

Keywords: MRI, segmentation, correlation, structural similarity

Procedia PDF Downloads 410
6566 A Review of Machine Learning for Big Data

Authors: Devatha Kalyan Kumar, Aravindraj D., Sadathulla A.

Abstract:

Big data are now rapidly expanding in all engineering and science and many other domains. The potential of large or massive data is undoubtedly significant, make sense to require new ways of thinking and learning techniques to address the various big data challenges. Machine learning is continuously unleashing its power in a wide range of applications. In this paper, the latest advances and advancements in the researches on machine learning for big data processing. First, the machine learning techniques methods in recent studies, such as deep learning, representation learning, transfer learning, active learning and distributed and parallel learning. Then focus on the challenges and possible solutions of machine learning for big data.

Keywords: active learning, big data, deep learning, machine learning

Procedia PDF Downloads 446
6565 Multi-Temporal Analysis of Vegetation Change within High Contaminated Watersheds by Superfund Sites in Wisconsin

Authors: Punwath Prum

Abstract:

Superfund site is recognized publicly to be a severe environmental problem to surrounding communities and biodiversity due to its hazardous chemical waste from industrial activities. It contaminates the soil and water but also is a leading potential point-source pollution affecting ecosystem in watershed areas from chemical substances. The risks of Superfund site on watershed can be effectively measured by utilizing publicly available data and geospatial analysis by free and open source application. This study analyzed the vegetation change within high risked contaminated watersheds in Wisconsin. The high risk watersheds were measured by which watershed contained high number Superfund sites. The study identified two potential risk watersheds in Lafayette and analyzed the temporal changes of vegetation within the areas based on Normalized difference vegetation index (NDVI) analysis. The raster statistic was used to compare the change of NDVI value over the period. The analysis results showed that the NDVI value within the Superfund sites’ boundary has a significant lower value than nearby surrounding and provides an analogy for environmental hazard affect by the chemical contamination in Superfund site.

Keywords: soil contamination, spatial analysis, watershed

Procedia PDF Downloads 140
6564 Human Immunodeficiency Virus (HIV) Test Predictive Modeling and Identify Determinants of HIV Testing for People with Age above Fourteen Years in Ethiopia Using Data Mining Techniques: EDHS 2011

Authors: S. Abera, T. Gidey, W. Terefe

Abstract:

Introduction: Testing for HIV is the key entry point to HIV prevention, treatment, and care and support services. Hence, predictive data mining techniques can greatly benefit to analyze and discover new patterns from huge datasets like that of EDHS 2011 data. Objectives: The objective of this study is to build a predictive modeling for HIV testing and identify determinants of HIV testing for adults with age above fourteen years using data mining techniques. Methods: Cross-Industry Standard Process for Data Mining (CRISP-DM) was used to predict the model for HIV testing and explore association rules between HIV testing and the selected attributes among adult Ethiopians. Decision tree, Naïve-Bayes, logistic regression and artificial neural networks of data mining techniques were used to build the predictive models. Results: The target dataset contained 30,625 study participants; of which 16, 515 (53.9%) were women. Nearly two-fifth; 17,719 (58%), have never been tested for HIV while the rest 12,906 (42%) had been tested. Ethiopians with higher wealth index, higher educational level, belonging 20 to 29 years old, having no stigmatizing attitude towards HIV positive person, urban residents, having HIV related knowledge, information about family planning on mass media and knowing a place where to get testing for HIV showed an increased patterns with respect to HIV testing. Conclusion and Recommendation: Public health interventions should consider the identified determinants to promote people to get testing for HIV.

Keywords: data mining, HIV, testing, ethiopia

Procedia PDF Downloads 499